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Write Performance 
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Reducing Write Hit Time


Problem: Writes take two cycles in memory 
stage, one cycle for tag check plus one cycle 
for data write if hit 

Solutions:

•	 Design data RAM that can perform read and write in one 

cycle, restore old value after tag miss 

•	 CAM-Tag caches: Word line only enabled if hit 

•	 Pipelined writes: Hold write data for store in single 
buffer ahead of cache, write cache data during next 
store’s tag check 
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Pipelining Cache Writes Joel Emer 
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Write pipeline 
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Write Policy 

• Cache hit: 
– write through: write both cache & memory 

• generally higher traffic but simplifies cache coherence 

– write back: write cache only 
(memory is written only when the entry is evicted) 

• a dirty bit per block can further reduce the traffic 

• Cache miss: 
– no write allocate: only write to main memory 
– write allocate (aka fetch on write): fetch into cache 

• Common combinations: 
– write through and no write allocate 
– write back with write allocate 

October 5, 2005 



Average Cache Read Latency 

α is HIT RATIO: Fraction of references in cache


1 - α is MISS RATIO: Remaining references


Average access time for serial search: 

Addr Addr 
Main tc + (1 - α) tmProcessor Memory

Data Data 
CACHE 

Average access time for parallel search: 

Addr 
Main α tc + (1 - α) tmProcessor Memory

Data Data 
CACHE 

tc is smallest for which type of cache? 
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Improving Cache Performance


Average memory access time = 
Hit time + Miss rate x Miss penalty 

To improve performance: 
• reduce the miss rate (e.g., larger cache) 
• reduce the miss penalty (e.g., L2 cache) 
• reduce the hit time 

What is the simplest design strategy? 
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Improving Cache Performance


Average memory access time = 
Hit time + Miss rate x Miss penalty 

To improve performance: 
• reduce the miss rate (e.g., larger cache) 
• reduce the miss penalty (e.g., L2 cache) 
• reduce the hit time 

The simplest design strategy is to design the 
largest primary cache without slowing down the 
clock or adding pipeline stages 

(but design decisions are more complex with out-of-
order or highly pipelined CPUs) 
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Causes for Cache Misses


• Compulsory: first-reference to a block a.k.a. cold 
start misses 

- misses that would occur even with infinite cache 

• Capacity: cache is too small to hold all data needed 
by the program 
- misses that would occur even under perfect 
placement & replacement policy 

• Conflict: misses that occur because of collisions 
due to block-placement strategy 
- misses that would not occur with full associativity 
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Effect of Cache Parameters on Performance


• Larger cache size 
+ reduces capacity and conflict misses  

- hit time will increase


• Higher associativity

+ reduces conflict misses (up to around 4-8 way) 
- may increase access time 

• Larger block size 
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Block Size and Spatial Locality 
Block is unit of transfer between the cache and memory 

2
32-b bits b bits 

b = block size a.k.a line size (in bytes) 

Word3Word0 Word1 Word2 

block address bSplit CPU 
address 

Tag 4 word block, 

offset

b=2 

Larger block size has distinct hardware advantages 
• less tag overhead  
• exploit fast burst transfers from DRAM 
• exploit fast burst transfers over wide busses 

What are the disadvantages of increasing block size? 
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Block-level Optimizations 

• Tags are too large, i.e., too much overhead 
– Simple solution: Larger blocks, but miss penalty 

could be large. 

• Sub-block placement (aka sector cache)

– A valid bit added to units smaller than the full block, 

called sub-blocks 
– Only read a sub-block on a miss 
– If a tag matches, is the word in the cache? 

