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6.825 Techniques in Artificial Intelligence 

Resolution Theorem Proving: 
First Order Logic 

Resolution with variables 
Clausal form 

We’ve been doing first-order logic and thinking about how to do proofs. Last time 
we looked at how to do resolution in the propositional case, and we looked at 
how to do unification -- that is, essentially matching of terms, figuring out 
which variables you have to match up with which other variables or functions 
or constants in order to get two terms to match up and look the same. And so 
why do unification? Because it gives us a tool for doing resolution in the first-
order case. 
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Resolution with Variables 

α v φ [rename] 

¬ψ v β [rename] 

(α v β)θ 

MGU(φ,ψ) = θ 

Here’s the rule for first-order resolution. 
It says if you have a formula alpha or phi and another formula not psi or beta, and 

you can unify phi and psi with unifier theta, then you're allowed to conclude 
alpha or beta with the substitution theta applied to it. 
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Resolution with Variables 

α v φ [rename] 

¬ψ v β [rename] 

(α v β)θ 

MGU(φ,ψ) = θ 

P(x) v Q(x,y) 
¬ P(A) v R(B,z) 

θ = {x/A} 

Let’s look at an example. Let's say we have P(x) or Q(x,y) and we also have not 
P(A) or R(B,x). What are we going to be able to resolve here?  P(x) will be phi, 
Q(x,y) will be alpha, P(A) will be psi and R(B,x) will be beta. The unifier will 
be {x/A}. 
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Resolution with Variables 

α v φ [rename] 

¬ψ v β [rename] 

(α v β)θ 

MGU(φ,ψ) = θ 

P(x) v Q(x,y) 
¬ P(A) v R(B,z) 

(Q(x,y) v R(B,z))θ 

θ = {x/A} 

So, we get rid of the P literals, and end up with Q(x,y) v R(B,z), but then we have to 
apply our substitution to the result. 
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Resolution with Variables 

α v φ [rename] 

¬ψ v β [rename] 

(α v β)θ 

MGU(φ,ψ) = θ 

P(x) v Q(x,y) 
¬ P(A) v R(B,z) 

(Q(x,y) v R(B,z))θ 

Q(A,y) v R(B,z) 

θ = {x/A} 

Finally, we end up with Q(A,y) or R(B,z). 
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Resolution with Variables 

α v φ [rename] 

¬ψ v β [rename] 

(α v β)θ 

MGU(φ,ψ) = θ 

P(x) v Q(x,y) 
¬ P(A) v R(B,z) 

(Q(x,y) v R(B,z))θ 

Q(A,y) v R(B,z) 

θ = {x/A} 

P(x) v Q(x,y) 

¬ P(A) v R(B,x) 

Now let's explore what happens if we have X's in the other formula. So what if we 
replaced the z in the second sentence by an x. 
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Resolution with Variables 

α v φ [rename] 

¬ψ v β [rename] 

(α v β)θ 

MGU(φ,ψ) = θ 

P(x) v Q(x,y) 
¬ P(A) v R(B,z) 

(Q(x,y) v R(B,z))θ 

Q(A,y) v R(B,z) 

θ = {x/A} 

∀ xy. P(x) v Q(x,y) 

∀ x. ¬ P(A) v R(B,x) 

Scope of var is local to a clause. 
Use renaming to keep vars distinctAll vars implicitly 

univ. quantified 

∀ xy. 

∀ z. 

The x’s in the two sentences are actually different. There is an implicit universal 
quantifier on the outside of each of these sentences (we’ll see exactly how we 
get sentences ready for resolution in the next few slides). So, in order to avoid 
being confused by the fact that these two variables named x need not refer to the 
same thing, we will “rename them apart”. 
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Resolution with Variables 

α v φ [rename] 

¬ψ v β [rename] 

(α v β)θ 

MGU(φ,ψ) = θ 

P(x) v Q(x,y) 
¬ P(A) v R(B,z) 

(Q(x,y) v R(B,z))θ 

Q(A,y) v R(B,z) 

θ = {x/A} 

∀ xy. P(x) v Q(x,y) 

∀ x. ¬ P(A) v R(B,x) 

Scope of var is local to a clause. 
Use renaming to keep vars distinct 

∀ x1y.  P(x1) v Q(x1,y) 

∀ x2. ¬ P(A) v R(B,x2) 

All vars implicitly 
univ. quantified 

∀ xy. 

∀ z. 

So that means that before you try to do a resolution step, you’re really supposed to 
rename the variables in the two sentences so that they don’t share any variables 
in common. 

