
1

Sequential Consistency

and

Cache Coherence Protocols

Arvind

Computer Science and Artificial Intelligence Lab

M.I.T.

Based on the material prepared by

Arvind and Krste Asanovic

6.823 L17- 2
Arvind

Memory Consistency in SMPs

cache-1A 100

CPU-Memory bus

CPU-1 CPU-2

cache-2A 100

memoryA 100

Suppose CPU-1 updates A to 200.
write-back: memory and cache-2 have stale values
write-through: cache-2 has a stale value

Do these stale values matter?

November 9, 2005

What is the view of shared memory for programming?

6.823 L17- 3
Arvind

Write-back Caches & SC

prog T1

X= 1
Y=11

X= 1
Y=11

X= 1
Y=11

X= 1
Y=11

X= 1
Y=11

cache-1 memory cache-2 prog T2
ST X, 1 LD Y, R1
ST Y,11 ST Y’, R1• T1 is executed

LD X, R2
ST X’,R2

• cache-1 writes back Y

• T2 executed

• cache-1 writes back X

• cache-2 writes back

X’ & Y’

November 9, 2005

X = 0
Y =10
X’=
Y’=

X = 0
Y =11
X’=
Y’=

X = 0
Y =11
X’=
Y’=
X = 1
Y =11
X’=
Y’=

X = 1
Y =11
X’= 0
Y’=11

Y =
Y’=
X =
X’=

Y =
Y’=
X =
X’=

Y = 11
Y’= 11
X = 0
X’= 0
Y = 11
Y’= 11
X = 0
X’= 0

Y =11
Y’=11
X = 0
X’= 0

n
 t
ere

oh

nc
i

6.823 L17- 4
Arvind

Write-through Caches & SC

X= 0
Y=10

prog T1
ST X, 1
ST Y,11

cache-1 memory cache-2 prog T2

X = 0 Y = LD Y, R1

Y =10 Y’= ST Y’, R1

X’= X = 0 LD X, R2

Y’= X’= ST X’,R2

• T1 executed

• T2 executed

Y =
Y’=
X = 0
X’=

X = 1
Y =11
X’=
Y’=

X= 1
Y=11

Y = 11
Y’= 11
X = 0
X’= 0

X = 1
Y =11
X’= 0
Y’=11

X= 1
Y=11

Write-through caches don’t preserve
sequential consistency either

November 9, 2005

6.823 L17- 5
Arvind

Maintaining Sequential Consistency

SC is sufficient for correct producer-consumer
and mutual exclusion code (e.g., Dekker)

Multiple copies of a location in various caches
can cause SC to break down.

Hardware support is required such that

• only one processor at a time has write

permission for a location
• no processor can load a stale copy of

the location after a write

⇒ cache coherence protocols

November 9, 2005

6.823 L17- 6
Arvind

A System with Multiple Caches

L1
P

L1
P

L1
P

L1
P

L2L2
L1
P

L1
P

M

Interconnect

•	 Modern systems often have hierarchical caches
•	 Each cache has exactly one parent but can have zero

or more children
•	 Only a parent and its children can communicate

directly
•	 Inclusion property is maintained between a parent

and its children, i.e.,

a ∈ Li ⇒ a ∈ Li+1

November 9, 2005

6.823 L17- 7
Arvind

Cache Coherence Protocols for SC

write request:
the address is invalidated (updated) in all other
caches before (after) the write is performed

read request:

if a dirty copy is found in some cache, a write-

back is performed before the memory is read

We will focus on Invalidation protocols

as opposed to Update protocols

November 9, 2005

6.823 L17- 8
Arvind

Warmup: Parallel I/O

Either Cache or DMA can

effect transfers
DISK

DMA

Physical
Memory

Proc.

R/W

Data (D) Cache

Address (A)

A
D

R/W

Page transfers
occur while the
Processor is running

Memory
Bus

be the Bus Master and

DMA stands for Direct Memory Access

November 9, 2005

6.823 L17- 9
Arvind

Problems with Parallel I/O

Memory Disk: Physical memory may be
DISK

DMA

Physical
Memory

Proc.
Cache

Memory
Bus

of page

DMA transfers

Cached portions

stale if Cache copy is dirty

Disk Memory: Cache may have data
corresponding to the memory

November 9, 2005

6.823 L17- 10
Arvind

Snoopy Cache Goodman 1983

•	 Idea: Have cache watch (or snoop upon)
DMA transfers, and then “do the right
thing”

•	 Snoopy cache tags are dual-ported

Proc.

