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Systems view 

Blocking caches 

Cache 
Memorypushout 

load/store 
buffers 

CPU 

(ShReq, ExReq) 

(ShRep, ExRep) 

(WbReq, InvReq, InvRep) 
snooper 

(I/Sh/Ex) 

CPU/Memory 

(WbRep) 

In order, one request at a time + CC ⇒ SC Interface 

Non-blocking caches 
Multiple requests (different addresses) concurrently + CC 

⇒ Relaxed memory models 
CC ensures that all processors observe the same 
order of loads and stores to an address 
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A System with Multiple Caches 

L1 
P 

L1 
P 

L1 
P 

L1 
P 

L2L2 
L1 
P 

L1 
P 

Interconnect 

M aka Home 

Assumptions: Caches are organized in a hierarchical manner 

• Each cache has exactly one parent but can have 

zero or more children


• Only a parent and its children can communicate directly 
• Inclusion property is maintained between a parent 
and its children, i.e.,


a ∈ Li ⇒ a ∈ Li+1
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Maintaining Cache Coherence


Hardware support is required such that 
• only one processor at a time has write 
permission for a location 

• no processor can load a stale copy of 
the location after a write 

⇒ 
write request:


The address is invalidated in all other caches before 
the write is performed 

read request:

If a dirty copy is found in some cache, a write-back 
is performed before the memory is read 
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State Encoding 
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(Sh, R(6))(Sh, ∈) 

(Sh, ∈) 

a1 (Ex, R(2,4)) 

Each address in a cache keeps two types of state 
info 

• sibling info: do my siblings have a copy of address a 
- Ex (means no),  Sh (means may be) 

• children info: has this address been passed on to 
any of my children 

- W(id) means child id has a writable version 
- R(dir) means only children named in the directory 
dir have copies 

November 14, 2005 



6.823 L18- 6 
Arvind 

Cache State Implications


Sh ⇒ cache’s siblings and decedents can only 
have Sh copies 

Ex ⇒ each ancestor of the cache must be in Ex

⇒ either all children can have Sh copies 


or one child can have an Ex copy


• Once a parent gives an Ex copy to a child, the 
parent’s data is considered stale 

• A processor cannot overwrite data in Sh state 
in L1 

• By definition all addresses in the home are in 
the Ex state 
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Cache State Transitions 

Sh Ex 

Inv 

store 
load 

write-back 

invalidate flush 

store 

optimizations 

This state diagram is helpful as long as one 
remembers that each transition involves 
cooperation of other caches and the main 
memory. 
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High-level Invariants in Protocol
Design 
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Guarded Atomic Actions


•	 Rules specified using guarded atomic 
actions: 
<guard predicate> 
→	 {set of state updates that must occur 

atomically with respect to other rules} 

•	 E.g.: 
m.state(a) == R(dir) & idc ∉ dir 
→	 m.setState(a, R(dir+ idc)), 

c.setState(a, Sh); c.setData(a, m.data(a)); 
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Data Propagation Between Caches


Parent 

c 

m 

Child 

Parent 

c 

m 

Child 

Caching rules De-caching rules 
• Read caching rule • Write-back rule 
• Write caching rule • Invalidate rule 
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Caching Rules: Parent to Child 


Child c idc 

Parent m idp 

• Read caching rule 
R(dir) == m.state(a) & idc ∉ dir 

→	 m.setState(a, R(dir+ idc)) 
c.setState(a, Sh); c.setData(a, m.data(a)); 

• Write caching rule 
ε == m.state(a) 

→	 m.setState(a, W(idc)) 
c.setState(a, Ex); c.setData(a, m.data(a)); 
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De-caching Rules: Child to Parent 

Child c idc 

Parent m idp 

• Writeback rule 
W(idc) == m.state(a) & Ex == c.state(a) 

→	 m.setState(a, R({idc})) 

msetData(a, c.data(a)); 

c.setState(a, Sh); 


• Invalidate rule 
R(dir) == m.state(a) & idc ∈ dir & Sh == c.state(a) 

→	 m.setState(a, R(dir - idc)) 

c.invalidate(a); 
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Making the Rules Local & Reactive


Child c idc 

Parent m idp 

•	 Some rules require observing and changing the state 
of multiple caches simultaneously (atomically). 
–	 very difficult to implement, especially if caches are separated 

by a network 

•	 Each rule must be triggered by some action 
•	 Split rules are into multiple rules – “request for an 

action” followed by “an action and an ack”. 
–	 ultimately all actions are triggered by some processor 
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Protocol Design


*Note*

We will not be able to finish this part today.