You won't usually do this that explicitly on your paper, but if you were going to 
implement this, or if you find yourself with the same variable in both sentences 
and it's getting confusing, then you should rename the sentences apart. 
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Resolution with Variables 

α v φ [rename] 

¬ψ v β [rename] 

(α v β)θ 

MGU(φ,ψ) = θ 

P(x) v Q(x,y) 
¬ P(A) v R(B,z) 

(Q(x,y) v R(B,z))θ 

Q(A,y) v R(B,z) 

θ = {x/A} 

∀ xy. P(x) v Q(x,y) 

∀ x. ¬ P(A) v R(B,x) 

Scope of var is local to a clause. 
Use renaming to keep vars distinct 

∀ x1y.  P(x1) v Q(x1,y) 

∀ x2. ¬ P(A) v R(B,x2) 

(Q(x1,y) v R(B,x2))θ 

Q(A,y) v R(B,x2) 

θ = {x1/A} 

All vars implicitly 
univ. quantified 

∀ xy. 

∀ z. 

The easiest thing to do is to just go through and give every variable a new name. 
It's OK to do that. You just have to do it consistently for each clause. So you 
could rename to P of X1 or Q of X1Y1, and you can name  this one not P of A 
or R of BX2. And then you could apply the resolution rule and you don't get 
into any trouble. 
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Resolution 

Input are sentences in conjunctive normal form with 
no apparent quantifiers (implicit universal 
quantifiers). 

I introduced the resolution rule in detail so that we can see what we're trying to do, 
The resolution rule takes sentences in conjunctive normal form with apparently 
no quantifiers, right?  The rule doesn't say anything about quantifiers. I told 
you that clauses have kind of an implicit quantifier in them. But now we've 
been looking at languages that have quantifiers. 
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Resolution 

Input are sentences in conjunctive normal form with 
no apparent quantifiers (implicit universal 
quantifiers). 

How do we go from the full range of sentences in 
FOL, with the full range of quantifiers, to sentences 
that enable us to use resolution as our single 
inference rule? 

So the question is: how do we go from sentences with the whole rich set of 
quantifiers into a form that lets us use resolution?  Because it's going to turn out 
that even in first-order logic, resolution is a complete proof procedure all by 
itself. We're not going to need any more inference rules. 
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Resolution 

Input are sentences in conjunctive normal form with 
no apparent quantifiers (implicit universal 
quantifiers). 

How do we go from the full range of sentences in 
FOL, with the full range of quantifiers, to sentences 
that enable us to use resolution as our single 
inference rule? 

We will convert the input sentences into a new 
normal form called clausal form. 

So what we're going to do is introduce a normal form that's kind of like conjunctive 
normal form, only it deals with quantifiers, too. It's called clausal form. Or, 
sometimes, prenex normal form. 
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Converting to Clausal Form 

Rather than give you a definition, I'm going to teach you a procedure to convert any 
sentence in first-order logic into clausal form. And we'll do a bunch of 
examples as we go through the procedure, just so that you know how it goes. 
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Converting to Clausal Form 
1. Eliminate →, ↔ 

α → β ¬α v β 

The first step you guys know very well is to eliminate implications. So you know 
how to do that. Anywhere you see a A right arrow B, you just change it into 
not A or B. 
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Converting to Clausal Form 
1. Eliminate →, ↔ 

α → β ¬α v β 
2. Drive in ¬ 

¬(α v β) ¬α Æ ¬β 
¬(α Æ β) ¬α v ¬β 

¬¬α 
¬∃x. P(x) ∀x. ¬ P(x) 
¬∀x. P(x) ∃x. ¬ P(x) 

α 

The next thing you do is to drive in negation. And you already basically know how 
to do that. We have deMorgan’s laws to deal with conjunction and disjunction, 
and we can eliminate double negations. 

As a kind of extension of deMorgan’s laws, we also have that not exists x P(x) turns 
into forall x not P(x). And that not forall x P(x) turns into exists x such that not 
P(x). 
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Converting to Clausal Form 
1. Eliminate →, ↔ 

α → β ¬α v β 
2. Drive in ¬ 

¬(α v β) ¬α Æ ¬β 
¬(α Æ β) ¬α v ¬β 

¬¬α 
¬∃x. P(x) ∀x. ¬ P(x) 
¬∀x. P(x) ∃x. ¬ P(x) 

3. Rename variables apart 
∀x. ∃y. (P(x) → ∀x. Q(x,y)) 

∀x1. ∃y2. (P(x1) → ∀x3.Q(x3,y2)) 

α 

The next step is to rename variables apart.  The idea here is that if every quantifier 
in your sentence should be over a different variable. So, if you had two 
different quantifications over x, you should rename one of them to use a 
different variable (which doesn’t change the semantics at all). 

