
Cache Coherence Protocols
for
Sequential Consistency

Arvind
Computer Science and Artificial Intelligence Lab
M.I.T.

Based on the material prepared by
Arvind and Krste Asanovic

November 14, 2005

6.823 L18- 2
Arvind

Systems view

(WbReq, InvReq, InvRep)

load/store
buffers

pushout Memory

—
(ShRep, ExRep)

—

(ShReq, ExReq)

Blocking caches PU/Memory
In order, one request at a time + CC = SC Interface

Non-blocking caches
Multiple requests (different addresses) concurrently + CC
= Relaxed memory models

CC ensures that all processors observe the same
order of loads and stores to an address 2

November 14, 2005 4.:fz-,ML

6.823 L18- 3
Arvind

A System with Multiple Caches

‘pllellpllp]
[Laf[Lajfia]fia]

L L2

[p]
0 [

M

aka Home

Assumptions: Caches are organized in a hierarchical manner

e Each cache has exactly one parent but can have

zero or more children

e Only a parent and its children can communicate directly
e Inclusion property is maintained between a parent

and its children, i.e.,
a e L —

November 14, 2005

a € I—i+1

6.823 L18- 4
Arvind

Maintaining Cache Coherence

Hardware support is required such that
e only one processor at a time has write
permission for a location
e N0 processor can load a stale copy of
the location after a write

—

write request:
The address is invalidated in all other caches before
the write is performed

read request:
If a dirty copy is found in some cache, a write-back
Is performed before the memory is read

November 14, 2005 . CSM L

6.823 L18-5
Arvind

State Encoding

lpllpl[pllp]
(sh, e)[a][Li] [Li][L1]

[p] 6l 71 81 9
-5
(Sh, e)z||z|3

4l a](sh, ree)
I

1 a (Ex, R(2,4))

Each address in a cache keeps two types of state
Info
e sibling info: do my siblings have a copy of address a
- Ex (means no), Sh (means may be)
e children info: has this address been passed on to
any of my children
- W(id) means child id has a writable version
- R(dir) means only children named in the directory
dir have copies i

November 14, 2005 TCSAIL

6.823 L18- 6
Arvind

Cache State Implications

Sh = cache’s siblings and decedents can only
have Sh copies

Ex = each ancestor of the cache must be in Ex
= either all children can have Sh copies
or one child can have an Ex copy

e Once a parent gives an Ex copy to a child, the
parent’s data iIs considered stale

e A processor cannot overwrite data in Sh state
in L1

e By definition all addresses in the home are In
the Ex state

November 14, 2005

.......

6.823 L18- 7
Arvind

Cache State Transitions

invalidate

optimizations

\ /

write-back

This state diagram is helpful as long as one
remembers that each transition involves

cooperation of other caches and the main
memory.

November 14, 2005

6.823 L18- 8
Arvind

High-level Invariants in Protocol
Design

1 Ag
November 14, 2005 esAlL

6.823 L18- 9
Arvind

Guarded Atomic Actions

e Rules specified using guarded atomic
actions:
<guard predicate>
— {set of state updates that must occur
atomically with respect to other rules}
 E.9.:
m.state(a) == R(dir) & id, ¢ dir
— m.setState(a, R(dir+ id.)),
c.setState(a, Sh); c.setData(a, m.data(a));

November 14, 2005 =i

6.823 L18- 10
Arvind

Data Propagation Between Caches

Child C

— |

Parent -

Caching rules
e Read caching rule
e Write caching rule

November 14, 2005

Child

C

I

A 4 |
Parent -

De-caching rules
e \Write-back rule
e |[nvalidate rule

.......

