
Last updated:
2/10/2006 4:35 PM

Problem M4.1: Sequential Consistency

For this problem we will be using the following sequences of instructions. These are small
programs, each executed on a different processor, each with its own cache and register set. In the
following R is a register and X is a memory location. Each instruction has been named (e.g., B3)
to make it easy to write answers.

Assume data in location X is initially 0.

Processor A Processor B Processor C
A1: ST X, 1 B1: R := LD X C1: ST X, 6
A2: R := LD X B2: R := ADD R, 1 C2: R := LD X
A3: R := ADD R, R B3: ST X, R C3: R := ADD R, R
A4: ST X, R B4: R:= LD X C4: ST X, R

B5: R := ADD R, R
B6: ST X, R

For each of the questions below, please circle the answer and provide a short explanation
assuming the program is executing under the SC model. No points will be given for just
circling an answer!

Problem M4.1.A

Can X hold value of 4 after all three threads have completed? Please explain briefly.

Yes / No

Problem M4.1.B

Can X hold value of 5 after all three threads have completed?

Yes / No

Last updated:
2/10/2006 4:35 PM

Problem M4.1.C

Can X hold value of 6 after all three threads have completed?

Yes / No

Problem M4.1.D

For this particular program, can a processor that reorders instructions but follows local
dependencies produce an answer that cannot be produced under the SC model?

Yes / No

Last updated:
2/10/2006 4:35 PM

Problem M4.2: Synchronization Primitives

One of the common instruction sequences used for synchronizing several processors are the
LOAD RESERVE/STORE CONDITIONAL pair (from now on referred to as LdR/StC pair).
The LdR instruction reads a value from the specified address and sets a local reservation for the
address. The StC attempts to write to the specified address provided the local reservation for the
address is still held. If the reservation has been cleared the StC fails and informs the CPU.

Problem M4.2.A

Describe under what events the local reservation for an address is cleared.

Problem M4.2.B

Is it possible to implement LdR/StC pair in such a way that the memory bus is not affected, i.e.,
unaware of the addition of these new instructions? Explain

Problem M4.2.C

Give two reasons why the LdR/StC pair of instructions is preferable over atomic read-test-
modify instructions such as the TEST&SET instruction.

Problem M4.2.D

LdR/StC pair of instructions were conceived in the context of snoopy busses. Do these
instructions make sense in our directory-based system in Handout #12? Do they still offer an
advantage over atomic read-test-modify instructions in a directory-based system? Please explain.

Last updated:
2/10/2006 4:35 PM

Problem M4.3: Directory-based Cache Coherence Invalidate Protocols

In this problem we consider a cache-coherence protocol presented in Handout #12.

Problem M4.3.A Protocol Understanding

Consider the situation in which memory sends a FlushReq message to a processor. This can
only happen when the memory directory shows that the exclusive copy resides at that site. The
memory processor intends to obtain the most up-to-date data and exclusive ownership, and then
supply it to another site that has issued a ExReq. Table H12-1 row 21 specifies the PP behavior
when the current cache state is C-pending (not C-exclusive) and a FlushReq is received.

Give a simple scenario that causes this situation.

Problem M4.3.B Non-FIFO Network

FIFO message passing is a necessary assumption for the correctness of the protocol. Assume
now that the network is non-FIFO. Give a simple scenario that shows how the protocol fails.

Problem M4.3.C Replace

In the current scheme, when a cache wants to voluntarily invalidate a shared cache line, the PP
informs the memory of this operation. Describe a simple scenario where there would be an error,
if the line was “silently dropped.” Can you provide a simple fix for this problem in the protocol?
Give such a fix if there is one, or explain why it wouldn’t be a simple fix.

Last updated:
2/10/2006 4:35 PM

Problem M4.4: Implementing Directories

Ben Bitdiddle is implementing a directory-based cache coherence invalidate protocol for a 64
processor system. He first builds a smaller prototype with only 4 processors to test out the
cache coherence protocol described in Handout #12. To implement the list of sharers, S, kept
by home, he maintains a bit vector per cache block to keep track of all the sharers. The bit
vector has one bit corresponding to each processor in the system. The bit is set to one if the
processor is caching a shared copy of the block, and zero if the processor does not have a copy of
the block. For example, if Processors 0 and 3 are caching a shared copy of some data, the
corresponding bit vector would be 1001.

