
1

Cache Coherence Protocols

for

Sequential Consistency

Arvind

Computer Science and Artificial Intelligence Lab

M.I.T.

Based on the material prepared by

Arvind and Krste Asanovic

November 14, 2005

6.823 L18- 2
Arvind

Systems view

Blocking caches

Cache
Memorypushout

load/store
buffers

CPU

(ShReq, ExReq)

(ShRep, ExRep)

(WbReq, InvReq, InvRep)
snooper

(I/Sh/Ex)

CPU/Memory

(WbRep)

In order, one request at a time + CC ⇒ SC Interface

Non-blocking caches
Multiple requests (different addresses) concurrently + CC

⇒ Relaxed memory models
CC ensures that all processors observe the same
order of loads and stores to an address

November 14, 2005

6.823 L18- 3
Arvind

A System with Multiple Caches

L1
P

L1
P

L1
P

L1
P

L2L2
L1
P

L1
P

Interconnect

M aka Home

Assumptions: Caches are organized in a hierarchical manner

• Each cache has exactly one parent but can have

zero or more children

• Only a parent and its children can communicate directly
• Inclusion property is maintained between a parent
and its children, i.e.,

a ∈ Li ⇒ a ∈ Li+1

November 14, 2005

6.823 L18- 4
Arvind

Maintaining Cache Coherence

Hardware support is required such that
• only one processor at a time has write
permission for a location

• no processor can load a stale copy of
the location after a write

⇒
write request:

The address is invalidated in all other caches before
the write is performed

read request:

If a dirty copy is found in some cache, a write-back
is performed before the memory is read

November 14, 2005

6.823 L18- 5
Arvind

State Encoding

a
P

L1
P

L1
P

L1
P

aL2
L1
P

a
P

Interconnect

2 3 4
5

6 7 8 9

(Sh, R(6))(Sh, ∈)

(Sh, ∈)

a1 (Ex, R(2,4))

Each address in a cache keeps two types of state
info

• sibling info: do my siblings have a copy of address a
- Ex (means no), Sh (means may be)

• children info: has this address been passed on to
any of my children

- W(id) means child id has a writable version
- R(dir) means only children named in the directory
dir have copies

November 14, 2005

6.823 L18- 6
Arvind

Cache State Implications

Sh ⇒ cache’s siblings and decedents can only
have Sh copies

Ex ⇒ each ancestor of the cache must be in Ex

⇒ either all children can have Sh copies

or one child can have an Ex copy

• Once a parent gives an Ex copy to a child, the
parent’s data is considered stale

• A processor cannot overwrite data in Sh state
in L1

• By definition all addresses in the home are in
the Ex state

November 14, 2005

6.823 L18- 7
Arvind

Cache State Transitions

Sh Ex

Inv

store
load

write-back

invalidate flush

store

optimizations

This state diagram is helpful as long as one
remembers that each transition involves
cooperation of other caches and the main
memory.

November 14, 2005

6.823 L18- 8
Arvind

High-level Invariants in Protocol
Design

November 14, 2005

6.823 L18- 9
Arvind

Guarded Atomic Actions

•	 Rules specified using guarded atomic
actions:
<guard predicate>
→	 {set of state updates that must occur

atomically with respect to other rules}

•	 E.g.:
m.state(a) == R(dir) & idc ∉ dir
→	 m.setState(a, R(dir+ idc)),

c.setState(a, Sh); c.setData(a, m.data(a));

November 14, 2005

6.823 L18- 10
Arvind

Data Propagation Between Caches

Parent

c

m

Child

Parent

c

m

Child

Caching rules De-caching rules
• Read caching rule • Write-back rule
• Write caching rule • Invalidate rule

November 14, 2005

6.823 L18- 11
Arvind

Caching Rules: Parent to Child

Child c idc

Parent m idp

• Read caching rule
R(dir) == m.state(a) & idc ∉ dir

→	 m.setState(a, R(dir+ idc))
c.setState(a, Sh); c.setData(a, m.data(a));

• Write caching rule
ε == m.state(a)

→	 m.setState(a, W(idc))
c.setState(a, Ex); c.setData(a, m.data(a));

November 14, 2005

6.823 L18- 12
Arvind

De-caching Rules: Child to Parent

Child c idc

Parent m idp

• Writeback rule
W(idc) == m.state(a) & Ex == c.state(a)