October 5, 2005 
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Set-Associative RAM-Tag Cache 
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Highly-Associative CAM-Tag Caches

•	 For high associativity (e.g., 32-way), use content-addressable 

memory (CAM) for tags (Intel XScale) 

•	 Overhead: Tag+comparator bit 2-4x area of plain RAM-tag bit 

October 5, 2005 
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Way Predicting Caches	
Joel Emer 

(MIPS R10000 L2 cache) 
• Use processor address to index into way prediction table 
• Look in predicted way at given index, then: 

MISSHIT 

Return copy Look in other way 
of data from 
cache 

MISSSLOW HIT 
(change entry in 
prediction table)	 Read block of data from 

next level of cache 
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Way Predicting Instruction Cache
(Alpha 21264-like) 
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Victim Caches (HP 7200)
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FA Cache 
4 blocks 

Evicted data 
from L1 

Evicted data 
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Hit data from VC 
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Victim cache is a small associative back up cache, added to a direct 
mapped cache, which holds recently evicted lines 
• First look up in direct mapped cache 
• If miss, look in victim cache 
• If hit in victim cache, swap hit line with line now evicted from L1 
• If miss in victim cache, L1 victim -> VC, VC victim->? 
Fast hit time of direct mapped but with reduced conflict misses 
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Multilevel Caches 
• A memory cannot be large and fast

• Increasing sizes of cache at each level 

CPU L1 L2 DRAM 

Local miss rate = misses in cache / accesses to cache 

Global miss rate = misses in cache / CPU memory accesses 

Misses per instruction = misses in cache / number of instructions 

October 5, 2005 
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Inclusion Policy 

•	 Inclusive multilevel cache: 
–	 Inner cache holds copies of data in outer cache 
–	 Extra-CPU access needs only check outer cache 
–	 Most common case 

•	 Exclusive multilevel caches: 
–	 Inner cache may hold data not in outer cache 
–	 Swap lines between inner/outer caches on miss 
–	 Used in Athlon with 64KB primary and 256KB 

secondary cache 

Why choose one type of the other? 
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Itanium-2 On-Chip Caches
(Intel/HP, 2002) 

Image removed due to copyright restrictions. 
To view image, visit http://www-

vlsi.stanford.edu/group/chips_micropro_body 
.html 

October 5, 2005 

Level 1, 16KB, 4-way s.a., 
64B line, quad-port (2 
load+2 store), single cycle 
latency 

Level 2, 256KB, 4-way s.a, 
128B line, quad-port (4 
load or 4 store), five cycle 
latency 

Level 3, 3MB, 12-way s.a., 
128B line, single 32B port, 
twelve cycle latency 

http://www-vlsi.stanford.edu/group/chips_micropro_body.html
http://www-vlsi.stanford.edu/group/chips_micropro_body.html
http://www-vlsi.stanford.edu/group/chips_micropro_body.html
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Reducing Read Miss Penalty
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•	 Write buffer may hold updated value of location 
needed by a read miss 

•	 Simple scheme: on a read miss, wait for the write 
buffer to go empty 

•	 Faster scheme: Check write buffer addresses 
against read miss addresses, if no match, allow 
read miss to go ahead of writes, else, return value 
in write bufferOctober 5, 2005 
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Prefetching


• Speculate on future instruction and 
data accesses and fetch them into 
cache(s) 
– Instruction accesses easier to predict 

than data accesses 

• Varieties of prefetching

– Hardware prefetching

– Software prefetching

– Mixed schemes 


• What types of misses does
prefetching affect? 
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Issues in Prefetching 

• Usefulness – should produce hits 
• Timeliness – not late and not too early 
• Cache and bandwidth pollution 

L1 Data 
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Hardware Instruction Prefetching


• Instruction prefetch in Alpha AXP 21064 
– Fetch two blocks on a miss; the requested block and 

the next consecutive block 
– Requested block placed in cache, and next block in 

instruction stream buffer 

October 5, 2005 
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Hardware Data Prefetching 

• Prefetch-on-miss: 
– Prefetch  b + 1 upon miss on b 

• One Block Lookahead (OBL) scheme 
– Initiate prefetch for block b + 1 when 

block b is accessed 
– Why is this different from doubling block

size? 
– Can extend to N block lookahead 

• Strided prefetch 
– If sequence of accesses to block b, b+N, 

b+2N, then prefetch b+3N etc. 

October 5, 2005 
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Software Prefetching


for(i=0; i < N; i++) {
prefetch( &a[i + 1] );
prefetch( &b[i + 1] );
SUM = SUM + a[i] * b[i];

}


•	 What property do we require of the cache 
for prefetching to work ? 

