
1

Cache Optimizations

Joel Emer

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Based on the material prepared by

Krste Asanovic and Arvind

wdata

Y

6.823 L8- 2
Joel EmerCPU-Cache Interaction

(5-stage pipeline)

0x4
EAdd

M
A

we
ALU Y addr

IR
Decode,nop Primary BRegister Data rdata
Fetch Cache Raddr instPC D hit?wdata

PCen Primary

Instruction MD1 MD2

Cache

hit?

Stall entire
CPU on data
cache miss

To Memory Control

Cache Refill Data from Lower Levels of
Memory Hierarchy

What about Instruction miss or writes to i-stream ?

October 5, 2005

6.823 L8- 3
Joel Emer

Write Performance

Tag DataV

=

Block
Offset

Tag

t k
b

t

HIT

2k

lines

WE

Index

Data Word or Byte

October 5, 2005

6.823 L8- 4
Joel Emer

Reducing Write Hit Time

Problem: Writes take two cycles in memory
stage, one cycle for tag check plus one cycle
for data write if hit

Solutions:

•	 Design data RAM that can perform read and write in one

cycle, restore old value after tag miss

•	 CAM-Tag caches: Word line only enabled if hit

•	 Pipelined writes: Hold write data for store in single
buffer ahead of cache, write cache data during next
store’s tag check

October 5, 2005

6.823 L8- 5

Pipelining Cache Writes Joel Emer

Address and Store Data From CPU

Tag Index Store Data

Delayed Write Addr. Delayed Write Data

Load/Store

=?
S

Tags L Data

1 0=?

Load Data to CPU
Hit?

Data from a store hit written into data portion of cache
during tag access of subsequent store

October 5, 2005

6.823 L8- 6
Joel Emer

Write pipeline

Instr
RFMemory ALU

Data
Memory

Data
Memory

I-Fetch Decode Address Tag Mem
Reg Read Calc Read Data

Write

What hazard has been introduced in this pipeline?

October 5, 2005

6.823 L8- 7
Joel Emer

Write Policy

• Cache hit:
– write through: write both cache & memory

• generally higher traffic but simplifies cache coherence

– write back: write cache only
(memory is written only when the entry is evicted)

• a dirty bit per block can further reduce the traffic

• Cache miss:
– no write allocate: only write to main memory
– write allocate (aka fetch on write): fetch into cache

• Common combinations:
– write through and no write allocate
– write back with write allocate

October 5, 2005

Average Cache Read Latency

α is HIT RATIO: Fraction of references in cache

1 - α is MISS RATIO: Remaining references

Average access time for serial search:

Addr Addr
Main tc + (1 - α) tmProcessor Memory

Data Data
CACHE

Average access time for parallel search:

Addr
Main α tc + (1 - α) tmProcessor Memory

Data Data
CACHE

tc is smallest for which type of cache?

October 5, 2005

6.823 L8- 9
Joel Emer

Improving Cache Performance

Average memory access time =
Hit time + Miss rate x Miss penalty

To improve performance:
• reduce the miss rate (e.g., larger cache)
• reduce the miss penalty (e.g., L2 cache)
• reduce the hit time

What is the simplest design strategy?

October 5, 2005

6.823 L8- 10
Joel Emer

Improving Cache Performance

Average memory access time =
Hit time + Miss rate x Miss penalty

To improve performance:
• reduce the miss rate (e.g., larger cache)
• reduce the miss penalty (e.g., L2 cache)
• reduce the hit time

The simplest design strategy is to design the
largest primary cache without slowing down the
clock or adding pipeline stages

(but design decisions are more complex with out-of-
order or highly pipelined CPUs)

October 5, 2005

6.823 L8- 11
Joel Emer

Causes for Cache Misses

• Compulsory: first-reference to a block a.k.a. cold
start misses

- misses that would occur even with infinite cache

• Capacity: cache is too small to hold all data needed
by the program
- misses that would occur even under perfect
placement & replacement policy