6.823 L18- 11
Arvind

Caching Rules: parent to child

e Read caching rule
R(dir) == m.state(a) & id, ¢ dir

— m.setState(a, R(dir+ id,))
c.setState(a, Sh); c.setData(a, m.data(a));

e Write caching rule
¢ == m.state(a)
— m.setState(a, W(id.))
c.setState(a, Ex); c.setData(a, m.data(a));

AL
November 14, 2005 el

De-caching Rules: child to Parent

6.823 L18- 12
Arvind

child [e] id,
-
'

Parent - idp
e Writeback rule

W(id,) == m.state(a)
— m.setState(a, R({id_ }))

msetData(a, c.data(a));

c.setState(a, Sh);

e |nvalidate rule
R(dir) == m.state(a) & id, e dir
— m.setState(a, R(dir - id.))
c.invalidate(a);

November 14, 2005

T CSAIL

6.823 L18- 13
Arvind

Making the Rules Local & Reactive

Child C id

e Some rules require observing and changing the state
of multiple caches simultaneously (atomically).

— very difficult to implement, especially if caches are separated
by a network

e Each rule must be triggered by some action

e Split rules are into multiple rules — “request for an
action” followed by “an action and an ack”.
— ultimately all actions are triggered by some processor

November 14, 2005 sl

6.823 L18- 14
Arvind

Protocol Design

*Note™
We will not be able to finish this part today.
(The rest of the material will be covered during the next lecture.)

November 14, 2005 vall2

6.823 L18- 15
Arvind

Protocol Processors an abstract view

PP m

e Each cache has 2 pairs of queues
— one pair (c2Zm, m2c) to communicate with the memory
— one pair (p2m, m2p) to communicate with the processor

e Messages format:
msg(idsrc,iddest,cmd, priority,a,v)

e FIFO messages passing between each (src,dest) pair
except a Low priority (L) msg cannot block a high
priority (H) msg AH

November 14, 2005 SERAl

6.823 L18- 16
Arvind

H and L Priority Messages

e At the memory unprocessed requests cannot
block the result messages. Hence all

messages are classified as H or L priority.

— all messages carrying results are classified as high
priority

e Accomplished by having separate paths for H
and L priority

— In Theory: separate networks

— In Practice: N ,_H<: ~

e Separate Queues L -

e Shared buses for both networks

November 14, 2005

6.823 L18- 17
Arvind

A Protocol for a system with two
memory levels (L1 + M)

Cache states: Sh, Ex, Pending, Nothing
Memory states: R(dir), W(d), T, (dir), T,,(id)
If dir is empty then R(dir) and T,(dir)
represent the same state

Messages:
Cache to Memory requests: ShReq, ExReq
Memory to Cache requests: WbReq, InvReq, FlushReq

Cache to Memory responses: WbRep(Vv), InvRep, FlushRep(Vv)
Memory to Cache responses: ShRep(Vv), ExRep(Vv)

Operations on cache:
cache.state(a) — returns state s
cache.data(a) - returns data v
cache.setState(a,s), cache.setData(a,v), cache.invalidate(a)

Inst = first(p2m); msg= first(m2c); mmsg = first(in) A
November 14, 2005 :

6.823 L18- 18
Arvind

Voluntary rules: cache must be able to
evict values to create space

It would be good to have
“silent drops” but difficult in
a directory-based protocol

Invalidate rule
cache.state(a) is Sh

- cache.invalidate(a)]
c2m.eng (Msg(id, Home, InvRep, a))

Flush rule
cache.state(a) is Ex
— cache.invalidate(a)

c2m.enq (Msg(id, Home, FlushRep, a, cache.data(v))

Writeback rule
cache.state(a) is Ex
— cache.setState(a, Sh)
c2m.enq (Msg(id, Home, WbRep, a, cache.data(Vv)))
This rule may be applied if the cache/processor knows it
Is the “last store” operation to the location.

Such voluntary rules can be used to construct
adaptive protocols. o

November 14, 2005 = Fo

6.823 L18- 19

Arvind
Voluntary rules: memory should be able
to send more values than requested

Cache Rule
m.state(a) is R(dir) & id ¢ dir
—> m.setState(a, R(id+dir))

out.enq(Msg(Home,id,ShRep, a,m.data(a)))

It is a rule like this that allows us to fetch locations a+1,
a+2, ... when a processor requests address a.