Cache

Data
(lines)

Tags and
A

D

R/W

Used to drive Memory Bus

A

R/WState

when Cache is Bus Master

Snoopy read port
attached to Memory
Bus

November 9, 2005

6.823 L17- 11
Arvind

Snoopy Cache Actions

Observed Bus
Cycle Cache Action

Address not cached

Read Cycle Cached, unmodified

Memory Disk Cached, modified

Address not cached

Write Cycle Cached, unmodified

Disk Memory Cached, modified

No action

No action

No action

Cache intervenes

Cache purges its copy

???

Cache State

November 9, 2005

6.823 L17- 12
Arvind

Shared Memory Multiprocessor

Memory

Bus

M1

M2

M3

Snoopy
Cache

DMA

Physical
Memory

Snoopy
Cache

Snoopy
Cache

DISKS

Use snoopy mechanism to keep all
processors’ view of memory coherent

November 9, 2005

6.823 L17- 13
Arvind

Cache State Transition Diagram

The MSI protocol

M: ModifiedEach cache line has a tag
S: Shared
I: InvalidAddress tag

state
bits

P1 reads
or writes

Other processor
intents to write

Read by any

processor
 Cache state in

processor P1

M

S I
P 1

int
en

ts
to

writ
e

Other processor

Other processor reads
P1 writes back

intents to write

November 9, 2005

Write miss

Read

miss

6.823 L17- 14
Arvind

2 Processor Example
P1 readsP1 reads P1 or writes

P1 writes
Write missP2 reads

P2 writes
P2 intent to write

P1 reads
P1 writes Read

miss
P2 writes

P1 writes

M

S I
P1

inten
t to

write

P2 intent to write

P2 reads,
P1 writes back

M

S I

Write miss

Read
miss

P2
inten

t to
write

P1 intent to write

P1 reads,
P2 writes back

P2 reads
or writes

P1 intent to write

P2

November 9, 2005

6.823 L17- 15
Arvind

Observation

M

S I
P 1

int
en

ts
to

writ
e

Other processor

Other processor reads
P1 writes back	

intents to write

Write miss

Other processor
intents to write

P1 reads

or writes

Read

miss

Read by any
processor

•	 If a line is in the M state then no other
cache can have a copy of the line!
–	 Memory stays coherent, multiple differing copies

cannot exist
November 9, 2005

6.823 L17- 16
Arvind

MESI: An Enhanced MSI protocol

M: Modified ExclusiveEach cache line has a tag
E: Exclusive, unmodified
S: Shared
I: Invalid

Address tag
state
bits

P1 write	 P1 read
P1 write M	 E
or read

Write miss

Other processor reads Other processor
P1 writes back intent to write

Read miss,
shared

S

Read by any	 Other processor

intent to write

I
P 1

int
en

t to
writ

e

processor Cache state in
processor P1

November 9, 2005

17

Five-minute break to stretch your legs

6.823 L17- 18
Arvind

Cache Coherence State Encoding

tag

=

data blocktag m offset V M

Valid and dirty bits can be used
to encode S, I, and (E, M) states

index

block Address

V=0, D=x ⇒ Invalid Hit? word
V=1, D=0 ⇒ Shared (not dirty)
V=1, D=1 ⇒ Exclusive (dirty)

November 9, 2005

6.823 L17- 19
Arvind

2-Level Caches

Snooper Snooper Snooper Snooper

CPU

L1 $

L2 $

CPU

L1 $

L2 $

CPU

L1 $

L2 $

CPU

L1 $

L2 $

• Processors often have two-level caches

• Small L1 on chip, large L2 off chip

• Inclusion property: entries in L1 must be in L2
invalidation in L2 ⇒ invalidation in L1

• Snooping on L2 does not affect CPU-L1 bandwidth

What problem could occur?
November 9, 2005

6.823 L17- 20
Arvind

Intervention

cache-1A

CPU-1 CPU-2

cache-2

memory (stale data)A

200

CPU-Memory bus

100

When a read-miss for A occurs in cache-2,
a read request for A is placed on the bus

• Cache-1 needs to supply & change its state to shared
• The memory may respond to the request also!