In this example, we have two quantifications involving the variable x. It’s 
especially confusing in this case, because they’re nested. The rules are like 
those for a programming language: a variable is captured by the enclosing 
quantifier. So the x in Q(x,y) is really a different variable from the x in P(x). 
To make this distinction clear, and to automate the downstream processing into 
clausal form, we’ll just rename each of the variables. 



17

Lecture 8 • 17 

Converting to Clausal Form, II 

4. Skolemize 

Now, here's the step that some people find confusing. The name is already a good 
one. Step four is to skolemize, named after some logician named Skolem. 
Imagine that you have a sentence  that looks like: there exists an X such that P 
of X. The goal here is to somehow arrive at a representation that doesn't have 
any quantifiers in it. Now, if we only had one kind of quantifier, it would be 
easy because we could just mention variables and all the variables would be 
implicitly quantified by the kind of quantifier that we have. But because we 
have two quantifiers, if we dropped all the quantifiers off, there's a mess, 
because you don't know which kind of quantification is supposed to apply to 
which variable. 
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Converting to Clausal Form, II 

4. Skolemize 
• Substitute brand new name for each existentially quantified 

variable 

• ∃ x. P(x) ⇒ P(Fred) 

So, the Skolem insight is  that when you have an existential quantification like this, 
you're saying there is such a thing as a unicorn, let's say that P is a unicorn. 
There exists a thing such that it's a unicorn. You can just say, all right, well, if 
there is one, let's call it Fred. That's it. That's what Skolemization is. So 
instead of writing exists an X such that P of X, you say P of Fred. The trick is 
that it absolutely must be a new name. It can't be  any other name of any other 
thing that you know about. If you're in the process of inferring things about 
John and Mary, then it's not good to say, oh, there's a unicorn and it's John --
because that's kind of adding some information to the picture. 

So to skolemize, in the simple case, means substitute brand-new name for each 
existentially quantified variable. 
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Converting to Clausal Form, II 

4. Skolemize 
• Substitute brand new name for each existentially quantified 

variable 

• ∃ x. P(x) ⇒ P(Fred) 
• ∃ x. P(x,y) ⇒ P(X11, Y13) 

For example, if I have exists XY such that P of XY, then it's going to have to turn 
into P of X11, Y13. So if you have two different variables here, they have to 
be given different names. 
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Converting to Clausal Form, II 

4. Skolemize 
• Substitute brand new name for each existentially quantified 

variable 

• ∃ x. P(x) ⇒ P(Fred) 
• ∃ x. P(x,y) ⇒ P(X11, Y13) 
• ∃ x. P(x) Æ Q(x) ⇒ P(Blue) Æ Q(Blue) 

But the names also have to persist so that if you have exists an X such that P of X 
and Q of X, then if you skolemize that expression you should get P of Blue and 
Q of Blue. You make up a name and you put it in there, but every occurrence 
of this variable has to get mapped into that same unique name. 
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Converting to Clausal Form, II 

4. Skolemize 
• Substitute brand new name for each existentially quantified 

variable 

• ∃ x. P(x) ⇒ P(Fred) 
• ∃ x. P(x,y) ⇒ P(X11, Y13) 
• ∃ x. P(x) Æ Q(x) ⇒ P(Blue) Æ Q(Blue) 
• ∃ y. ∀ x. Loves(x,y) 
• ∀ x. ∃ y. Loves(x,y) 

All right. If that's all we had to do it wouldn't be too bad. But there's one more 
case. 

We can illustrate it by looking at these two interpretations of “Everyone loves 
someone”. 
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Converting to Clausal Form, II 

4. Skolemize 
• Substitute brand new name for each existentially quantified 

variable 
• Substitute a new function of all universally quantified variables 

in enclosing scopes for each existentially quantified variable. 
• ∃ x. P(x) ⇒ P(Fred) 
• ∃ x. P(x,y) ⇒ P(X11, Y13) 
• ∃ x. P(x) Æ Q(x) ⇒ P(Blue) Æ Q(Blue) 
• ∃ y. ∀ x. Loves(x,y) ⇒ ∀  x. Loves(x, Englebert) 
• ∀ x. ∃ y. Loves(x,y) 

In the first case, there is a single y that everyone loves. So we do ordinary 
skolemization and decide to call that person Englebert. 

In the second case, there is a different y, potentially, for each x. So, if we were just 
to substitute in a single constant name for y, we’d lose that information. We’d 
get the same result as above, which would be wrong. 

