
1

Complex Pipelining:

Out-of-Order Execution & Register

Renaming

Arvind

Computer Science and Artificial Intelligence Laboratory

M.I.T.

Based on the material prepared by

Krste Asanovic and Arvind

6.823 L12-2
Arvind

In-Order Issue Pipeline

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPR’s
FPR’s

October 24, 2005

6.823 L12-3
Arvind

Scoreboard for In-order Issues

Busy[FU#] : a bit-vector to indicate FU’s availability.
(FU = Int, Add, Mult, Div)

These bits are hardwired to FU's.

WP[reg#] : a bit-vector to record the registers for which
writes are pending.

These bits are set to true by the Issue stage and set to
false by the WB stage

Issue checks the instruction (opcode dest src1 src2)
against the scoreboard (Busy & WP) to dispatch

FU available? Busy[FU#]
RAW? WP[src1] or WP[src2]
WAR? cannot arise
WAW? WP[dest]

October 24, 2005

6.823 L12-4
Arvind

In-Order Issue Limitations: an example

latency

1 LD F2, 34(R2) 1

2 LD F4, 45(R3) long

3 MULTD F6, F4, F2 3

4 SUBD F8, F2, F2 1

5 DIVD F4, F2, F8 4

6 ADDD F10, F6, F4 1

1 2

34

5

6

In-order:) 2 3 4 4 3 5 .1 (2,1 . . 5 6 6

In-order restriction prevents instruction 4
from being dispatched

October 24, 2005

6.823 L12-5
Arvind

Out-of-Order Issue

IF ID WB

ALU

Fadd
Issue

Mem

Fmul

•	 Issue stage buffer holds multiple instructions waiting
to issue.

•	 Decode adds next instruction to buffer if there is
space and the instruction does not cause a WAR or
WAW hazard.

•	 Any instruction in buffer whose RAW hazards are
satisfied can be issued (for now at most one dispatch
per cycle). On a write back (WB), new instructions
may get enabled.

October 24, 2005

6.823 L12-6
Arvind

In-Order Issue Limitations: an example

latency

1 LD F2, 34(R2) 1

2 LD F4, 45(R3) long

3 MULTD F6, F4, F2 3

4 SUBD F8, F2, F2 1

5 DIVD F4, F2, F8 4

6 ADDD F10, F6, F4 1

1 2

34

5

6

In-order: 1 (2,1) 2 3 4 4 3 5 . . . 5 6 6
Out-of-order: 1 (2,1) 4 4 2 3 . . 3 5 . . . 5 6 6

Out-of-order execution did not allow any significant improvement!

October 24, 2005

6.823 L12-7
ArvindHow many Instructions can

be in the pipeline

Which features of an ISA limit the number of
instructions in the pipeline?

Number of Registers

Which features of a program limit the number of
instructions in the pipeline?

Control transfers

Out-of-order dispatch by itself does not provide
any significant performance improvement !

October 24, 2005

6.823 L12-8
ArvindOvercoming the Lack of

Register Names

Floating Point pipelines often cannot be kept filled
with small number of registers.

IBM 360 had only 4 Floating Point Registers

Can a microarchitecture use more registers than
specified by the ISA without loss of ISA
compatibility ?

Robert Tomasulo of IBM suggested an ingenious
solution in 1967 based on on-the-fly register renaming

October 24, 2005

6.823 L12-9
ArvindInstruction-Level Parallelism with

Renaming
latency

1 LD F2, 34(R2) 1

2 LD F4, 45(R3) long

3 MULTD F6, F4, F2 3

4 SUBD F8, F2, F2 1

5 DIVD F4’, F2, F8 4

6 ADDD F10, F6, F4’ 1

1 2

34

5

6

X

In-order: 1 (2,1) 2 3 4 4 3 5 . . . 5 6 6
Out-of-order: 1 (2,1) 4 4 5 . . . 2 (3,5) 3 6 6

Any antidependence can be eliminated by renaming.

(renaming ⇒ additional storage)

Can it be done in hardware? yes!