→	 m.setState(a, R({idc}))

msetData(a, c.data(a));

c.setState(a, Sh);

• Invalidate rule
R(dir) == m.state(a) & idc ∈ dir & Sh == c.state(a)

→	 m.setState(a, R(dir - idc))

c.invalidate(a);

November 14, 2005

6.823 L18- 13
Arvind

Making the Rules Local & Reactive

Child c idc

Parent m idp

•	 Some rules require observing and changing the state
of multiple caches simultaneously (atomically).
–	 very difficult to implement, especially if caches are separated

by a network

•	 Each rule must be triggered by some action
•	 Split rules are into multiple rules – “request for an

action” followed by “an action and an ack”.
–	 ultimately all actions are triggered by some processor

November 14, 2005

6.823 L18- 14
Arvind

Protocol Design

Note

We will not be able to finish this part today.

(The rest of the material will be covered during the next lecture.)

November 14, 2005

6.823 L18- 15
Arvind

Protocol Processors an abstract view

m

interconnect

PP

PP

P

c2m

m2c
L1

p2m

in out

PP

P

c2m

m2c
L1

p2mm2pm2p

•	 Each cache has 2 pairs of queues
– one pair (c2m, m2c) to communicate with the memory
– one pair (p2m, m2p) to communicate with the processor

•	 Messages format:
msg(idsrc,iddest,cmd,priority,a,v)

•	 FIFO messages passing between each (src,dest) pair
except a Low priority (L) msg cannot block a high
priority (H) msg

November 14, 2005

6.823 L18- 16
Arvind

H and L Priority Messages

•	 At the memory unprocessed requests cannot
block the result messages. Hence all
messages are classified as H or L priority.
–	 all messages carrying results are classified as high

priority

•	 Accomplished by having separate paths for H
and L priority
– In Theory: separate networks

– In Practice:

•	 Separate Queues

H

L
• Shared buses for both networks

November 14, 2005

6.823 L18- 17

A Protocol for a system with two
Arvind

memory levels (L1 + M)
Cache states: Sh, Ex, Pending, Nothing

Memory states: R(dir), W(id), TR (dir), TW(id)

If dir is empty then R(dir) and TR(dir)
represent the same state

Messages:
Cache to Memory requests: ShReq, ExReq
Memory to Cache requests: WbReq, InvReq, FlushReq

Cache to Memory responses: WbRep(v), InvRep, FlushRep(v)
Memory to Cache responses: ShRep(v), ExRep(v)

Operations on cache:
cache.state(a) – returns state s
cache.data(a) - returns data v
cache.setState(a,s), cache.setData(a,v), cache.invalidate(a)

inst = first(p2m); msg= first(m2c); mmsg = first(in)
November 14, 2005

6.823 L18- 18
Arvind

Voluntary rules: Cache must be able to
evict values to create space

Invalidate rule
cache.state(a) is Sh

It would be good to have
“silent drops” but difficult in
a directory-based protocol

→ 	 cache.invalidate(a)
c2m.enq (Msg(id, Home, InvRep, a))

Flush rule
cache.state(a) is Ex

 → 	 cache.invalidate(a)
c2m.enq (Msg(id, Home, FlushRep, a, cache.data(v))

Writeback rule
cache.state(a) is Ex

 → 	 cache.setState(a, Sh)
c2m.enq (Msg(id, Home, WbRep, a, cache.data(v)))

This rule may be applied if the cache/processor knows it
is the “last store” operation to the location.

Such voluntary rules can be used to construct
adaptive protocols.

November 14, 2005

6.823 L18- 19
Arvind

Voluntary rules: Memory should be able
to send more values than requested

Cache Rule
m.state(a) is R(dir) & id ∉ dir

 → 	 m.setState(a, R(id+dir))
out.enq(Msg(Home,id,ShRep, a,m.data(a)))

It is a rule like this that allows us to fetch locations a+1,
a+2, ... when a processor requests address a.