Problem M4.4.A

The bit vector worked well for the 4-processor prototype, but when building the actual 64
processor system, Ben discovered that he did not have enough hardware resources. Assume
each cache block is 32 bytes. What is the overhead of maintaining the sharing bit vector for a
4-processor system, as a fraction of data storage bits? What is the overhead for a 64
processor system, as a fraction of data storage bits?

Overhead for a 4-processor system: ________________________

Overhead for a 64-processor system: _______________________

Last updated:
2/10/2006 4:35 PM

Problem M4.4.B

Since Ben does not have the resources to keep track of all potential sharers in the 64-processor
system, he decides to limit S to keep track of only 1 processor using its 6-bit ID as shown in
Figure M4.4-A (single-sharer scheme). When there is a load (ShReq) requests to a shared
cache block, Ben invalidates the existing sharer to make room for the new sharer (home sends
an InvReq to the existing sharer, the existing sharer sends an InvRep to home, home
replaces the exiting sharer's ID with the new sharer's ID and sends a ShRep to the new sharer).

6
Sharer ID

Figure M4.4-A

Consider a 64-processor system. To determine the efficiency of the bit-vector scheme and
single-sharer scheme, fill in the number of invalidate-requests that are generated by the
protocols for each step in the following two sequences of events. Assume cache block B is
uncached initially (R(dir) & dir= ε)) for both sequences.

Sequence 1 bit-vector scheme
of invalidate-requests

single-sharer scheme
of invalidate-requests

Processor #0 reads B 0 0
Processor #1 reads B
Processor #0 reads B

Sequence 2 bit-vector scheme
of invalidate-requests

single-sharer scheme
of invalidate-requests

Processor #0 reads B 0 0
Processor #1 reads B
Processor #2 writes B

Last updated:
2/10/2006 4:35 PM

Problem M4.4.C

Ben thinks that he can improve his original scheme by adding an extra “global bit” to S as
shown in Figure M4.4-B (global-bit scheme). The global bit is set when there is more than 1
processor sharing the data, and zero otherwise.

1 6
0 Sharer ID

global
Figure M4.4-B

When the global bit is set, home stops keeping track of a specific sharer and assumes that all
processors are potential sharers.

1 6
1 XXXXXX

global
Figure M4.4-C

Consider a 64-processor system. To determine the efficiency of the global-bit scheme, fill in the
number of invalidate-requests that are generated for each step in the following two sequences
of events. Assume cache block B is uncached initially (i.e., R(dir) & (dir = ε)) for both
sequences.

Sequence 1 global-bit scheme
of invalidate-requests

Processor #0 reads B 0
Processor #1 reads B
Processor #0 reads B

Sequence 2 global-bit scheme
of invalidate-requests

Processor #0 reads B 0
Processor #1 reads B
Processor #2 writes B

Page 7 of 29

Last updated:
2/10/2006 4:35 PM

Problem M4.4.D

Ben decides to modify the protocol from Handout #12 for his global-bit scheme (Problem 4.4.C)
for a 64-processor system. Your job is to complete the following table (Table M4.4-1) for
him.

Use the same assumptions for the interconnection network, cache states, home directory states,
and protocol messages as Handout #12. However, R(dir) (if dir≠ ε) now means that there is
only one processor sharing the cache data (global bit is unset), and R(all) means the global bit is
set.

Use k to represent the site that issued the received message. For Tr(dir) and Tw(id) states, use j
to represent the site that issued the original protocol request (ShReq/ExReq).