October 5, 2005 
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Software Prefetching Issues 
• Timing is the biggest issue, not predictability 

– If you prefetch very close to when the data is 
required, you might be too late 

– Prefetch too early, cause pollution 
– Estimate how long it will take for the data to come 

into L1, so we can set P appropriately 
– Why is this hard to do? 

for(i=0; i < N; i++) {
prefetch( &a[i +
prefetch( &b[i + 

P
P
] );
] );

} 
SUM = SUM + a[i] * b[i]; 

Must consider cost of prefetch instructions 
October 5, 2005 
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Compiler Optimizations


• Restructuring code affects the data block 
access sequence 
– Group data accesses together to improve spatial locality 
– Re-order data accesses to improve temporal locality 

• Prevent data from entering the cache 
– Useful for variables that will only be accessed once 

before being replaced 
– Needs mechanism for software to tell hardware not to 

cache data (instruction hints or page table bits) 

• Kill data that will never be used again

– Streaming data exploits spatial locality but not temporal 

locality 
– Replace into dead cache locations 

October 5, 2005 
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Loop Interchange


for(j=0; j < N; j++) {
for(i=0; i < M; i++) {

x[i][j] = 2 * x[i][j];
}

} 

for(i=0; i < M; i++) {

for(j=0; j < N; j++) {


} 
} 

x[i][j] = 2 * x[i][j];


What type of locality does this improve? 
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Loop Fusion


for(i=0; i < N; i++)
for(j=0; j < M; j++)

a[i][j] = b[i][j] * c[i][j]; 

for(i=0; i < N; i++)
for(j=0; j < M; j++)

d[i][j] = a[i][j] * c[i][j]; 

for(i=0; i < M; i++)
for(j=0; j < N; j++) {

a[i][j] = b[i][j] * c[i][j];
d[i][j] = a[i][j] * c[i][j];

} 

What type of locality does this improve? 
October 5, 2005 
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Blocking 
for(i=0; i < N; i++)

for(j=0; j < N; j++) {
r = 0;
for(k=0; k < N; k++)

r = r + y[i][k] * z[k][j];

} 
x[i][j] = r; 

x y zj k j 

i i k 

Not touched Old access New access 
October 5, 2005 
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Blocking

for(jj=0; jj < N; jj=jj+B)


for(kk=0; kk < N; kk=kk+B)

for(i=0; i < N; i++)


for(j=jj; j < min(jj+B,N); j++) {
r = 0;
for(k=kk; k < min(kk+B,N); k++)

r = r + y[i][k] * z[k][j];
x[i][j] = x[i][j] + r; 

x j } y k z j 

i i k 
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What type of locality does this improve?
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Memory Hierarchy Example
•	 AlphaStation 600/5 desktop workstation 

–	 Alpha 21164 @ 333 MHz 
–	 On-chip L1 and L2 caches 
–	 L1 instruction cache, 8KB direct-mapped, 32B lines, fetch 

four instructions/cycle (16B) 
–	 Instruction stream prefetches up to 4 cache lines ahead 
–	 L1 data cache, 8KB direct-mapped, 32B lines, write-

through, load two 8B words or store one 8B word/cycle (2 
cycle latency) 

–	 up to 21 outstanding loads, 6x32B lines of outstanding 
writes 

–	 L2 unified cache, 96KB 3-way set-associative, 64B 
blocks/32B sub-blocks, write-back, 16B/cycle bandwidth 
(7 cycle latency) 

–	 Off-chip L3 unified cache, 8MB direct-mapped, 64B blocks, 
peak bandwidth is 16B every 7 cycles (15 cycle latency) 

–	 DRAM, peak bandwidth 16B every 10 cycles (60 cycle 
latency) 

October 5, 2005 
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Further Issues


There are several other factors that are intimately 
connected with cache design: 

• Virtual memory and associated address 
translation 

• Multiprocessor and associated memory

model issues - cache coherence


stay tuned 
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