October 24, 2005

6.823 L12-10
Arvind

Register Renaming

IF ID WB

ALU

Fadd
Issue

Mem

Fmul

•	 Decode does register renaming and adds instructions
to the issue stage reorder buffer (ROB)

⇒ renaming makes WAR or WAW hazards
impossible

•	 Any instruction in ROB whose RAW hazards have
been satisfied can be dispatched.

⇒ Out-of-order or dataflow execution

October 24, 2005

6.823 L12-11
Arvind

Renaming & Out-of-order Issue

An example

Renaming table Reorder buffer

Ins# use exec op p1 src1 p2 src2

t1
t2
.
.
.

data / ti

p data
F1
F2
F3
F4
F5
F6
F7
F8

1 LD F2, 34(R2)

2 LD F4, 45(R3) • When are names in sources

3 MULTD F6, F4, F2 replaced by data?

4 SUBD F8, F2, F2 Whenever an FU produces data

5 DIVD F4, F2, F8 • When can a name be reused?

6 ADDD F10, F6, F4

October 24, 2005

Whenever an instruction completes

6.823 L12-12
Arvind

Data-Driven Execution

Renaming
table &
reg file

Reorder
buffer

Load
Unit

FU FU Store
Unit

< t, result >

Ins# use exec op p1 src1 src2 t1
t2
.
.
tn

Replacing the
tag by its value
is an expensive
operation

p2

• Instruction template (i.e., tag t) is allocated by the
Decode stage, which also stores the tag in the reg file

• When an instruction completes, its tag is deallocated
October 24, 2005

6.823 L12-13
Arvind

Dataflow execution

.

.

.

Ins# use exec op p1 src1 p2 src2

t1
ptr2 t2

next to

deallocate

prt1

next

available

Reorder buffer

Instruction slot is candidate for execution when:
•It holds a valid instruction (“use” bit is set)
•It has not already started execution (“exec” bit is clear)
•Both operands are availble (p1 and p2 are set)

nt

October 24, 2005

6.823 L12-14
ArvindSimplifying

Allocation/Deallocation

.

.

.

Ins# use exec op p1 src1 p2 src2

t1
ptr2 t2

next to

deallocate

prt1

next

available

Reorder buffer

Instruction buffer is managed circularly
•“exec” bit is set when instruction begins execution
•When an instruction completes its “use” bit is marked free
• ptr2 is incremented only if the “use” bit is marked free

October 24, 2005

nt

6.823 L12-15
Arvind

IBM 360/91 Floating Point Unit

R. M. Tomasulo, 1967

October 24, 2005

Mult

p data1
2

p data1
2
3
4
5
6

data load
buffers
(from
memory)

1
2
3
4

Adder

p data1
2
3

Floating
Point
Reg

store buffers
(to memory)

...

Common bus ensures that data is made
available immediately to all the instructions
waiting for it

distribute
instruction
templates
by
functional
units

< t, result >

p data

p data
p data

instructions

6.823 L12-16
Arvind

Effectiveness?

Renaming and Out-of-order execution was first
implemented in 1969 in IBM 360/91 but did not
show up in the subsequent models until mid-
Nineties.

Why ?

Reasons
1. Exceptions not precise!
2. Effective on a very small class of programs

One more problem needed to be solved

Control transfers

October 24, 2005

17

Five-minute break to stretch your legs

6.823 L12-18
Arvind

Precise Interrupts

It must appear as if an interrupt is taken between
two instructions (say Ii and Ii+1)

• the effect of all instructions up to and including Ii is
totally complete

• no effect of any instruction after Ii has taken place

The interrupt handler either aborts the program or
restarts it at Ii+1 .

October 24, 2005

6.823 L12-19
Arvind

Effect on Interrupts

Out-of-order Completion

I
I
I
I
I
I1 DIVD

2 LD

3 MULTD

4 DIVD

5 SUBD

6 ADDD

f6, f6, f4
f2, 45(r3)
f0, f2, f4
f8, f6, f2
f10, f0, f6
f6, f8, f2

out-of-order comp 1 2 2 3 	 1 4 3 5 5 4 6 6
restore f2 restore f10

Consider interrupts

Precise interrupts are difficult to implement at high speed
- want to start execution of later instructions before
exception checks finished on earlier instructions

October 24, 2005

6.823 L12-20
ArvindException Handling

Commit(In-Order Five-Stage Pipeline)

