
Joel Emer
November 28, 2005

6.823, L21-1

VLIW/EPIC: Statically Scheduled ILP

Joel Emer

Computer Science & Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Based on the material prepared by

Krste Asanovic and Arvind

Joel Emer
November 28, 2005

6.823, L21-2

Little’s Law

Parallelism = Throughput * Latency

or

L T N ×
=

One Operation

Throughput per Cycle

Latency in Cycles

Joel Emer
November 28, 2005

6.823, L21-3

Example Pipelined ILP Machine

Max Throughput, Six Instructions per Cycle

One Pipeline Stage
Latency

in
Cycles

Two Floating-Point Units,
Four Cycle Latency

Two Integer Units,
Single Cycle Latency

Two Load/Store Units,
Three Cycle Latency

• How much instruction-level parallelism (ILP)

required to keep machine pipelines busy?

T = 6 L =
(2x1 + 2x3 + 2x4) 2 2

= 2 N = 6 × 2 = 61
6 3 3

Joel Emer
November 28, 2005

6.823, L21-4

Superscalar Control Logic Scaling

Issue Width W

Issue Group

Previously
Issued

Instructions
Lifetime L

•	 Each issued instructions must make interlock checks against
W*L instructions, i.e., growth in interlocks ∝ W*(W*L)

•	 For in-order machines, L is related to pipeline latencies
•	 For out-of-order machines, L also includes time spent in

instruction buffers (instruction window or ROB)
•	 As W increases, larger instruction window is needed to find

enough parallelism to keep machine busy => greater L
=> Out-of-order control logic grows faster than W2 (~W3)

6.823, L21-5

Out-of-Order Control Complexity:
MIPS R10000

Control
Logic

[SGI/MIPS
Technologies

Joel Emer
November 28, 2005

Inc., 1995]

6.823, L21-6

Check instruction
dependencies

Superscalar processor

Sequential ISA Bottleneck

for (i=0, i<

Sequential
source code

Superscalar compiler

operations
Schedule

operations

Sequential
machine code

Schedule
execution

Joel Emer
November 28, 2005

a = foo(b);

Find independent

Joel Emer
November 28, 2005

6.823, L21-7

VLIW: Very Long Instruction Word

Two Integer Units,
Single Cycle Latency

Two Load/Store Units,

FP Op 1 FP Op 2Int Op 2 Mem Op 1 Mem Op 2 Int Op 1

Three Cycle Latency Two Floating-Point Units,
Four Cycle Latency

• Multiple operations packed into one instruction
• Each operation slot is for a fixed function
• Constant operation latencies are specified
• Architecture requires guarantee of:

– Parallelism within an instruction => no x-operation RAW check
– No data use before data ready => no data interlocks

Joel Emer
November 28, 2005

6.823, L21-8

VLIW Compiler Responsibilities

The compiler:

• Schedules to maximize parallel execution

• Guarantees intra-instruction parallelism

• Schedules to avoid data hazards (no interlocks)
– Typically separates operations with explicit NOPs

Joel Emer
November 28, 2005

6.823, L21-9

Early VLIW Machines

• FPS AP120B (1976)
– scientific attached array processor
– first commercial wide instruction machine
– hand-coded vector math libraries using software pipelining

and loop unrolling

• Multiflow Trace (1987)

– commercialization of ideas from Fisher’s Yale group including

“trace scheduling”
– available in configurations with 7, 14, or 28

operations/instruction

– 28 operations packed into a 1024-bit instruction word

• Cydrome Cydra-5 (1987)
– 7 operations encoded in 256-bit instruction word
– rotating register file

6.823, L21-10Loop Execution

for (i=0; i<N; i++)

B[i] = A[i] + C;
Int1 M1 M2 FP+

loop:

How many FP ops/cycle?

ldadd r1

fadd

sd

loop: ld f1, 0(r1)

add r1, 8

add r2, 8

Schedule

Joel Emer
November 28, 2005

Int 2 FPx

add r2 bne

1 fadd / 8 cycles = 0.125

fadd f2, f0, f1

sd f2, 0(r2)

bne r1, r3, loop

Compile

6.823, L21-11Loop Unrolling

for (i=0; i<N; i++)