So, when you are skolemizing an existential variable, you have to look at the other 
quantifiers that contain the one you’re skolemizing, and instead of substituting 
in a new constant, you substitute in a brand new function symbol, applied to any 
variables that are universally quantified in an outer scope. 
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Converting to Clausal Form, II 

4. Skolemize 
• Substitute brand new name for each existentially quantified 

variable 
• Substitute a new function of all universally quantified variables 

in enclosing scopes for each existentially quantified variable. 
• ∃ x. P(x) ⇒ P(Fred) 
• ∃ x. P(x,y) ⇒ P(X11, Y13) 
• ∃ x. P(x) Æ Q(x) ⇒ P(Blue) Æ Q(Blue) 
• ∃ y. ∀ x. Loves(x,y) ⇒ ∀  x. Loves(x, Englebert) 
• ∀ x. ∃ y. Loves(x,y) ⇒ ∀  x. Loves(x, Beloved(x)) 

In this case, what that means is that you substitute in some function of x, for y. 
Let’s call it Beloved of x. Now it’s clear that the person who is loved by x 
depends on the particular x you’re talking about. 
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Converting to Clausal Form, II 

4. Skolemize 
• Substitute brand new name for each existentially quantified 

variable 
• Substitute a new function of all universally quantified variables 

in enclosing scopes for each existentially quantified variable. 
• ∃ x. P(x) ⇒ P(Fred) 
• ∃ x. P(x,y) ⇒ P(X11, Y13) 
• ∃ x. P(x) Æ Q(x) ⇒ P(Blue) Æ Q(Blue) 
• ∃ y. ∀ x. Loves(x,y) ⇒ ∀  x. Loves(x, Englebert) 
• ∀ x. ∃ y. Loves(x,y) ⇒ ∀  x. Loves(x, Beloved(x)) 

5. Drop universal quantifiers 

Now we can drop the universal quantifiers because we just replaced all the 
existential quantifiers with these skolem constants or functions and so now 
there's only one kind of quantifier left, so we can just drop them. 
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Converting to Clausal Form, II 

4. Skolemize 
• Substitute brand new name for each existentially quantified 

variable 
• Substitute a new function of all universally quantified variables 

in enclosing scopes for each existentially quantified variable. 
• ∃ x. P(x) ⇒ P(Fred) 
• ∃ x. P(x,y) ⇒ P(X11, Y13) 
• ∃ x. P(x) Æ Q(x) ⇒ P(Blue) Æ Q(Blue) 
• ∃ y. ∀ x. Loves(x,y) ⇒ ∀  x. Loves(x, Englebert) 
• ∀ x. ∃ y. Loves(x,y) ⇒ ∀  x. Loves(x, Beloved(x)) 

5. Drop universal quantifiers 
6. Convert to CNF 

And then we convert to conjunctive normal form. At this point, converting to 
conjunctive normal form just means multiplying out the and's and the or's, 
because we already eliminated the arrows and pushed in the negations. 
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Converting to Clausal Form, II 

4. Skolemize 
• Substitute brand new name for each existentially quantified 

variable 
• Substitute a new function of all universally quantified variables 

in enclosing scopes for each existentially quantified variable. 
• ∃ x. P(x) ⇒ P(Fred) 
• ∃ x. P(x,y) ⇒ P(X11, Y13) 
• ∃ x. P(x) Æ Q(x) ⇒ P(Blue) Æ Q(Blue) 
• ∃ y. ∀ x. Loves(x,y) ⇒ ∀  x. Loves(x, Englebert) 
• ∀ x. ∃ y. Loves(x,y) ⇒ ∀  x. Loves(x, Beloved(x)) 

5. Drop universal quantifiers 
6. Convert to CNF 
7. Rename the variables in each clause 

– ∀ x. P(x) ÆQ(x) ⇒∀ y. P(y) Æ∀ z. Q(z) 

Finally, we can rename the variables in each clause. It’s okay to do that because 
forall x P(x) and Q(x) is equivalent to forall y P(y) and forall z P(z). In fact, you 
don’t really need to do this step, because we’re assuming that you’re always 
going to rename the variables before you do a resolution step. 