Does memory know it has stale data?

Cache-1 needs to intervene through memory
controller to supply correct data to cache-2

November 9, 2005

6.823 L17- 21
Arvind

False Sharing

state data0 ... dataNblk addr data1

A cache block contains more than one word

Cache-coherence is done at the block-level and
not word-level

Suppose M1 writes wordi and M2 writes wordk and
both words have the same block address.

What can happen?

November 9, 2005

cache

6.823 L17- 22
Arvind

Synchronization and Caches:
Performance Issues

Processor 1 Processor 2 Processor 3

R ← 1

if <R> then goto L;
<critical section>

M[mutex] ← 0;

R ← 1

if <R> then goto L;
<critical section>

M[mutex] ← 0;

R ← 1

if <R> then goto L;
<critical section>

M[mutex] ← 0;

CPU-Memory Bus

mutex=1cache cache

L: swap(mutex, R); L: swap(mutex, R); L: swap(mutex, R);

Cache-coherence protocols will cause mutex to ping-pong
between P1’s and P2’s caches.

Ping-ponging can be reduced by first reading the mutex
location (non-atomically) and executing a swap only if it is
found to be zero.

November 9, 2005

6.823 L17- 23

Performance Related to Bus
Arvind

occupancy
In general, a read-modify-write instruction

requires two memory (bus) operations without

intervening memory operations by other

processors

In a multiprocessor setting, bus needs to be

locked for the entire duration of the atomic read

and write operation

⇒ expensive for simple buses
⇒ very expensive for split-transaction buses

modern processors use
load-reserve
store-conditional

November 9, 2005

6.823 L17- 24
Arvind

Load-reserve & Store-conditional

Special register(s) to hold reservation flag and

address, and the outcome of store-conditional

Load-reserve(R, a):
<flag, adr> ← <1, a>;
R ← M[a];

Store-conditional(a, R):
if <flag, adr> == <1, a>
then cancel other procs’

reservation on a;
M[a] ← <R>;
status ← succeed;

else status ← fail;

If the snooper sees a store transaction to the address
in the reserve register, the reserve bit is set to 0

• Several processors may reserve ‘a’ simultaneously
• These instructions are like ordinary loads and stores
with respect to the bus traffic

November 9, 2005

6.823 L17- 25
Arvind

Performance:
Load-reserve & Store-conditional

The total number of memory (bus) transactions
is not necessarily reduced, but splitting an
atomic instruction into load-reserve & store-
conditional:

• increases bus utilization (and reduces
processor stall time), especially in split-
transaction buses

• reduces cache ping-pong effect because
processors trying to acquire a semaphore do
not have to perform a store each time

November 9, 2005

6.823 L17- 26
Arvind

Out-of-Order Loads/Stores & CC

snooper
Wb-req, Inv-req, Inv-rep

load/store

buffers
 pushout (Wb-rep) Memory

CacheCPU

(I/S/E) (S-rep, E-rep)

(S-req, E-req) CPU/MemoryBlocking caches
One request at a time + CC ⇒ SC Interface

Non-blocking caches
Multiple requests (different addresses) concurrently + CC

⇒ Relaxed memory models
CC ensures that all processors observe the same
order of loads and stores to an address

November 9, 2005

6.823 L17- 27
Arvind

next time

Designing a Cache Coherence
Protocol

November 9, 2005

28

Thank you !

6.823 L17- 29
Arvind

2 Processor Example

Block b P1 write
or read

Write miss

P2 intent to writeP1

Read

miss

M E

S I
P1

inten
t to

write

P2 intent to write

P1

P2 reads,
P1 writes back

write

Block b

P2

Read

miss

P1 read

M E

S I

Write miss

P2
inten

t to
write

P1 intent to write

P2
P2
or read

P1 reads,
P2 writes back

P2 read

P1 intent to write

write
write

November 9, 2005