• Conflict: misses that occur because of collisions
due to block-placement strategy
- misses that would not occur with full associativity

October 5, 2005

6.823 L8- 12
Joel Emer

Effect of Cache Parameters on Performance

• Larger cache size
+ reduces capacity and conflict misses

- hit time will increase

• Higher associativity

+ reduces conflict misses (up to around 4-8 way)
- may increase access time

• Larger block size

October 5, 2005

6.823 L8- 13
Joel Emer

Block Size and Spatial Locality
Block is unit of transfer between the cache and memory

2
32-b bits b bits

b = block size a.k.a line size (in bytes)

Word3Word0 Word1 Word2

block address bSplit CPU
address

Tag 4 word block,

offset

b=2

Larger block size has distinct hardware advantages
• less tag overhead
• exploit fast burst transfers from DRAM
• exploit fast burst transfers over wide busses

What are the disadvantages of increasing block size?

October 5, 2005

6.823 L8- 14
Joel Emer

Block-level Optimizations

• Tags are too large, i.e., too much overhead
– Simple solution: Larger blocks, but miss penalty

could be large.

• Sub-block placement (aka sector cache)

– A valid bit added to units smaller than the full block,

called sub-blocks
– Only read a sub-block on a miss
– If a tag matches, is the word in the cache?

October 5, 2005

100
300
204

1 1 1 1
1 1 0 0
0 1 0 1

6.823 L8- 15
Joel Emer

Set-Associative RAM-Tag Cache

=? =?

Status

Index Offset

Tag

Tag

Data	 Tag Status Data

Not energy-efficient
–	 A tag and data word

is read from every
way

Two-phase approach
–	 First read tags, then

just read data from
selected way

–	 More energy-
efficient

–	 Doubles latency in
L1

–	 OK, for L2 and
above, why?

October 5, 2005

Tag =? Data Block
Tag =? Data Block

Tag =? Data Block

Tag =? Data Block
Tag =? Data Block

Tag =? Data Block

6.823 L8- 16
Joel Emer

Highly-Associative CAM-Tag Caches

•	 For high associativity (e.g., 32-way), use content-addressable

memory (CAM) for tags (Intel XScale)

•	 Overhead: Tag+comparator bit 2-4x area of plain RAM-tag bit

October 5, 2005

tagt seti offsetb

Tag =? Data Block
Tag =? Data Block

Tag =? Data Block

Set 0
Set 1

Set i

Hit? DataOnly one set enabled
Only hit data accessed – saves energy

6.823 L8- 17

Way Predicting Caches	
Joel Emer

(MIPS R10000 L2 cache)
• Use processor address to index into way prediction table
• Look in predicted way at given index, then:

MISSHIT

Return copy Look in other way
of data from
cache

MISSSLOW HIT
(change entry in
prediction table)	 Read block of data from

next level of cache
October 5, 2005

6.823 L8- 18
Joel Emer

Way Predicting Instruction Cache
(Alpha 21264-like)

PC addr inst

Instruction
Cache

0x4
Add

Sequential Way

way

Jump
control

Primary

Branch Target Way

Jump target

October 5, 2005

19

Five-minute break to stretch your legs

6.823 L8- 20
Joel Emer

Victim Caches (HP 7200)

L1 Data
Cache

Unified L2
Cache

RF

CPU

Victim
FA Cache
4 blocks

Evicted data
from L1

Evicted data
From VC

Hit data from VC
(miss in L1)

where ?