No. Current State Message
Received Next State Action

1 R(dir) & (dir = ε) ShReq R({k}) ShRep->k

2 R(dir) & (dir = ε) ExReq W(k) ExRep->k

3 R(dir) & (dir ≠ ε) ShReq

4 R(all) ShReq

5 R(dir) & (dir ≠ ε) ExReq

6 R(all) ExReq

7 W(id) ShReq Tw(id) WbReq->id

8 Tr(dir) & (id ∈ dir) InvRep Tr(dir - {id}) nothing

9 Tr(dir) & (dir = {k}) InvRep W(j) ExRep->j

10 Tw(id) FlushRep

Table M4.4-1: Partial List of Home Directory State Transitions

Page 8 of 29

Last updated:
2/10/2006 4:35 PM

Problem M4.5: Tracing the Directory-based Protocol

For the problem we will be using the following sequences of instructions. These are small
programs, each executed on a different processor, each with its own cache and register set. In the
following R is a register and X is a memory location. Each instruction has been named (e.g., B3)
to make it easy to write answers.

Assume data in location X is initially 0.

Processor A Processor B Processor C
A1: ST X, 1 B1: R := LD X C1: ST X, 6
A2: R := LD X B2: R := ADD R, 1 C2: R := LD X
A3: R := ADD R, R B3: ST X, R C3: R := ADD R, R
A4: ST X, R B4: R:= LD X C4: ST X, R

B5: R := ADD R, R
B6: ST X, R

These questions relate to the directory-based protocol in Handout #12 (as well as Lecture 18).
Unless specified otherwise, assume all caches are initially empty and no voluntary rules are
used.

Problem M4.5.A

Suppose we execute Program A, followed by Program B, followed by Program C and all caches
are initially empty. Write down the sequence of messages that will be generated. We have
omitted ADD instructions because they cannot generate any messages. EO indicates the global
execution order.

Processor A Processor B Processor C
Ins EO Messages Ins EO Messages Ins EO Messages

A1 1 ExReq; ExRep B1 4 C1 8

A2 2 B3 5 C2 9

A4 3 B4 6 C4 10

B6 7

How many messages are generated? ___________________

Page 9 of 29

Last updated:
2/10/2006 4:35 PM

Problem M4.5.B

Is there an execution sequence that will generate even fewer messages? Fill in the EO columns
to indicate the global execution order. Also, fill in the messages.

Processor A Processor B Processor C
Ins EO Messages Ins EO Messages Ins EO Messages

A1 B1 C1

A2 B3 C2

A4 B4 C4

B6

How many messages are generated? ___________________

Problem M4.5.C

Can the number of messages in Problem M4.5.B be decreased by using voluntary rules?
Explain.

Page 10 of 29

Last updated:
2/10/2006 4:35 PM

Problem M4.5.D

What is the execution sequence that generates the most messages? Fill in the global execution
order (EO) and the messages generated. Partial credit will be given for identifying a bad, but not
necessarily the worst sequence.

Processor A Processor B Processor C
Ins EO Messages Ins EO Messages Ins EO Messages

A1 B1 C1

A2 B3 C2

A4 B4 C4

B6

How many messages are generated? ___________________

Problem M4.5.E

Assuming the protocol with voluntary rules, provide a sequence of events that would create a
situation, where one of the processors’ cache is in Pending state, and receives a FlushReq
message.

Problem M4.5.F

Does reducing the number of cache coherence messages generated necessarily improve the time
to execute a program? Explain.

Page 11 of 29

Last updated:
2/10/2006 4:35 PM

Problem M4.6: Directory-base Cache Coherence Update Protocols

In Handout #12, we examined a cache-coherent distributed shared memory system. Ben wants to
convert the directory-based invalidate cache coherence protocol from the handout into an update
protocol. He proposes the following scheme.

Caches are write-through, not write allocate. When a processor wants to write to a memory
location, it sends a WriteReq to the memory, along with the data word that it wants written. The
memory processor updates the memory, and sends an UpdateReq with the new data to each of
the sites caching the block, unless that site is the processor performing the store, in which case it
sends a WriteRep containing the new data.

If the processor performing the store is caching the block being written, it must wait for the reply
from the home site to arrive before storing the new value into its cache. If the processor
performing the store is not caching the block being written, it can proceed after issuing the
WriteReq.