November 14, 2005

20

Five-minute break to stretch your legs

November 14, 2005

6.823 L18- 21
Arvind

Load Rules (at cache)

• Load-hit rule

Load(a)==inst

& cache.state(a) is Sh or Ex
→	 p2m.deq

m2p.enq(cache.data(a))

• Load-miss rule

→

Load(a)==inst
& 	 cache.state(a) is Nothing

c2m.enq(Msg(id, Home, ShReq, a)
cache.setState(a,Pending)

This is blocking cache because the Load miss
rule does not remove the request from the
input queue (p2m) ... more later

November 14, 2005

6.823 L18- 22
Arvind

Store Rules (at cache)

• Store-hit rule
Store(a,v)==inst

& cache.state(a) is Ex

→	 p2m.deq;

m2p.enq(Ack)

cache.setData(a, v)

• Store-miss rules

Store(a,v)==inst

& cache.state(a) is Nothing

→	 c2m.enq(Msg(id, Home, ExReq, a);

cache.setState(a,Pending)	 Already covered
by the
Invalidate

& cache.state(a) is Sh voluntary rule
Store(a,v)==inst

→	 c2m.enq(Msg(id, Home, InvRep, a);

cache.setState(a,Nothing)

November 14, 2005

6.823 L18- 23
Arvind

Processing ShReq Messages (at Home)

Uncached or Outstanding Shared Copies
Msg(id,Home,ShReq,a) ==mmsg

& m.state(a) is R(dir) & id ∉ dir
 → 	 in.deq;

m.setState(a, R(dir+{id}));
out.enq(Msg(Home,id,ShRep, a,m.data(a)))

Outstanding Exclusive Copy

Msg(id,Home,ShReq,a) ==mmsg

& m.state(a) is W(id’) & (id’ is not id)
 → 	 m.setState(a, TW(id’));

out.enq(Msg(Home,id’,WbReq, a))

November 14, 2005

6.823 L18- 24
Arvind

Processing ExReq Messages (at home)

Uncached or cached only at the requester cache
Msg(id,Home,ExReq,a) ==mmsg

& m.state(a) is R(dir) & (dir is empty or has only id)
 → 	in.deq

m.setState(a, W(id))
out.enq(Msg(Home,id,ExRep, a, m.data(a))

Outstanding Shared Copies

Msg(id,Home,ExReq,a) ==mmsg

& m.state(a) is R(dir) & !(dir is empty or has only id)
 → 	m.setState(a, TR(dir-{id}))

out.enq(multicast(Home,dir-{id},InvReq, a)
Outstanding Exclusive Copy

Msg(id,Home,ExReq,a) ==mmsg
& m.state(a) is W(id’) & (id’ is not id)

 → 	m.setState(a, TW(id’))
out.enq(Msg(Home,id’,FlushReq, a)

November 14, 2005

6.823 L18- 25
Arvind

Processing Reply Messages (at cache)

ShRep
Msg(Home, id, ShRep, a, v) == msg

-- cache.state(a) must be Pending or Nothing
→	 m2c.deq

cache.setState(a, Sh)

cache.setData(a, v)

ExRep
Msg(Home, id, ExRep, a, v) == msg

-- cache.state(a) must be Pending or Nothing
→	 m2c.deq

cache.setState(a, Ex)

cache.setData(a, v)

-- In general only a part of v will be
overwritten by the Store instruction.

November 14, 2005

6.823 L18- 26
Arvind

Processing InvReq Message (at cache)

InvReq
Msg(Home,id,InvReq,a) == msg

& cache.state(a) is Sh
 → m2c.deq

cache.invalidate(a)
c2m.enq (Msg(id, Home, InvRep, a))

Msg(Home,id,InvReq,a) == msg
& cache.state(a) is Nothing or Pending

 → m2c.deq

November 14, 2005

6.823 L18- 27
Arvind

Processing WbReq Message (at cache)

WbReq
Msg(Home,id,WbReq,a) == msg

& cache.state(a) is Ex
 → m2c.deq

cache.setState(a, Sh)
c2m.enq (Msg(id, Home, WbRep, a, cache.data(v)))

Msg(Home,id,WbReq,a) == msg
& cache.state(a) is Sh or Nothing or Pending

 → m2c.deq

November 14, 2005

6.823 L18- 28
Arvind

Processing FlushReq Message (at cache)

FlushReq
Msg(Home,id,FlushReq,a) == msg

& cache.state(a) is Ex

 → 	 m2c.deq

cache.invalidate(a)
c2m.enq (Msg(id, Home, FlushRep, a, cache.data(v)))

Msg(Home,id,FlushReq,a) == msg

& cache.state(a) is Sh

→ 	 m2c.deq

cache.invalidate(a)

c2m.enq (Msg(id, Home, InvRep, a))