Victim cache is a small associative back up cache, added to a direct
mapped cache, which holds recently evicted lines
• First look up in direct mapped cache
• If miss, look in victim cache
• If hit in victim cache, swap hit line with line now evicted from L1
• If miss in victim cache, L1 victim -> VC, VC victim->?
Fast hit time of direct mapped but with reduced conflict misses

October 5, 2005

6.823 L8- 21
Joel Emer

Multilevel Caches
• A memory cannot be large and fast

• Increasing sizes of cache at each level

CPU L1 L2 DRAM

Local miss rate = misses in cache / accesses to cache

Global miss rate = misses in cache / CPU memory accesses

Misses per instruction = misses in cache / number of instructions

October 5, 2005

6.823 L8- 22
Joel Emer

Inclusion Policy

•	 Inclusive multilevel cache:
–	 Inner cache holds copies of data in outer cache
–	 Extra-CPU access needs only check outer cache
–	 Most common case

•	 Exclusive multilevel caches:
–	 Inner cache may hold data not in outer cache
–	 Swap lines between inner/outer caches on miss
–	 Used in Athlon with 64KB primary and 256KB

secondary cache

Why choose one type of the other?

October 5, 2005

6.823 L8- 23
Joel Emer

Itanium-2 On-Chip Caches
(Intel/HP, 2002)

Image removed due to copyright restrictions.
To view image, visit http://www-

vlsi.stanford.edu/group/chips_micropro_body
.html

October 5, 2005

Level 1, 16KB, 4-way s.a.,
64B line, quad-port (2
load+2 store), single cycle
latency

Level 2, 256KB, 4-way s.a,
128B line, quad-port (4
load or 4 store), five cycle
latency

Level 3, 3MB, 12-way s.a.,
128B line, single 32B port,
twelve cycle latency

http://www-vlsi.stanford.edu/group/chips_micropro_body.html
http://www-vlsi.stanford.edu/group/chips_micropro_body.html
http://www-vlsi.stanford.edu/group/chips_micropro_body.html

6.823 L8- 24
Joel Emer

Reducing Read Miss Penalty

Data
Cache

Unified
L2

Cache
RF

CPU

Write
buffer

Evicted dirty lines for writeback cache
OR

All writes in writethru cache

•	 Write buffer may hold updated value of location
needed by a read miss

•	 Simple scheme: on a read miss, wait for the write
buffer to go empty

•	 Faster scheme: Check write buffer addresses
against read miss addresses, if no match, allow
read miss to go ahead of writes, else, return value
in write bufferOctober 5, 2005

6.823 L8- 25
Joel Emer

Prefetching

• Speculate on future instruction and
data accesses and fetch them into
cache(s)
– Instruction accesses easier to predict

than data accesses

• Varieties of prefetching

– Hardware prefetching

– Software prefetching

– Mixed schemes

• What types of misses does
prefetching affect?

October 5, 2005

6.823 L8- 26
Joel Emer

Issues in Prefetching

• Usefulness – should produce hits
• Timeliness – not late and not too early
• Cache and bandwidth pollution

L1 Data

L1
Instruction

Unified L2
Cache

RF

CPU

Prefetched data

October 5, 2005

6.823 L8- 27
Joel Emer

Hardware Instruction Prefetching

• Instruction prefetch in Alpha AXP 21064
– Fetch two blocks on a miss; the requested block and

the next consecutive block
– Requested block placed in cache, and next block in

instruction stream buffer

October 5, 2005

L1
Instruction

Unified L2
Cache

RF

CPU

Stream
Buffer
(

Prefetched
instruction block

4 blocks)

Req
block

Req
block

6.823 L8- 28
Joel Emer

Hardware Data Prefetching

• Prefetch-on-miss:
– Prefetch b + 1 upon miss on b

• One Block Lookahead (OBL) scheme
– Initiate prefetch for block b + 1 when

block b is accessed
– Why is this different from doubling block

size?
– Can extend to N block lookahead

• Strided prefetch
– If sequence of accesses to block b, b+N,

b+2N, then prefetch b+3N etc.

October 5, 2005

6.823 L8- 29
Joel Emer

Software Prefetching

for(i=0; i < N; i++) {
prefetch(&a[i + 1]);
prefetch(&b[i + 1]);
SUM = SUM + a[i] * b[i];

}

•	 What property do we require of the cache
for prefetching to work ?