(The rest of the material will be covered during the next lecture.)
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Protocol Processors an abstract view


m 

interconnect 

PP 

PP 

P 

c2m 

m2c 
L1 

p2m 

in out 

PP 

P 

c2m 

m2c 
L1 

p2mm2pm2p 

•	 Each cache has 2 pairs of queues 
– one pair (c2m, m2c) to communicate with the memory 
– one pair (p2m, m2p) to communicate with the processor 

•	 Messages format: 
msg(idsrc,iddest,cmd,priority,a,v) 

•	 FIFO messages passing between each (src,dest) pair 
except a Low priority (L) msg cannot block a high 
priority (H) msg 
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H and L Priority Messages


•	 At the memory unprocessed requests cannot 
block the result messages. Hence all 
messages are classified as H or L priority. 
–	 all messages carrying results are classified as high 


priority


•	 Accomplished by having separate paths for H 
and L priority 
– In Theory: separate networks


– In Practice: 


•	 Separate Queues 

H 

L 
• Shared buses for both networks 
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A Protocol for a system with two 
Arvind 

memory levels (L1 + M) 
Cache states: Sh, Ex, Pending, Nothing

Memory states: R(dir),  W(id), TR (dir), TW(id)


If dir is empty then R(dir) and TR(dir) 
represent the same state 

Messages: 
Cache to Memory requests: ShReq, ExReq 
Memory to Cache requests: WbReq, InvReq, FlushReq 

Cache to Memory responses: WbRep(v), InvRep, FlushRep(v) 
Memory to Cache responses: ShRep(v), ExRep(v) 

Operations on cache: 
cache.state(a) – returns state s 
cache.data(a)  - returns data v 
cache.setState(a,s), cache.setData(a,v), cache.invalidate(a) 

inst = first(p2m); msg= first(m2c); mmsg = first(in) 
November 14, 2005 
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Voluntary rules: Cache must be able to 
evict values to create space 

Invalidate rule 
cache.state(a) is Sh

It would be good to have 
“silent drops” but difficult in 
a directory-based protocol 

→ 	 cache.invalidate(a) 
c2m.enq (Msg(id, Home, InvRep, a)) 

Flush rule 
cache.state(a) is Ex

 → 	 cache.invalidate(a) 
c2m.enq (Msg(id, Home, FlushRep, a, cache.data(v)) 

Writeback rule 
cache.state(a) is Ex

 → 	 cache.setState(a, Sh) 
c2m.enq (Msg(id, Home, WbRep, a, cache.data(v))) 

This rule may be applied if the cache/processor knows it 
is the “last store” operation to the location. 

Such voluntary rules can be used to construct
adaptive protocols. 
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Voluntary rules: Memory should be able 
to send more values than requested 

Cache Rule 
m.state(a) is R(dir) &  id ∉ dir

 → 	 m.setState(a, R(id+dir)) 
out.enq(Msg(Home,id,ShRep, a,m.data(a))) 

It is a rule like this that allows us to fetch locations a+1, 
a+2, ... when a processor requests address a. 
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Five-minute break to stretch your legs
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Load Rules (at cache)


• Load-hit rule

Load(a)==inst 

& cache.state(a) is Sh or Ex 
→	 p2m.deq


m2p.enq(cache.data(a))


• Load-miss rule 

→ 

Load(a)==inst 
& 	 cache.state(a) is Nothing 

c2m.enq(Msg(id, Home, ShReq, a) 
cache.setState(a,Pending) 