Ben wants his protocol to perform well, and so he also proposes to implement silent drops. When
a cache line needs to be evicted, it is silently evicted and the memory processor is not notified of
this event.

Note that WriteReq and UpdateReq contain data at the word-granularity, and not at the block-
granularity. Also note that in the proposed scheme, memory will always have the most up-to-
date data and the state C-exclusive is no longer used.

As in the lecture, the interconnection network guarantees that message-passing is reliable, and
free from deadlock, livelock, and starvation. Also as in the lecture, message-passing is FIFO.

Each home site keeps a FIFO queue of incoming requests, and processes these in the order
received.

Problem M4.6.A Sequential Consistency

Alyssa claims that Ben’s protocol does not preserve sequential consistency because it allows two
processors to observe stores in different orders. Describe a scenario in which this problem can
occur.

Page 12 of 29

Last updated:
2/10/2006 4:35 PM

Problem M4.6.B State Transitions

Noting that many commercial systems do not guarantee sequential consistency, Ben decides to
implement his protocol anyway. Fill in the following state transition tables (Table M4.6-1 and
Table M4.6-2) for the proposed scheme. (Note: the tables do not contain all the transitions for
the protocol).

No. Current State Event Received Next State Action

1 C-nothing Load C-transient ShReq(id, Home, a)

2 C-nothing Store

3 C-nothing UpdateReq

4 C-shared Load C-shared processor reads cache

5 C-shared Store

6 C-shared UpdateReq

7 C-shared (Silent drop) Nothing

8 C-transient ShRep data Æ cache, processor reads cache

9 C-transient WriteRep

10 C-transient UpdateReq

Table M4.6-1: Cache State Transitions

No. Current State Message
Received

Next State Action

1 R(dir) & id ∉ dir ShReq R(dir + {id}) ShRep(Home, id, a)

2 R(dir) & id ∉ dir WriteReq

3 R(dir) & id ∈ dir ShReq ShRep(Home, id, a)

4 R(dir) & id ∈ dir WriteReq

Table M4.6-2: Home Directory State Transitions

Page 13 of 29

Last updated:
2/10/2006 4:35 PM

Problem M4.6.C UpdateReq

After running a system with this protocol for a long time, Ben finds that the network is flooded
with UpdateReqs. Alyssa says this is a bug in his protocol. What is the problem and how can
you fix it?

Problem M4.6.D FIFO Assumption

As in M4.3, FIFO message passing is a necessary assumption for the correctness of the protocol.
If the network were non-FIFO, it becomes possible for a processor to never see the result of
another processor’s store. Describe a scenario in which this problem can occur.

Page 14 of 29

Last updated:
2/10/2006 4:35 PM

Problem M4.7: Snoopy Cache Coherent Shared Memory

In this problem, we investigate the operation of the snoopy cache coherence protocol in Handout
#13.

The following questions are to help you check your understanding of the coherence protocol.

•	 Explain the differences between CR, CI, and CRI in terms of their purpose, usage, and the
actions that must be taken by memory and by the different caches involved.

•	 Explain why WR is not snooped on the bus.
•	 Explain the I/O coherence problem that CWI helps avoid.

Problem M4.7.A 	 Where in the Memory System is the Current Value

In Table M4.7-1, M4.7-2, and M4.7-3, column 1 indicates the initial state of a certain address X
in a cache. Column 2 indicates whether address X is currently cached in any other cache. (The
“cached” information is known to the cache controller only immediately following a bus
transaction. Thus, the action taken by the cache controller must be independent of this signal, but
state transition could depend on this knowledge.) Column 3 enumerates all the available
operations on address X, either issued by the CPU (read, write), snooped on the bus (CR, CRI,
CI. etc), or initiated by the cache itself (replacement). Some state-operation combinations are
impossible; you should mark them as such. (See the first table for examples). In columns 6, 7,
and 8 (corresponding to this cache, other caches and memory, respectively), check all possible
locations where up-to-date copies of this data block could exist after the operation in
column 3 has taken place and ignore column 4 and 5 for now. Table M4.7-1 has been
completed for you. Make sure the answers in this table make sense to you.