November 14, 2005 ; csn I

Five-minute break to stretch your legs

November 14, 2005

20

6.823 L18- 21
Arvind

Load Rules (at cache)

e Load-hit rule
Load(a)==inst
& cache.state(a) is Sh or Ex
> p2m.deq

m2p.enq(cache.data(a))

e Load-miss rule
Load(a)==inst
& cache.state(a) is Nothing
—> c2m.enq(Msg(id, Home, ShReq, a)
cache.setState(a,Pending)

This 1s blocking cache because the Load miss
rule does not remove the request from the
input queue (p2m) ... more later

November 14, 2005 = Fo

6.823 L18- 22
Arvind

Store Rules (at cache)

e Store-hit rule
Store(a,v)==inst
& cache.state(a) is Ex
— p2m.deq;
m2p.enq(Ack)
cache.setData(a, v)

e Store-miss rules
Store(a,v)==inst
& cache.state(a) is Nothing

> c2m.enqg(Msg(id, Home, ExReq, a);
cache.setState(a,Pending) Already covered
by the
Store(a,v)==inst Invalidate
& cache.state(a) is Sh voluntary rule
> c2m.enqg(Msg(id, Home, InvRep, a);

cache.setState(a,Nothing)

November 14, 2005 =i

6.823 L18- 23
Arvind

Processing ShReq Messages (at Home)

Uncached or Outstanding Shared Copies
Msg(id,Home,ShReqg,a) ==mmsg
& m.state(a) is R(dir) & id ¢ dir
— in.deq;
m.setState(a, R(dir+{id}));
out.enqg(Msg(Home,id,ShRep, a,m.data(a)))

Outstanding Exclusive Copy
Msg(id,Home,ShReqg,a) ==mmsg
& m.state(a) is W(id’) & (id’ is not id)
> m.setState(a, T,,(id’));
out.enq(Msg(Home,id’,WbReq, a))

November 14, 2005 =i

6.823 L18- 24
Arvind

Processing ExXReqg Messages (at home)

Uncached or cached only at the requester cache
Msg(id,Home,ExReq,a) ==mmsg
& m.state(a) is R(dir) & (dir is empty or has only id)
— in.deq
m.setState(a, W(id))
out.eng(Msg(Home,id,ExRep, a, m.data(a))
Outstanding Shared Copies
Msg(id,Home,ExReq,a) ==mmsg
& m.state(a) is R(dir) & !(dir is empty or has only id)
— m.setState(a, Tg(dir-{id}))
out.eng(multicast(Home,dir-{id},InvReq, a)
Outstanding Exclusive Copy
Msg(id,Home,ExReq,a) ==mmsg
& m.state(a) is W(id’) & (id’ is not id)
— m.setState(a, T,,(id"))
out.eng(Msg(Home,id’,FlushReq, a)

November 14, 2005 =i

6.823 L18- 25
Arvind

Processing Reply Messages (at cache)

ShRep
Msg(Home, id, ShRep, a, v) == msg

— m2c.deq
cache.setState(a, Sh)
cache.setData(a, V)

ExXRep
Msg(Home, id, ExRep, a, v) == msg

> m2c.deq
cache.setState(a, Ex)
cache.setData(a, v)

November 14, 2005 sl

6.823 L18- 26
Arvind

Processing InvReg Message (at cache)

InvReq
Msg(Home,id,InvReqg,a) == msg
& cache.state(a) is Sh
> m2c.deq
cache.invalidate(a)
c2m.enqg (Msg(id, Home, InvRep, a))

Msg(Home,id,InvReq,a) == msg

& cache.state(a) is Nothing or Pending
> m2c.deq

November 14, 2005

6.823 L18- 27
Arvind

Processing WbReq Message (at cache)