B[i] = A[i] + C;

for (i=0; i<N; i+=4)

{

B[i] = A[i] + C;

B[i+1] = A[i+1] + C;

B[i+2] = A[i+2] + C;

B[i+3] = A[i+3] + C;

}

Unroll inner loop to perform 4
iterations at once

of unrolling factor with final cleanup loop

Joel Emer
November 28, 2005

Need to handle values of N that are not multiples

Joel Emer
November 28, 2005

Scheduling Loop Unrolled Code 6.823, L21-12

Unroll 4 ways
loop: 	ld f1, 0(r1) Int1 Int 2 M1 M2 FP+ FPx

ld f2, 8(r1)

ld f3, 16(r1) loop:

ld f4, 24(r1)

add r1, 32

fadd f5, f0, f1

fadd f6, f0, f2
 Schedule
fadd f7, f0, f3

fadd f8, f0, f4

sd f5, 0(r2)

sd f6, 8(r2)

sd f7, 16(r2)

sd f8, 24(r2)

add r2, 32

bne r1, r3, loop

ld f1
ld f2
ld f3

add r1 ld f4 fadd f5
fadd f6
fadd f7
fadd f8

sd f5
sd f6
sd f7

add r2 bne sd f8

How many FLOPS/cycle?

4 fadds / 11 cycles = 0.36

Joel Emer
November 28, 2005

6.823, L21-13

Software Pipelining
Unroll 4 ways first	 Int1 Int 2 M1 M2 FP+ FPx

loop: 	ld f1, 0(r1)

ld f2, 8(r1)

ld f3, 16(r1)

ld f4, 24(r1)

add r1, 32

fadd f5, f0, f1

fadd f6, f0, f2

fadd f7, f0, f3

fadd f8, f0, f4

sd f5, 0(r2)

sd f6, 8(r2)

sd f7, 16(r2)

add r2, 32

sd f8, -8(r2)

bne r1, r3, loop

How many FLOPS/cycle?

loop:
iterate

prolog

epilog

ld f1
ld f2
ld f3

add r1 ld f4
ld f1 fadd f5
ld f2 fadd f6
ld f3 fadd f7

add r1 ld f4 fadd f8
ld f1 sd f5 fadd f5
ld f2 sd f6 fadd f6

add r2 ld f3 sd f7 fadd f7
add r1 bne ld f4 sd f8 fadd f8

sd f5 fadd f5
sd f6 fadd f6

add r2 sd f7 fadd f7
bne sd f8 fadd f8

sd f5
4 fadds / 4 cycles = 1

6.823, L21-14Software Pipelining
vs. Loop Unrolling

time

performance

time

performance

Loop Unrolled

Software Pipelined

Startup overhead

Wind-down overhead

Loop Iteration

Loop Iteration

costs only once per loop, not once per iteration

Joel Emer
November 28, 2005

Software pipelining pays startup/wind-down

6.823, L21-15

What if there are no loops?

•
in control-flow intensive
irregular code

•
individual basic blocks

Basic block

Joel Emer
November 28, 2005

Branches limit basic block size

Difficult to find ILP in

6.823, L21-16

Trace Scheduling [Fisher,Ellis]

• trace,
that represents most frequent branch
path

•
heuristics to find common branch
paths

•
•

jumping out of trace

Joel Emer
November 28, 2005

Pick string of basic blocks, a

Use profiling feedback or compiler

Schedule whole “trace” at once
Add fixup code to cope with branches

Joel Emer
November 28, 2005

6.823, L21-17

Problems with “Classic” VLIW
• Object-code compatibility

– have to recompile all code for every machine, even for two
machines in same generation

• Object code size
– instruction padding wastes instruction memory/cache
– loop unrolling/software pipelining replicates code

• Scheduling variable latency memory operations

– caches and/or memory bank conflicts impose statically

unpredictable variability

• Knowing branch probabilities
– Profiling requires an significant extra step in build process