Problem M4.7.B 	 MBus Cache Block State Transition Table

In this problem, we ask you to fill out the state transitions in Column 4 and 5. In column 5,
fill in the resulting state after the operation in column 3 has taken place. In column 4, list the
necessary MBus transactions that are issued by the cache as part of the transition. Remember, the
protocol should be optimized such that data is supplied using CCI whenever possible, and only
the cache that owns a line should issue CCI.

15

Last updated:
2/10/2006 4:35 PM

Problem M4.7.C Adding atomic memory operations to MBus

We have discussed the importance of atomic memory operations for processor synchronization.
In this problem you will be looking at adding support for an atomic fetch-and-increment to the
MBus protocol.

Imagine a dual processor machine with CPUs A and B. Explain the difficulty of CPU A
performing fetch-and-increment(x) when the most recent copy of x is cleanExclusive in CPU B’s
cache. You may wish to illustrate the problem with a short sequence of events at processor A
and B.

Fill in the rest of the table below as before, indicating state, next state, where the block in
question may reside, and the CPU A and MBus transactions that would need to occur atomically
to implement a fetch-and-increment on processor A.

State other
cached

ops actions by this
cache

next
state

this
cache

other
caches

mem

Invalid yes read
write

16

Last updated:
2/10/2006 4:35 PM

initial state other
cached

ops actions by this
cache

final
state

this
cache

other
caches

mem

Invalid no none none I √
CPU read CR CE √ √
CPU write CRI OE √

replace none Impossible
CR none I √ √
CRI none I √
CI none Impossible

WR none Impossible
CWI none I √

Invalid yes none

same
as

above

I √ √
CPU read CS √ √ √
CPU write OE √

replace Impossible
CR I √ √
CRI I √
CI I √

WR I √ √
CWI I √

initial state other
cached

ops actions by this
cache

final
state

this
cache

other
caches

mem

cleanExclusive no none none CE
CPU read
CPU write

replace
CR CS
CRI
CI

WR
CWI

Table M4.7-1

17

Last updated:
2/10/2006 4:35 PM

initial state other
cached

ops actions by this
cache

final
state

this
cache

other
caches

mem

ownedExclusive no none none OE
CPU read
CPU write

replace
CR OS
CRI
CI

WR
CWI

initial state other
cached

ops actions by this
cache

final
state

this
cache

other
caches

mem

cleanShared no none none CS
CPU read
CPU write

replace
CR
CRI
CI

WR
CWI

cleanShared yes none

same
as

above

CPU read
CPU write

replace
CR
CRI
CI

WR
CWI

Table M4.7-2

18

Last updated:
2/10/2006 4:35 PM

initial state other
cached

ops actions by this
cache

final
state

this
cache

other
caches

mem

ownedShared no none none OS
CPU read
CPU write

replace
CR
CRI
CI

WR
CWI

ownedShared yes none

same
as

above

CPU read
CPU write

replace
CR
CRI
CI

WR
CWI

Table M4.7-3

19

Last updated:
2/10/2006 4:35 PM

Problem M4.8: Snoopy Cache Coherent Shared Memory

This problem improves the snoopy cache coherence protocol presented in Handout #13. As a
review of that protocol:

When multiple shared copies of a modified data block exist, one of the caches owns the current copy of the data
block instead of the memory (the owner has the data block in the OS state). When another cache tries to
retrieve the data block from memory, the owner uses cache to cache intervention (CCI) to supply the data
block. CCI provides a faster response relative to memory and reduces the memory bandwidth demands.
However, when multiple shared copies of a clean data block exist, there is no owner and CCI is not used when
another cache tries to retrieve the data block from memory.

To enable the use of CCI when multiple shared copies of a clean data block exist, we introduce a
new cache data block state: Clean owned shared (COS). This state can only be entered from
the clean exclusive (CE) state. The state transition from CE to COS is summarized as follows:

initial state other
cached

ops actions by this
cache

final
state

cleanExclusive (CE) no CR CCI COS

There is no change in cache bus transactions but a slight modification of cache data block states.
Here is a summary of the possible cache data block states (differences from problem set
highlighted in bold):

•	 Invalid (I): Block is not present in the cache.
•	 Clean exclusive (CE): The cached data is consistent with memory, and no other cache has it.

