
6.824 2006 Lecture 7: Logging

What's the overall topic?
 Atomic updates of complex data w.r.t. failures.
 Today just a single system, we'll be seeing distributed versions
later.

Why aren't synchronous meta-data updates enough?
 (from last lecture on file system crash recovery)
 They're slow
 Recovery may require scanning the whole disk
 Some operations don't have an obvious single committing write

Example: FFS rename
 editor could use re-name from temp file for careful update
 echo a > d1/f1
 echo b > d2/f2
 mv d2/f2 d1/f1
 need to update two directories, stored in two blocks on disk.
 remove then add? add then remove?
 probably want add then remove
 what if a crash?
 what does fsck do?
 it knows something is wrong, since link count is 1, but two links.
 can't roll back -- which one to delete?
 has to just increase the link count.
 this is *not* a legal result of rename!
 but at least we haven't lost the file.
 so FFS is slow *and* it doesn't get semantics right.

You can push tree update one step farther.
 Prepare a new copy of the entire affected sub-tree.
 Replace old subtree in one final write.
 Very expensive if done in the obvious way.
 But you can share structure between old and new tree.
 Only need new storage between change points and sub-tree root.
 (NetApp WAFL does this and more.)
 This approach only works for tree data structures.
 and doesn't support concurrent operations very well

What are the reasons to use logging?
 atomic commit of compound operations. w.r.t. crashes.
 fast recovery (unlike fsck).
 well-defined post-recovery state: serial prefix of operations.
 as if synchronous and crash had occured a bit earlier
 can be applied to almost any existing data structure
 e.g. database tables, free lists
 representation is compact on a disk, so very fast to append
 useful to coordinate updates to distributed data structures
 let's all do this operation
 oops, someone didn't say "yes"
 how to back out or complete?

Transactions
 The main point of a log is to make complex operations atomic.
 I.e. operations that involve many individual writes.
 You want all writes or none, even if a crash in the middle.

Cite as: Robert Morris, course materials for 6.824 Distributed Computer Systems Engineering,
Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of
Technology. Downloaded on [DD Month YYYY].

 A "transaction" is a multi-write operation that should be atomic.
 The logging system needs to know which sets of writes form a
transaction.
 re-organize code to mark start/end of group of atomic operations
 create()
 begin_transaction
 update free list
 update i-node
 update directory entry
 end_transaction
 app sends writes to the logging system
 there may be multiple concurrent transactions
 e.g. if two processes are making system calls

Terminology
 in-memory data cache
 on-disk data
 in-memory log
 on-disk log
 dirty vs clean
 sync write vs async

naive re-do log
 keep a "log" of updates
 B TID [begin]
 W TID B# new-data [write]
 E TID [end == commit]
 Example:
 B T1
 W T1 B1 25
 E T1
 B T2
 W T2 B1 30
 B T3
 W T3 B2 99
 W T3 B3 50
 E T3
 for now, log lives on its own infinite disk
 note we include record from uncommitted xactions in the log
 records from concurrent xactions may be inter-mingled
 we can write dirty in-memory data blocks to disk any time we want
 recovery
 1. discard all on-disk data
 2. scan whole log and remember all Committed TIDs
 3. scan whole log, ignore non-committed TIDs, replay the writes
 why can't we use any of on-disk data's contents during recovery?
 don't know if a block is from an uncommitted xaction
 i.e. was written to disk before commit
 the *real* data is in the log!
 the on-disk data structure is just a cache for speed
 since it's hard to *find* things in a log
 so what have we achieved?
 atomic update of complex data structures: gets rename() right
 recoverable
 operations are fast
 problems:
 we have to store the whole log forever

Cite as: Robert Morris, course materials for 6.824 Distributed Computer Systems Engineering,
Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of
Technology. Downloaded on [DD Month YYYY].

 recovery has to replay from the beginning of time

re-do with checkpoint
 most logs work like this, e.g. FSD
 allows much faster recovery: can use on-disk data
 write-ahead rule
 delay flushing dirty blocks from in-memory data cache
 until corresponding commit record is on disk
 so keep updates of uncommitted xactions in in-memory data cache (not
disk)
 so no un-committed data on disk.
 but disk may be missing some committed data
 recovery needs to replay committed data from the log
 how can we avoid re-playing the whole log on recovery?
 recovery needs to know a point in log at which it can start
 a "checkpoint", pointer into log, stored on disk
 how to ensure recovery can ignore everything before the checkpoint?
 checkpoint rule:
 all data writes before check point must be stable on disk
 checkpoint may not advance beyond first uncommitted Begin
 in background, flush a bunch of early writes, update checkpoint ptr
 three log regions:
 data guaranteed on disk
 (checkpoint)
 data might be on disk
 (log write point)
 data cannot be on disk
 (end of in-memory log)
 on recovery, re-play commited updates from checkpoint onward
 it's ok if we flush but crash before updating checkpoint pointer
 we will re-write exactly the same data during recovery
 can free log space before checkpoint!

problem:
 uncommitted transactions use space in in-memory data cache
 a problem for long-running transactions
 (not a problem for file systems)

un-do/re-do with checkpoint
 suppose we want to write uncommitted data to disk?
 need to be able to un-do them in recovery
 so include old value in each log record
 W TID B# old-data new-data
 now we can write data from in-memory data cache to disk
 after log entry is on disk
 no need to wait for the End to be on disk
 so we can free in-memory data cache blocks of uncommitted
transactions
 recovery:
 for each block mentioned in the log
 find the last xaction that wrote that block
 if committed: re-do
 if not committed: un-do
 two pointers stored on disk: checkpoint and tail
 checkpoint:
 all in-memory data cache entries flushed up to this point
 no need to re-do before this point

Cite as: Robert Morris, course materials for 6.824 Distributed Computer Systems Engineering,
Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of
Technology. Downloaded on [DD Month YYYY].

 but may need to un-do before this point
 tail:
 start of first uncommitted transaction
 no need to un-do before this point
 so can free before this point
 it's ok if we crash just before updating the tail pointer itself
 we would have advanced it over committed transaction(s)
 so we will re-do them, no problem
 what if there's an un-do record for block never written to disk?
 it's ok: un-do will re-write same value that's already there
 what if
 B T1
 W T1 B1 old=10 new=20
 B T2
 W T2 B1 old=20 new=30
 crash
 The right answer is B1 = 10, since neither committed
 But it looks like we'll un-do to 20
 What went wrong? How to fix it?

careful disk writing
 log usually stored in a dedicated known area of the disk
 so it's easy to find after a reboot
 where's the start?
 checkpoint, a pointer in a known disk sector
 where's the end?
 hard if crash interrupted log append
 append records in order
 include unique ascending sequence # in each record
 also a checksum for multi-sector records (maybe in End?)
 recovery must search forward for highest sequential #
 i'm assuming disk sector writes are atomic, and "work correctly"
 see FSD paper for better handling of disk failures

why is logging fast?
 group commit -- batched log writes.
 could delay flushing log -- may lose committed transactions
 but at least you have a prefix.
 single seek to implement a transaction.
 maybe less if no intervening disk activity, or group commit
 write-behind of data allows batched / scheduled.
 one data block may reflect many transactions.
 i.e. create many files in a directory.
 don't have to be so careful since the log is the real information

Cite as: Robert Morris, course materials for 6.824 Distributed Computer Systems Engineering,
Spring 2006. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of
Technology. Downloaded on [DD Month YYYY].