This is blocking cache because the Load miss
rule does not remove the request from the
input queue (p2m) ... more later 
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Store Rules (at cache)


• Store-hit rule 
Store(a,v)==inst 


& cache.state(a) is Ex

→	 p2m.deq; 


m2p.enq(Ack)

cache.setData(a, v) 


• Store-miss rules

Store(a,v)==inst 


& cache.state(a) is Nothing

→	 c2m.enq(Msg(id, Home, ExReq, a); 

cache.setState(a,Pending)	 Already covered
by the
Invalidate 

& cache.state(a) is Sh voluntary rule
Store(a,v)==inst 

→	 c2m.enq(Msg(id, Home, InvRep, a); 

cache.setState(a,Nothing)
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Processing ShReq Messages (at Home)


Uncached or Outstanding Shared Copies 
Msg(id,Home,ShReq,a) ==mmsg 

& m.state(a) is R(dir) &  id ∉ dir
 → 	 in.deq; 

m.setState(a, R(dir+{id})); 
out.enq(Msg(Home,id,ShRep, a,m.data(a))) 

Outstanding Exclusive Copy

Msg(id,Home,ShReq,a) ==mmsg 

& m.state(a) is W(id’) & (id’ is not id)
 → 	 m.setState(a, TW(id’));


out.enq(Msg(Home,id’,WbReq, a))
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Processing ExReq Messages (at home)


Uncached or cached only at the requester cache 
Msg(id,Home,ExReq,a) ==mmsg 

& m.state(a) is R(dir) & (dir is empty or has only id)
 → 	in.deq 

m.setState(a, W(id)) 
out.enq(Msg(Home,id,ExRep, a, m.data(a)) 

Outstanding Shared Copies

Msg(id,Home,ExReq,a) ==mmsg 

& m.state(a) is R(dir) & !(dir is empty or has only id)
 → 	m.setState(a, TR(dir-{id})) 

out.enq(multicast(Home,dir-{id},InvReq, a) 
Outstanding Exclusive Copy


Msg(id,Home,ExReq,a) ==mmsg 
& m.state(a) is W(id’)  & (id’ is not id)

 → 	m.setState(a, TW(id’)) 
out.enq(Msg(Home,id’,FlushReq, a) 
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Processing Reply Messages (at cache)


ShRep 
Msg(Home, id, ShRep, a, v) == msg 

-- cache.state(a) must be Pending or Nothing 
→	 m2c.deq


cache.setState(a, Sh)

cache.setData(a, v)


ExRep 
Msg(Home, id, ExRep, a, v) == msg 

-- cache.state(a) must be Pending or Nothing 
→	 m2c.deq


cache.setState(a, Ex)

cache.setData(a, v)


-- In general only a part of v will be 
overwritten by the Store instruction. 
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Processing InvReq Message (at cache)


InvReq 
Msg(Home,id,InvReq,a) == msg 

& cache.state(a) is Sh
 → m2c.deq 

cache.invalidate(a) 
c2m.enq (Msg(id, Home, InvRep, a)) 

Msg(Home,id,InvReq,a) == msg 
& cache.state(a) is Nothing or Pending

 → m2c.deq 
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Processing WbReq Message (at cache)


WbReq 
Msg(Home,id,WbReq,a) == msg 

& cache.state(a) is Ex
 → m2c.deq 

cache.setState(a, Sh) 
c2m.enq (Msg(id, Home, WbRep, a, cache.data(v))) 

Msg(Home,id,WbReq,a) == msg 
& cache.state(a) is Sh or Nothing or Pending

 → m2c.deq 
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Processing FlushReq Message (at cache)


FlushReq 
Msg(Home,id,FlushReq,a) == msg


& cache.state(a) is Ex

 → 	 m2c.deq 

cache.invalidate(a) 
c2m.enq (Msg(id, Home, FlushRep, a, cache.data(v))) 

Msg(Home,id,FlushReq,a) == msg

& cache.state(a) is Sh


→ 	 m2c.deq

cache.invalidate(a)

c2m.enq (Msg(id, Home, InvRep, a))