This cache is responsible for supplying this data instead of memory when other caches
request copies of this data.

•	 Owned exclusive (OE): The cached data is different from memory, and no other cache has it.
This cache is responsible for supplying this data instead of memory when other caches
request copies of this data.

•	 Clean shared (CS): The data has not been modified by the corresponding CPU since cached.
Multiple CS copies and at most one OS copy of the same data could exist.

•	 Owned shared (OS): The data is different from memory. Other CS copies of the same data
could exist. This cache is responsible for supplying this data instead of memory when other
caches request copies of this data. (Note, this state can only be entered from the OE state.)

•	 Clean owned shared (COS): The cached data is consistent with memory. Other CS
copies of the same data could exist. This cache is responsible for supplying this data
instead of memory when other caches request copies of this data. (Note, this state can
only be entered from the CE state.)

20

Last updated:
2/10/2006 4:35 PM

Problem M4.8.A

Fill out the state transition table for the new COS state:

initial state other
cached

ops actions by this
cache

final
state

COS yes none none COS
CPU read
CPU write

replace
CR
CRI
CI

WR
CWI

Problem M4.8.B

The COS protocol is not ideal. Complete the following table to show an example sequence of
events in which multiple shared copies of a clean data block (block B) exist, but CCI is not used
when another cache (cache 4) tries to retrieve the data block from memory.

cache transaction
source
for data

state for data block B
cache 1 cache 2 cache 3 cache 4

0. initial state — I I I I
1. cache 1 reads data block B memor

y
CE I I I

2. cache 2 reads data block B CCI COS CS I I
3. cache 3 reads data block B CCI COS CS CS I
4.

5.

Problem M4.8.C

As an alternative protocol, we could eliminate the CE state entirely, and transition directly from I
to COS when the CPU does a read and the data block is not in any other cache. This modified
protocol would provide the same CCI benefits as the original COS protocol, but its performance
would be worse. Explain the advantage of having the CE state. You should not need more
than one sentence.

21

Last updated:
2/10/2006 4:35 PM

Problem M4.9: Snoopy Caches

This part explores multi-level caches in the context of the bus-based snoopy protocol discussed
in Lecture 19 (2005). Real systems usually have at least two levels of cache, smaller, faster L1
cache near the CPU, and the larger but slower L2. The two caches are usually inclusive, that is,
any address in L1 is required to be present in L2. L2 is able to answer every snooper inquiry
immediately but usually operates at 1/2 to 1/4th the speed of CPU-L1 interface. For performance
reasons it is important that snooper steals as little bandwidth as possible from L1, and does not
increase the latency of L2 responses.

Problem M4.9.A

Consider a situation when the L2 cache has a cache line marked Sh, and an ExReq comes on the
bus for this cache line. The snooper asks both L1 and L2 caches to invalidate their copies but
responds OK to the request, even before the invalidations are complete. Suppose the CPU ends
up reading this value in L1 before it is truly discarded. What must the cache and snooper system
do to ensure that sequential consistency is not violated here?

Hint: Consider how much processing can be performed safely on the following sequences after
an invalidation request for x has been received

Ld x; Ld y; Ld x

Ld x; St y; Ld x

Problem M4.9.B

Consider a situation when L2 has a cache line marked Ex and a ShReq comes on the bus for this
cache line. What should the snooper do in this case, and why?

Problem M4.9.C

When an ExReq message is seen by the snooper and there is a Wb message in the C2M queue
waiting to be sent, the snooper replies retry. If the cache line is about to be modified by another
processor, why is it important to first write back the already modified cache line? Does your
answer change if cache lines are restricted to be one word? Explain.