Msg(Home,id,FlushReq,a) == msg

& cache.state(a) is Nothing or Pending

→	 m2c.deq

November 14, 2005

6.823 L18- 29
Arvind

Processing Reply InvRep Messages

(at home)

InvRep
Msg(id,Home,InvRep,a) == mmsg

& m.state(a) is TR(dir)
 → 	 deq mmsg;

m.setState(a, TR(dir-{id}))

Msg(id,Home,InvRep,a) == mmsg
& m.state(a) is R(dir)

→ 	 deq mmsg;

m.setState(a, R(dir-{id}))

November 14, 2005

6.823 L18- 30
Arvind

Processing Reply WbRep Messages

(at home)

WbRep
Msg(id,Home,WbRep,a,v) == mmsg

-- m.state(a) must be TW(id) or W(id)
 → 	 deq mmsg;

m.setState(a, R(id))

m.setData(a,v)

FlushRep
Msg(id,Home,FlushRep,a,v) == mmsg

-- m.state(a) must be TW(id) or W(id)
 → 	 deq mmsg;

m.setState(a, R(Empty))

m.setData(a,v)

November 14, 2005

6.823 L18- 31
Arvind

Non-Blocking Caches

•	 Non-blocking caches are
needed to tolerate large
memory latencies

•	 To get non-blocking property
we implement p2m with 2
FIFOs (deferQ, incomingQ)

•	 Requests moved to deferQ
when:

–	 address not there
–	 needed for consistency

new reqs

Handle
Req.

d
eferQ

in
co

m
in

g
Q

deq

enq
p2m

November 14, 2005

6.823 L18- 32
Arvind

Conclusion

•	 This protocol with its voluntary rules
captures many other protocols that are
used in practice.
–	 we will discuss a bus-based version of this protocol

in the next lecture

•	 We need policies and mechanisms to
invoke voluntary rules to build truly
adaptive protocols.
–	 search for such policies and mechanisms in an

active area of research

•	 Quantitative evaluation of protocols or
protocol features is extremely difficult.

November 14, 2005

33

Thank you !

November 14, 2005

6.823 L18- 34
Arvind

Protocol Diagram

...

Cache 1 Cache N

Main Memory

Dir a: Sh {}

Pen: a

Dir a: Sh {1}

ShReq
a

Cache 2

November 14, 2005

6.823 L18- 35
Arvind

Protocol Diagram

...

Cache 1 Cache N

Main Memory

ShResp

Pen: a

Dir a: Sh {1}

Sh: a

<a,v>

Cache 2

November 14, 2005

6.823 L18- 36
Arvind

Protocol Diagram

...

Cache 1 Cache N

Main Memory

Dir a: Sh {1}

Sh: a

Dir a: Sh {1,2}

ShReq
a

Pen: a

Cache 2

November 14, 2005

6.823 L18- 37
Arvind

Protocol Diagram

...

Cache 1 Cache N

Main Memory

Sh: a

Dir a: Sh {1,2}

ShResp
<a,v>

Pen: a
Sh: a

Cache 2

November 14, 2005

6.823 L18- 38
Arvind

Protocol Diagram

...

Cache 1 Cache N

Main Memory

Dir a: Sh {1,2}

ExReq
a

Sh: a Sh: a Pen: a

InvReq
a

InvReq
a

Cache 2

November 14, 2005

6.823 L18- 39
Arvind

Protocol Diagram

...

Cache 1 Cache N

Main Memory

Sh: a

Dir a: Sh {1,2}

Inv
a

Sh: a

Inv
a

Dir a: Sh {}

<a,v>

Dir a: Ex {N}

Pen: a
Ex: a

Cache 2

ExResp

November 14, 2005

6.823 L18- 40
Arvind

Protocol Diagram

...

Cache 1 Cache 2 Cache N

Main Memory

Dir a: Ex {N}

Pen: a

ShReq
a

Ex: a

Dir a: Ex {N}

WBReq
a

November 14, 2005

6.823 L18- 41
Arvind

Protocol Diagram

...

Cache 1 Cache N

Main Memory

Dir a: Ex {N}

Pen: a

ShResp
<a,v'>

Ex: a

Dir a: Sh {1,N}

WBResp
<a,v'>

Sh: aSh: a

Cache 2

November 14, 2005