Asynchronous
Interrupts

Exc
D

PC
D

PC
Inst.
Mem D Decode E M

Data
Mem W+

Exc
E

PC
E

Exc
M

PC
M

Cause

EPC

Kill DKill F Kill E

Illegal
Opcode Overflow

Data Addr
Except

PC Address

Kill
Writeback

Select

PC

Point

Stage Stage Stage

Exceptions
Handler

• Hold exception flags in pipeline until commit point (M stage)
• Exceptions in earlier pipe stages override later exceptions
• Inject external interrupts at commit point (override others)
• If exception at commit: update Cause and EPC registers, kill
all stages, inject handler PC into fetch stage

October 24, 2005

6.823 L12-21
Arvind

Phases of Instruction Execution

Fetch: Instruction bits retrieved
from cache.I-cache

Fetch
Buffer

Issue
Buffer

Func.
Units

State

Execute: Instructions and operands sent to
execution units .
When execution completes, all results and
exception flags are available.

issue (aka “dispatch”) stage buffer

Buffer Commit: Instruction irrevocably updates

“completion”).

PC

Arch.

Decode: Instructions placed in appropriate

Result

architectural state (aka “graduation” or

October 24, 2005

6.823 L12-22

In-Order Commit for Precise Arvind

Exceptions
In-order Out-of-order In-order

Fetch Decode

Execute

CommitReorder Buffer

Kill
Kill Kill

Exception?Inject handler PC

• Instructions fetched and decoded into instruction
reorder buffer in-order

• Execution is out-of-order (⇒ out-of-order completion)
• Commit (write-back to architectural state, i.e., regfile &
memory, is in-order

October 24, 2005

Temporary storage needed to hold results before commit
(shadow registers and store buffers)

6.823 L12-23
Arvind

Extensions for Precise Exceptions
Inst# use exec op p1 src1 p2 src2 pd dest data cause

ptr2

next to

commit

ptr1
next

available

Reorder buffer

• add <pd, dest, data, cause> fields in the instruction template
• commit instructions to reg file and memory in program
order ⇒ buffers can be maintained circularly

• on exception, clear reorder buffer by resetting ptr1=ptr2
(stores must wait for commit before updating memory)

October 24, 2005

6.823 L12-24
Arvind

Rollback and Renaming

Reorder
buffer

Register File
(now holds only
committed state)

Load
Unit

FU FU FU Store
Unit

< t, result >

t1
t2
.
.
tn

Ins# use exec op p1 src1 p2 src2 pd dest data

Commit

Register file does not contain renaming tags any more.
How does the decode stage find the tag of a source register?

Search the “dest” field in the reorder buffer
October 24, 2005

6.823 L12-25
Arvind

Renaming Table

Rename
Table

Reorder
buffer

Register
File

Load
Unit

FU FU FU Store
Unit

< t, result >

t1
t2
.
.
tn

Ins# use exec op p1 src1 p2 src2 pd dest data

Commit

r1 t v
r2

tag
valid bit

Renaming table is a cache to speed up register name look up.

It needs to be cleared after each exception taken.

When else are valid bits cleared? Control transfers

October 24, 2005

6.823 L12-26
Arvind

Branch Penalty

Next fetch
started

How many instructions
need to be killed on a
misprediction?

Modern processors may
have > 10 pipeline stages
between next pc calculation
and branch resolution !

I-cache

Buffer

Issue
Buffer

Func.
Units

Arch.
State

Execute

Decode

Result
Buffer Commit

PC

Branch executed

Fetch

Fetch

October 24, 2005

6.823 L12-27
ArvindAverage Run-Length between

Branches

Average dynamic instruction mix from SPEC92:

SPECint92 SPECfp92

ALU 39 % 13 %
FPU Add 20 %
FPU Mult 13 %
load 26 % 23 %
store 9 % 9 %
branch 16 % 8 %
other 10 % 12 %

SPECint92: compress, eqntott, espresso, gcc , li
SPECfp92: doduc, ear, hydro2d, mdijdp2, su2cor

What is the average run length between branches

next lecture: Branch prediction & Speculative excecution

October 24, 2005

28

Thank you !