22

Last updated:
2/10/2006 4:35 PM

Problem M4.10: Sequential Consistency, Synchronization, and Relaxed
Memory Models

Cy D. Fect wants to run the following code sequences on processors P1 and P2, which are part of
a two-processor MIPS64 machine. The sequences operate on memory values located at
addresses A, B, C, D, E, F, and G, which are all sequentially located in memory (e.g. B is 8 bytes
after A). Initially, M[A], M[B], M[C], M[D], and M[E] are all 0. M[F] is 1, and M[G] is 2.
For each processor, R1 contains the address A (all of the addresses are located in a shared region
of memory). Also, remember that for a MIPS processor, R0 is hardwired to 0. In the below
sequences, a semicolon is used to indicate the start of a comment.

P1 P2
ADDI R2,R0,#1 ;R2=1
SD R2,0(R1) ;A=R2
LD R3,40(R1) ;R3=F
SD R3,16(R1) ;C=R3
LD R4,8(R1) ;R4=B
SD R4,24(R1) ;D=R4

ADDI R2,R0,#1 ;R2=1
SD R2,8(R1) ;B=R2
LD R3,48(R1) ;R3=G
SD R3,16(R1) ;C=R3
LD R4,0(R1) ;R4=A
SD R4,32(R1) ;E=R4

Problem M4.10.A Sequential Consistency

If Cy’s code runs on a system with a sequentially consistent memory model, what are the
possible results of execution? List all possible results in terms of values of M[C], M[D], and
M[E] (since the values in the other locations will be the same across all possible execution
paths).

Problem M4.10.B Generalized Synchronization

Assume now that Cy’s code is run on a system that does not guarantee sequential consistency,
but that memory dependencies are not violated for the accesses made by any individual
processor. The system has a MEMBAR memory barrier instruction that guarantees the effects of
all memory instructions executed before the MEMBAR will be made globally visible before any
memory instruction after the MEMBAR is executed.

Add MEMBAR instructions to Cy’s code sequences to give the same results as if the system were
sequentially consistent. Use the minimum number of MEMBAR instructions.

23

Last updated:
2/10/2006 4:35 PM

Problem M4.10.C 	 Total Store Ordering

Now consider a machine that uses finer-grain memory barrier instructions. The following
instructions are available:

•	 MEMBARrr guarantees that all read operations initiated before the MEMBARrr will be seen
before any read operation initiated after it.

•	 MEMBARrw guarantees that all read operations initiated before the MEMBARrw will be seen
before any write operation initiated after it.

•	 MEMBARwr guarantees that all write operations initiated before the MEMBARwr will be
seen before any read operation initiated after it.

•	 MEMBARww guarantees that all write operations initiated before the MEMBARww will be
seen before any write operation initiated after it.

There is no generalized MEMBAR instruction as in Part B of this problem.

In total store ordering (TSO), a read may complete before a write that is earlier in program order
if the read and write are to different addresses and there are no data dependencies. For a
machine using TSO, insert the minimum number of memory barrier instructions into the code
sequences for P1 and P2 so that sequential consistency is preserved.

Problem M4.10.D 	 Partial Store Ordering

In partial store ordering (PSO), a read or a write may complete before a write that is earlier in
program order if they are to different addresses and there are no data dependencies. For a
machine using PSO, insert the minimum number of memory barrier instructions from Part C into
the code sequences for P1 and P2 so that sequential consistency is preserved.

Problem M4.10.E 	 Weak Ordering

In weak ordering (WO), a read or a write may complete before a read or a write that is earlier in
program order if they are to different addresses and there are no data dependencies. For a
machine using WO, insert the minimum number of memory barrier instructions from Part C into
the code sequences for P1 and P2 so that sequential consistency is preserved.

24

Last updated:
2/10/2006 4:35 PM

Problem M4.10.F Release Consistency

Release consistency (RC) distinguishes between acquire and release synchronization operations.
An acquire must complete before any reads or writes following it in program order, while a read
or a write before a release must complete before the release. However, reads and writes before
an acquire may complete after the acquire, and reads and writes after a release may complete
before the release. Consider the following modified versions of the original code sequences.

