
1

Snoopy Protocol

Arvind

Computer Science and Artificial Intelligence Lab

M.I.T.

Based on the material prepared by

Arvind and Krste Asanovic

* Note: This lecture note is shorter than usual
in order to finish the material in the previous lecture.

2

Bus-Based Protocols:

One derived from the directory based protocol

6.823 L19- 3
Arvind

Bus based SMP’s

P P P
c
P

a < c, Ex>< a, Sh> a1 2 3 4

a, b, c
< a, R(1, 2) >
< b, R() >
< c, W(4) >

• In a bus based system, it may be more efficient
to broadcast the request directly to all caches
and then collect their responses

⇒ eliminates the need for home directory

November 16, 2005

6.823 L19- 4
Arvind

Bus: A Broadcast Medium

CPUCPU

Cache Cache

addr

data addr-resp

Mem
Controller

MSnooper Snooper

s-resp
s-resp

•	 Address cycle: two consecutive phases
–	 request phase: a processor is selected to issue a

request which is assigned a bus tag (i.e. the processor
becomes the bus master

–	 response phase: summary of responses from all the
snoopers is returned to the requesting processor

•	 Data cycle (if necessary):
–	 The data with its bus tag appear on the data bus
–	 The bus tag is retired when the transaction terminates

November 16, 2005

6.823 L19- 5
Arvind

Snooping on the Bus

CPUCPU

Cache Cache

addr

data addr-resp

Mem
Controller

MSnooper Snooper

s-resp
s-resp

•	 All snoopers listen to the bus requests (ShReq, ExReq,
WbRes) of each processor

•	 A snooper interprets a ShReq as WbReq and ExReq as
an InvReq or FlushReq (and ignores WbRes)

•	 Snooper’s response:
–	 ok means the processor is in the right state (either it does

not have the requested data or has it in read only state).
–	 retry means the processor state is not yet correct for the

operation being requested.

November 16, 2005

6.823 L19- 6
Arvind

Typical Processor-Memory Interface

Cache
Memory

load/store
buffers

CPU

(ShReq, ExReq, WbRes)

requested data

snooper

(I/Sh/Ex)

(ShReq, ExReq)

pushout data

•	 Distinct address cycle followed by zero or more data
cycles

•	 In effect more than one request per processor can
be on the bus at the same time ⇒ bus tags

•	 Snooper must respond immediately either with an
ok or retry

November 16, 2005

6.823 L19- 7
Arvind

Snooper’s Input & Output

L1 & Snooper State

<cache, c2m, obt>

Outstanding
bus transactions:

<ShReq, a> a set of <btag, a>

<ExReq, a> Needed to capture the
<WbRes, a, v> data during a data cycle

•	 When L1 gets control of the bus, one message from
c2m is assigned the tag and put on the bus

•	 <btag, WbRes, a, v> transactions only affect M
•	 <btag, ShReq, a> and <btag, ExReq, a>

transactions are input to all other Snoopers
–	 Each Snooper responds ok or retry
–	 MC summarizes s-resp’s into unanimous-ok or retry

November 16, 2005

6.823 L19- 8
Arvind

Snooper’s Response: ShReq

P P P P
< a, ShReq>

<cache, c2m, obt>

ShReq when input to a snooper acts like a WbReq
if a ∉ cache & <Wb, a, - > ∉ c2m

→ ok

if cache.state(a)==Sh & <Wb, a, - > ∉ c2m
→ ok

if cache.state(a)==Ex
→ 	 retry; cache.setState(a, Sh); c2m.enq (Wb, a, v)

if <Wb, a, - > ∈ c2m
→ 	 retry

November 16, 2005

6.823 L19- 9
Arvind

Snooper’s Response: ExReq

P P P P
< a, ExReq>

<cache, c2m, obt>

ExReq when input to a snooper acts like either a InvReq
or FluShReq

if a ∉ cache & <Wb, a, - > ∉ c2m
→ 	ok

if cache.state(a)==Sh & <Wb, a, - > ∉ c2m
→ ok ; cache.invalidate(a)

if cache.state(a)==Ex
→ 	retry; cache.invalidate(a); c2m.enq (Wb, a, v)

if <Wb, a, - > ∈ c2m
→ 	retry

November 16, 2005

6.823 L19- 10
Arvind

Memory Controller Response

CPUCPU

Cache Cache

addr

data addr-resp

Mem
Controller

M

Addr-Request Addr-Response

<tag,ShReq,a> retry
u-ok <tag,M[a]>

<tag,ExReq,a> retry
u-ok <tag,M[a]>

<tag,Wb,a> u-ok <tag,Wb,a,data>
data to be written
in the memoryNovember 16, 2005