October 5, 2005

6.823 L8- 30
Joel Emer

Software Prefetching Issues
• Timing is the biggest issue, not predictability

– If you prefetch very close to when the data is
required, you might be too late

– Prefetch too early, cause pollution
– Estimate how long it will take for the data to come

into L1, so we can set P appropriately
– Why is this hard to do?

for(i=0; i < N; i++) {
prefetch(&a[i +
prefetch(&b[i +

P
P
]);
]);

}
SUM = SUM + a[i] * b[i];

Must consider cost of prefetch instructions
October 5, 2005

6.823 L8- 31
Joel Emer

Compiler Optimizations

• Restructuring code affects the data block
access sequence
– Group data accesses together to improve spatial locality
– Re-order data accesses to improve temporal locality

• Prevent data from entering the cache
– Useful for variables that will only be accessed once

before being replaced
– Needs mechanism for software to tell hardware not to

cache data (instruction hints or page table bits)

• Kill data that will never be used again

– Streaming data exploits spatial locality but not temporal

locality
– Replace into dead cache locations

October 5, 2005

6.823 L8- 32
Joel Emer

Loop Interchange

for(j=0; j < N; j++) {
for(i=0; i < M; i++) {

x[i][j] = 2 * x[i][j];
}

}

for(i=0; i < M; i++) {

for(j=0; j < N; j++) {

}
}

x[i][j] = 2 * x[i][j];

What type of locality does this improve?

October 5, 2005

6.823 L8- 33
Joel Emer

Loop Fusion

for(i=0; i < N; i++)
for(j=0; j < M; j++)

a[i][j] = b[i][j] * c[i][j];

for(i=0; i < N; i++)
for(j=0; j < M; j++)

d[i][j] = a[i][j] * c[i][j];

for(i=0; i < M; i++)
for(j=0; j < N; j++) {

a[i][j] = b[i][j] * c[i][j];
d[i][j] = a[i][j] * c[i][j];

}

What type of locality does this improve?
October 5, 2005

6.823 L8- 34
Joel Emer

Blocking
for(i=0; i < N; i++)

for(j=0; j < N; j++) {
r = 0;
for(k=0; k < N; k++)

r = r + y[i][k] * z[k][j];

}
x[i][j] = r;

x y zj k j

i i k

Not touched Old access New access
October 5, 2005

6.823 L8- 35
Joel Emer

Blocking

for(jj=0; jj < N; jj=jj+B)

for(kk=0; kk < N; kk=kk+B)

for(i=0; i < N; i++)

for(j=jj; j < min(jj+B,N); j++) {
r = 0;
for(k=kk; k < min(kk+B,N); k++)

r = r + y[i][k] * z[k][j];
x[i][j] = x[i][j] + r;

x j } y k z j

i i k

October 5, 2005

What type of locality does this improve?

36

Thank you !

37

Extras

6.823 L8- 38
Joel Emer

Memory Hierarchy Example
•	 AlphaStation 600/5 desktop workstation

–	 Alpha 21164 @ 333 MHz
–	 On-chip L1 and L2 caches
–	 L1 instruction cache, 8KB direct-mapped, 32B lines, fetch

four instructions/cycle (16B)
–	 Instruction stream prefetches up to 4 cache lines ahead
–	 L1 data cache, 8KB direct-mapped, 32B lines, write-

through, load two 8B words or store one 8B word/cycle (2
cycle latency)

–	 up to 21 outstanding loads, 6x32B lines of outstanding
writes

–	 L2 unified cache, 96KB 3-way set-associative, 64B
blocks/32B sub-blocks, write-back, 16B/cycle bandwidth
(7 cycle latency)

–	 Off-chip L3 unified cache, 8MB direct-mapped, 64B blocks,
peak bandwidth is 16B every 7 cycles (15 cycle latency)

–	 DRAM, peak bandwidth 16B every 10 cycles (60 cycle
latency)

October 5, 2005

6.823 L8- 39
Joel Emer

Further Issues

There are several other factors that are intimately
connected with cache design:

• Virtual memory and associated address
translation

• Multiprocessor and associated memory

model issues - cache coherence

stay tuned

October 5, 2005