• Scheduling for statically unpredictable branches

– optimal schedule varies with branch path

Joel Emer
November 28, 2005

6.823, L21-18

VLIW Instruction Encoding

Group 1 Group 2 Group 3

• Schemes to reduce effect of unused fields

– Compressed format in memory, expand on I-cache refill

» used in Multiflow Trace
» introduces instruction addressing challenge

– Mark parallel groups

» used in TMS320C6x DSPs, Intel IA-64

– Provide a single-op VLIW instruction

» Cydra-5 UniOp instructions

6.823, L21-19Rotating Register Files

Lots of duplicated code in prolog, epilog

Solution: Allocate new set of registers for each loop iteration

ld r1, ()
add r2, r1, #1 ld r1, ()

add r2, r1, #1 ld r1, ()
add r2, r1, #1

ld r1, ()
add r2, r1, #1ld r1, ()
add r2, r1, #1ld r1, ()
add r2, r1, #1

Prolog

Epilog

Loop

Joel Emer
November 28, 2005

Problems: Scheduled loops require lots of registers,

st r2, ()
st r2, ()

st r2, ()

st r2, ()
st r2, ()
st r2, ()

6.823, L21-20Rotating Register File

P0
P1
P2
P3
P4
P5
P6
P7

RRB=3

+R1

current register set.
Usually, split

into rotating and non-rotating registers.

bloop

ld r1, ()

add r3, r2, #1ld r1, ()

add r3, r2, #1ld r1, ()

add r2, r1, #1

Prolog

Epilog

Loop

Loop closing
branch

decrements RRB

Joel Emer
November 28, 2005

Rotating Register Base (RRB) register points to base of
Value added on to logical register

specifier to give physical register number.

dec RRB

dec RRB

dec RRB

dec RRB

st r4, ()

st r4, ()

st r4, ()

6.823, L21-21Rotating Register File
(Previous Loop Example)

bloopld f1, ()

Three cycle load latency
encoded as difference of 3

in register specifier
encoded as difference of 4

in register specifier

Joel Emer
November 28, 2005

sd f9, () fadd f5, f4, ...

number (f4 - f1 = 3)

Four cycle fadd latency

number (f9 – f5 = 4)

ld P9, () fadd P13, P12, sd P17, () bloop

ld P8, () fadd P12, P11, sd P16, () bloop

ld P7, () fadd P11, P10, sd P15, () bloop

ld P6, () fadd P10, P9, sd P14, () bloop

ld P5, () fadd P9, P8, sd P13, () bloop

ld P4, () fadd P8, P7, sd P12, () bloop

ld P3, () fadd P7, P6, sd P11, () bloop

ld P2, () fadd P6, P5, sd P10, () bloop

RRB=8

RRB=7

RRB=6

RRB=5

RRB=4

RRB=3

RRB=2

RRB=1

Joel Emer
November 28, 2005

6.823, L21-22Cydra-5:

Memory Latency Register (MLR)

Problem: Loads have variable latency

Solution: Let software choose desired memory latency

•	 Compiler schedules code for maximum load-use distance
•	 Software sets MLR to latency that matches code schedule
•	 Hardware ensures that loads take exactly MLR cycles to

return values into processor pipeline

– Hardware buffers loads that return early
– Hardware stalls processor if loads return late

Joel Emer
November 28, 2005

6.823, L21-23

Five-minute break to stretch your legs

Joel Emer
November 28, 2005

6.823, L21-24

Intel EPIC IA-64

• EPIC is the style of architecture (cf. CISC, RISC)

– Explicitly Parallel Instruction Computing

• IA-64 is Intel’s chosen ISA (cf. x86, MIPS)
– IA-64 = Intel Architecture 64-bit
– An object-code compatible VLIW

• Itanium (aka Merced) is first implementation
(cf. 8086)

– First customer shipment expected 1997 (actually 2001)
– McKinley, second implementation shipped in 2002

Joel Emer
November 28, 2005

6.823, L21-25

IA-64 Instruction Format

Instruction 2 Instruction 1 Instruction 0 Template

128-bit instruction bundle

• Template bits describe grouping of these
instructions with others in adjacent bundles