WDbReq
Msg(Home,id,WbReq,a) == msg
& cache.state(a) is Ex
— m2c.deq
cache.setState(a, Sh)
c2m.enqg (Msg(id, Home, WbRep, a, cache.data(v)))

Msg(Home,id,WbReq,a) == msg
& cache.state(a) is Sh or Nothing or Pending
— m2c.deq

November 14, 2005 "':'i“r{é; I

6.823 L18- 28
Arvind

Processing FlushReqg Message (at cache)

FlushReq
Msg(Home,id,FlushReqg,a) == msg
& cache.state(a) is Ex
— m2c.deq
cache.invalidate(a)
c2m.enqg (Msg(id, Home, FlushRep, a, cache.data(v)))

Msg(Home,id,FlushReqg,a) == msg
& cache.state(a) is Sh
— m2c.deq

cache.invalidate(a)
c2m.enqg (Msg(id, Home, InvRep, a))

Msg(Home,id,FlushReqg,a) == msg

& cache.state(a) is Nothing or Pending
> m2c.deq

November 14, 2005 =)

6.823 L18- 29

Processing Reply InvRep Messages
(at_ home)

InvRep
Msg(id,Home,InvRep,a) == mmsg
& m.state(a) is Tg(dir)
> deq mmsg;
m.setState(a, Ty(dir-{id}))

Msg(id,Home,InvRep,a) == mmsg
& m.state(a) is R(dir)
L deq mmsg;
m.setState(a, R(dir-{id}))

[1o
November 14, 2005 esAlL

6.823 L18- 30
Arvind

Processing Reply WbRep Messages

(at home)

WDbRep
Msg(id,Home,WDbRep,a,v) == mmsg

—> deq mmsg;
m.setState(a, R(id))
m.setData(a,Vv)

FlushRep
Msg(id,Home,FlushRep,a,v) == mmsg

> deq mmsg;

m.setState(a, R(Empty))
m.setData(a,Vv)

November 14, 2005 =5

6.823 L18- 31
Arvind

Non-Blocking Caches

new reqgs
e Non-blocking caches are enqg
needed to tolerate large pP2m
memory latencies —l
e To get non-blocking property v

we implement p2m with 2
FIFOs (deferQ, incomingQ)

OJ8jep

iIncomingQ

—__|

e Reqguests moved to deferQ
when:
— address not there deq
— needed for consistency
Handle

Req.

November 14, 2005 = F

6.823 L18- 32
Arvind

Conclusion

e This protocol with its voluntary rules
captures many other protocols that are
used In practice.

— we will discuss a bus-based version of this protocol
in the next lecture

e \We need policies and mechanisms to
Invoke voluntary rules to build truly
adaptive protocols.

— search for such policies and mechanisms in an
active area of research

e Quantitative evaluation of protocols or
protocol features is extremely difficult.

November 14, 2005

CCCCC

November 14, 2005

Thank you !

33

6.823 L18- 34
Arvind

Protocol Diagram

November 14, 2005 @%

CCCCC

6.823 L18- 35
Arvind

Protocol Diagram

November 14, 2005 @%

CCCCC

6.823 L18- 36
Arvind

Protocol Diagram

November 14, 2005 @%

CCCCC

6.823 L18- 37
Arvind

Protocol Diagram

November 14, 2005 @%

CCCCC

6.823 L18- 38
Arvind

Protocol Diagram

Cache 1 Cache 2 Cache N
Sh: a Sh: a Pen: a
InVReq
a
Dir

Main Memory

November 14, 2005 I:.:.ts;.;.\u

6.823 L18- 39
Arvind

Protocol Diagram

November 14, 2005 CSAIL

6.823 L18- 40
Arvind

Protocol Diagram

November 14, 2005 @g‘%

CCCCC

6.823 L18- 41
Arvind

Protocol Diagram

November 14, 2005 CSAIL