P1 P2
ADDI R2,R0,#1 ;R2=1
SD R2,0(R1) ;A=R2
L1:ACQUIRE R2,56(R1);SWAP(R2,H)
BNEZ R2,L1
LD R3,40(R1) ;R3=F
SD R3,16(R1) ;C=R3
RELEASE R0,56(R1);H=0
LD R4,8(R1) ;R4=B
SD R4,24(R1) ;D=R4

ADDI R2,R0,#1 ;R2=1
SD R2,8(R1) ;B=R2
L1:ACQUIRE R2,56(R1);SWAP(R2,H)
BNEZ R2,L1
LD R3,48(R1) ;R3=G
SD R3,16(R1) ;C=R3
RELEASE R0,56(R1);H=0
LD R4,0(R1) ;R4=A
SD R4,32(R1) ;E=R4

In the above sequences, the acquire and release operations modify memory location H, which is
located sequentially after G. The acquire operation performs a read and a write, while the
release operation performs a write. For a machine using RC, insert the minimum number of
memory barrier instructions from Part C into the above code sequences for P1 and P2 so that
sequential consistency is preserved.

25

Last updated:
2/10/2006 4:35 PM

Problem M4.11: Relaxed Memory Models

Consider a system which uses Weak Ordering, meaning that a read or a write may complete
before a read or a write that is earlier in program order if they are to different addresses and there
are no data dependencies.

Our processor has four fine-grained memory barrier instructions, same as in Problem M4.10.
Below is the description of these instructions, copied from the Problem Set.

•	 MEMBARRR guarantees that all read operations initiated before the MEMBARRR will be seen
before any read operation initiated after it.

•	 MEMBARRW guarantees that all read operations initiated before the MEMBARRW will be seen
before any write operation initiated after it.

•	 MEMBARWR guarantees that all write operations initiated before the MEMBARWR will be
seen before any read operation initiated after it.

•	 MEMBARWW guarantees that all write operations initiated before the MEMBARWW will be
seen before any write operation initiated after it.

We will study the interaction between two processes on different processors on such a system:

P1 P2
P1.1: LW R2, 0(R8) P2.1: LW R4, 0(R9)
P1.2: SW R2, 0(R9) P2.2: SW R5, 0(R8)
P1.3: LW R3, 0(R8) P2.3: SW R4, 0(R8)

We begin with following values in registers and memory (same for both processes):

register/memory Contents
R2 0
R3 0
R4 0
R5 8
R8 0x01234567
R9 0x89abcdef

M[R8] 6
M[R9] 7

After both processes have executed, is it possible to have the following machine state? Please
circle the correct answer. If you circle Yes, please provide sequence of instructions that lead to
the desired result (one sequence is sufficient if several exist). If you circle No, please explain
which ordering constraint prevents the result.

26

Last updated:
2/10/2006 4:35 PM

Problem M4.11.A

memory contents
M[R8] 7
M[R9] 6

Yes No

Problem M4.11.B

memory Contents
M[R8] 6
M[R9] 7

Yes No

Problem M4.11.C

Is it possible for M[R8] to hold 0?

Yes No

27

Last updated:
2/10/2006 4:35 PM

Now consider the same program, but with two MEMBAR instructions.

P1 P2
P1.1: LW R2, 0(R8) P2.1: LW R4, 0(R9)
P1.2: SW R2, 0(R9) MEMBARRW

 MEMBARWR P2.2: SW R5, 0(R8)
P1.3: LW R3, 0(R8) P2.3: SW R4, 0(R8)

We want to compare execution of the two programs on our system.

Problem M4.11.D

If both M[R8] and M[R9] contain 6, is it possible for R3 to hold 8?

Without MEMBAR instructions? Yes No

With MEMBAR instructions? Yes No

Problem M4.11.E

If both M[R8] and M[R9] contain 7, is it possible for R3 to hold 6?

Without MEMBAR instructions? Yes No

With MEMBAR instructions? Yes No

28

Last updated:
2/10/2006 4:35 PM

Problem M4.11.F

Is it possible for both M[R8] and M[R9] to hold 8?

Without MEMBAR instructions? Yes No

With MEMBAR instructions? Yes No

Page 29 of 29

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for reliable viewing and printing of business documents. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