• Each group contains instructions that can
execute in parallel

bundle jbundle j-1 bundle j+1 bundle j+2

group i-1 group i group i+1 group i+2

Joel Emer
November 28, 2005

6.823, L21-26

IA-64 Registers

• 128 General Purpose 64-bit Integer Registers

• 128 General Purpose 64/80-bit Floating Point
Registers

• 64 1-bit Predicate Registers

• GPRs rotate to reduce code size for software
pipelined loops

6.823, L21-27IA-64 Predicated Execution

–
–

Inst 1
Inst 2

Inst 3
Inst 4

Inst 5
Inst 6

Inst 7
Inst 8

b0:

b1:

b2:

b3:

if

else

then

Four basic blocks

Inst 1
Inst 2

(
|| (p2) Inst 5
|| (p2) Inst 6

Inst 7
Inst 8

Predication

One basic block

Joel Emer
November 28, 2005

Problem: Mispredicted branches limit ILP
Solution: Eliminate hard to predict branches with predicated execution

Almost all IA-64 instructions can be executed conditionally under predicate
Instruction becomes NOP if predicate register false

br a==b, b2

br b3
p1,p2 <- cmp a==b)
(p1) Inst 3
(p1) Inst 4

Mahlke et al, ISCA95: On average
>50% branches removed

Joel Emer
November 28, 2005

6.823, L21-28

Predicate Software Pipeline Stages

Single VLIW Instruction

(p1) ld r1 (p2) add r3 (p3) st r4 (p1) bloop

Dynamic Execution

(p1) ld r1 (p1) bloop
(p1) ld r1 (p2) add r3 (p1) bloop
(p1) ld r1 (p2) add r3 (p3) st r4 (p1) bloop

(p1) ld r1 (p2) add r3 (p3) st r4 (p1) bloop

(p1) ld r1 (p2) add r3 (p3) st r4 (p1) bloop

(p2) add r3 (p3) st r4 (p1) bloop

(p3) st r4 (p1) bloop

Software pipeline stages turned on by rotating predicate

registers Î Much denser encoding of loops

wdata

6.823, L21-29

Fully Bypassed Datapath

ASrc
IRIR IR

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4
Add

IR

Imm
Ext

rd1

GPRs

rs1
rs2

ws
wd rd2

we

addr

wdata
Memory

we

31

nop

stall

D

E M W

PC for JAL, ...

BSrc

Where does predication fit in?

Joel Emer
November 28, 2005

ALU

rdata
Data

6.823, L21-30IA-64 Speculative Execution

Problem: Branches restrict compiler code motion

Inst 1
Inst 2

Use r1
Inst 3

exception

Inst 1
Inst 2

Use r1
Inst 3

never causes

original home block

exception detected

Solution: Speculative operations that don’t cause exceptions

Joel Emer
November 28, 2005

br a==b, b2

Load r1

Can’t move load above branch
because might cause spurious

Load.s r1

br a==b, b2

Chk.s r1

Speculative load

exception, but sets
“poison” bit on

destination register

Check for exception in

jumps to fixup code if

Particularly useful for scheduling long latency loads early

Joel Emer
November 28, 2005

6.823, L21-31IA-64 Data Speculation

Problem: Possible memory hazards limit code scheduling

Solution: Hardware to check pointer hazards

Inst 1
Inst 2
Store

Use r1
Inst 3

Load r1

Data speculative load
adds address to

address check table

Inst 1
Inst 2
Store

Use r1
Inst 3

Load.a r1

Load.c

Store invalidates any
matching loads in

address check table

Can’t move load above store Check if load invalid (or
because store might be to same missing), jump to fixup

address code if so

Requires associative hardware in address check table

6.823, L21-32

Clustered VLIW
•

local register files and local
functional units

•
interconnect between clusters

•

minimize communication
overhead

•
processors, .e.g., Alpha 21264

•
embedded processors, examples
include TI C6x series DSPs, and
HP Lx processor

Cluster
Interconnect

Local Local

Memory Interconnect

Cache/Memory Banks

Cluster

Joel Emer
November 28, 2005

Divide machine into clusters of

Lower bandwidth/higher latency

Software responsible for
mapping computations to

Exists in some superscalar

Common in commercial

Regfile Regfile

Joel Emer
November 28, 2005

6.823, L21-33

Limits of Static Scheduling

• Unpredictable branches
• Variable memory latency

(unpredictable cache misses)
• Code size explosion
• Compiler complexity

Question:

How applicable are the VLIW-inspired
techniques to traditional RISC/CISC
processor architectures?

Joel Emer
November 28, 2005

6.823, L21-34

Thank you !