Snooper Snooper

s-resp
s-resp

Data

6.823 L19- 11

Effect of MC’s Response on
Arvind

the Bus Master
Address Bus transaction <tag, a>

Unanimous-ok
<a, type>==c2m.first

Set up for the
data cycleobt.enq (tag, type, a)

→ 	c2m.deq

Retry
<a, type>==c2m.first

→ 	c2m.deq
c2m.enq (type, a)

Data Bus transaction <tag, v>

<tag, type, a >==obt.first
→ 	cache.setState(a,type);

cache.setData(a,v);
obt.deq

randomization
for retry

November 16, 2005

type :: Sh | Ex

12

Bus Occupancy Issues

and

Synchronization Primitives

6.823 L19- 13
Arvind

Intervention: an important optimization

cache-1A

CPU-1 CPU-2

cache-2

memory (stale data)A

200

CPU-Memory bus

100

On a cache miss, if the data is present in any
other cache it is faster to supply the data to the
requester cache from the cache that has it.

This is done in cooperation with the memory
controller and by declaring one of the caches to
be the “owner” of the address.

November 16, 2005

6.823 L19- 14
Arvind

False Sharing

state data0 ... dataNblk addr data1

A cache block contains more than one word

Cache-coherence is done at the block-level and
not word-level

Suppose M1 writes wordi and M2 writes wordk and
both words have the same block address.

What can happen? The block will ping-pong between
caches unnecessarily

Solutions: 1. Compiler can pack data differently
2. A dirty bit per word as opposed to per block

November 16, 2005

cache

6.823 L19- 15
Arvind

Synchronization and Caches:
Performance Issues

Processor 1 Processor 2 Processor 3

R ← 1

if <R> then goto L;
<critical section>

M[mutex] ← 0;

R ← 1

if <R> then goto L;
<critical section>

M[mutex] ← 0;

R ← 1

if <R> then goto L;
<critical section>

M[mutex] ← 0;

CPU-Memory Bus

mutex=1cache cache

L: swap(mutex, R); L: swap(mutex, R); L: swap(mutex, R);

Cache-coherence protocols will cause mutex to ping-pong
between P1’s and P2’s caches.

Ping-ponging can be reduced by first reading the mutex
location (non-atomically) and executing a swap only if it is
found to be zero.

November 16, 2005

6.823 L19- 16

Performance Related to Bus
Arvind

occupancy
In general, a read-modify-write instruction

requires two memory (bus) operations without

intervening memory operations by other

processors

In a multiprocessor setting, bus needs to be

locked for the entire duration of the atomic read

and write operation

⇒ expensive for simple buses
⇒ very expensive for split-transaction buses

modern processors use
load-reserve
store-conditional

November 16, 2005

6.823 L19- 17
Arvind

Load-reserve & Store-conditional

Special register(s) to hold reservation flag and

address, and the outcome of store-conditional

Load-reserve(R, a):

<flag, adr> ← <1, a>;

Store-conditional(a, R):
if <flag, adr> == <1, a>
then cancel other procs’

reservation on a;
R ← M[a]; M[a] ← <R>;

status ← succeed;
else status ← fail;

If the snooper sees a store transaction to the address
in the reserve register, the reserve bit is set to 0

• Several processors may reserve ‘a’ simultaneously
• These instructions are like ordinary loads and stores
with respect to the bus traffic

set to 1.
November 16, 2005

• A store (-conditional) is performed only if the reserve bit is

6.823 L19- 18
Arvind

Performance:
Load-reserve & Store-conditional

The total number of memory (bus) transactions
is not necessarily reduced, but splitting an
atomic instruction into load-reserve & store-
conditional:

• increases bus utilization (and reduces
processor stall time), especially in split-
transaction buses

• reduces cache ping-pong effect because
processors trying to acquire a semaphore do
not have to perform a store each time

November 16, 2005

19

Next Lecture

Beyond Sequential Consistency:

Relaxed Memory Models