Msg(Home,id,FlushReq,a) == msg

& cache.state(a) is Nothing or Pending


→	 m2c.deq 
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Processing Reply InvRep Messages 

(at home) 

InvRep 
Msg(id,Home,InvRep,a) == mmsg 

& m.state(a) is TR(dir)
 → 	 deq mmsg; 


m.setState(a, TR(dir-{id}))


Msg(id,Home,InvRep,a) == mmsg 
& m.state(a) is R(dir) 


→ 	 deq mmsg; 

m.setState(a, R(dir-{id}))
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Processing Reply WbRep Messages 

(at home) 

WbRep 
Msg(id,Home,WbRep,a,v) == mmsg 

-- m.state(a) must be TW(id) or W(id)
 → 	 deq mmsg; 


m.setState(a, R(id))

m.setData(a,v)


FlushRep 
Msg(id,Home,FlushRep,a,v) == mmsg 

-- m.state(a) must be TW(id) or W(id)
 → 	 deq mmsg;


m.setState(a, R(Empty))

m.setData(a,v)
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Non-Blocking Caches


•	 Non-blocking caches are 
needed to tolerate large 
memory latencies 

•	 To get non-blocking property 
we implement p2m with 2 
FIFOs (deferQ, incomingQ) 

•	 Requests moved to deferQ 
when: 

–	 address not there 
–	 needed for consistency 

new reqs 

Handle 
Req. 

d
eferQ

in
co

m
in

g
Q

 

deq 

enq 
p2m 

November 14, 2005 



6.823 L18- 32 
Arvind 

Conclusion


•	 This protocol with its voluntary rules 
captures many other protocols that are 
used in practice. 
–	 we will discuss a bus-based version of this protocol 

in the next lecture 

•	 We need policies and mechanisms to 
invoke voluntary rules to build truly 
adaptive protocols. 
–	 search for such policies and mechanisms in an 

active area of research 

•	 Quantitative evaluation of protocols or 
protocol features is extremely difficult. 
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Thank you !
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Protocol Diagram 

... 

Cache 1 Cache N 

Main Memory 

Dir a: Sh {} 

Pen: a 

Dir a: Sh {1} 

ShReq 
a 

Cache 2 
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Protocol Diagram 

... 

Cache 1 Cache N 

Main Memory 

ShResp 

Pen: a 

Dir a: Sh {1} 

Sh: a 

<a,v> 

Cache 2 
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Protocol Diagram 

... 

Cache 1 Cache N 

Main Memory 

Dir a: Sh {1} 

Sh: a 

Dir a: Sh {1,2} 

ShReq 
a 

Pen: a 

Cache 2 
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Protocol Diagram 

... 

Cache 1 Cache N 

Main Memory 

Sh: a 

Dir a: Sh {1,2} 

ShResp 
<a,v> 

Pen: a 
Sh: a 

Cache 2 
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Protocol Diagram 

... 

Cache 1 Cache N 

Main Memory 

Dir a: Sh {1,2} 

ExReq 
a 

Sh: a Sh: a Pen: a 

InvReq 
a 

InvReq 
a 

Cache 2 

November 14, 2005 



6.823 L18- 39 
Arvind 

Protocol Diagram 

... 

Cache 1 Cache N 

Main Memory 

Sh: a 

Dir a: Sh {1,2} 

Inv 
a 

Sh: a 

Inv 
a 

Dir a: Sh {} 

<a,v> 

Dir a: Ex {N} 

Pen: a 
Ex: a 

Cache 2 

ExResp 
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Protocol Diagram 

... 

Cache 1 Cache 2 Cache N 

Main Memory 

Dir a: Ex {N} 

Pen: a 

ShReq 
a 

Ex: a 

Dir a: Ex {N}

WBReq 
a 
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Protocol Diagram 

... 

Cache 1 Cache N 

Main Memory 

Dir a: Ex {N} 

Pen: a 

ShResp 
<a,v'> 

Ex: a 

Dir a: Sh {1,N} 

WBResp 
<a,v'> 

Sh: aSh: a 

Cache 2 
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