27

Lecture 8 • 27 

Example: Converting to clausal form 

So, let’s do an example from the book, starting with English sentences, writing them 
down in first-order logic, converting to clausal form, and then finally doing a 
resolution proof. 
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Example: Converting to clausal form 

∃ x. D(x) Æ O(J,x) 

a. John owns a dog 

John owns a dog. We can write that in first-order logic as “there exists an x such 
that D(x) and O(J, x)”. So, we’re letting D stand for is-a-dog and O stand for 
owns and J stand for John. 
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Example: Converting to clausal form 

D(Fido) Æ O(J, Fido) 

∃ x. D(x) Æ O(J,x) 
a. John owns a dog 

Okay. To convert this to clausal form, we can start at step 4, skolemization, 
because the previous three steps are unnecessary for this sentence. Since we just 
have an existential quantifier over x, without any enclosing universal 
quantifiers, we can simply pick a new name and substitute it in for x. Let’s call 
x “fido”. This will give us two clauses with no variables, and we’re done. 
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Example: Converting to clausal form 

D(Fido) Æ O(J, Fido) 

∃ x. D(x) Æ O(J,x) 
a. John owns a dog 

b. Anyone who owns a dog is a 
lover-of-animals 

∀ x. (∃ y. D(y) Æ O(x,y)) → L(x) 

Anyone who owns a dog is a lover of animals.  We can write that in FOL as “For all 
x, if there exists a y such that D(y) and O(x,y), then L(x).” We’ve added a new 
predicate symbol L to stand for “is a lover of animals”. 
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Example: Converting to clausal form 

D(Fido) Æ O(J, Fido) 

∃ x. D(x) Æ O(J,x) 
a. John owns a dog 

b. Anyone who owns a dog is a 
lover-of-animals 

∀ x. (∃ y. D(y) Æ O(x,y)) → L(x) 

∀ x. (¬∃ y. (D(y) Æ O(x,y)) v L(x) 

First, we get rid of the arrow. Note that the parentheses are such that the existential 
quantifier is part of the antecedent, but the universal quantifier is not. 
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Example: Converting to clausal form 

D(Fido) Æ O(J, Fido) 

∃ x. D(x) Æ O(J,x) 
a. John owns a dog 

b. Anyone who owns a dog is a 
lover-of-animals 

∀ x. (∃ y. D(y) Æ O(x,y)) → L(x) 

∀ x. (¬∃ y. (D(y) Æ O(x,y)) v L(x) 

∀ x. ∀ y. ¬ D(y) v ¬ O(x,y) v L(x) 

∀ x. ∀ y. ¬(D(y) Æ O(x,y)) v L(x) 

Next, we drive in the negations. We’ll do it in two steps. 
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Example: Converting to clausal form 

D(Fido) Æ O(J, Fido) 

∃ x. D(x) Æ O(J,x) 
a. John owns a dog 

b. Anyone who owns a dog is a 
lover-of-animals 
∀ x. (∃ y. D(y) Æ O(x,y)) → L(x) 

∀ x. (¬∃ y. (D(y) Æ O(x,y)) v L(x) 

∀ x. ∀ y. ¬ D(y) v ¬ O(x,y) v L(x) 

∀ x. ∀ y. ¬(D(y) Æ O(x,y)) v L(x) 

¬ D(y) v ¬ O(x,y) v L(x) 

There’s no skolemization to do, since there aren’t any existential quantifiers. So, 
we can just drop the universal quantifiers, and we’re left with a single clause. 
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Example: Converting to clausal form 

D(Fido) Æ O(J, Fido) 

∃ x. D(x) Æ O(J,x) 
a. John owns a dog 

∀ x. ∀ y. ¬ D(y) v ¬ O(x,y) v L(x) 

∀ x. ∀ y. ¬(D(y) Æ O(x,y)) v L(x) 

¬ D(y) v ¬ O(x,y) v L(x) 

∀ x. (¬∃ y. (D(y) Æ O(x,y)) v L(x) 

∀ x. (∃ y. D(y) Æ O(x,y)) → L(x) 

b. Anyone who owns a dog is a 
lover-of-animals 

∀ x. L(x) → (∀ y. A(y) → ¬ K(x,y)) 

c. Lovers-of-animals do not kill 
animals 

Lovers of animals do not kill animals. We can write that in FOL as “For all x, if 
L(x) then for all y, A(y) implies not K(x,y)”. We’ve added the predicate symbol 
A to stand for “is an animal” and the predicate symbol K to stand for x kills y. 
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Example: Converting to clausal form 

D(Fido) Æ O(J, Fido) 

∃ x. D(x) Æ O(J,x) 
a. John owns a dog 

∀ x. ∀ y. ¬ D(y) v ¬ O(x,y) v L(x) 

∀ x. ∀ y. ¬(D(y) Æ O(x,y)) v L(x) 

¬ D(y) v ¬ O(x,y) v L(x) 

∀ x. (¬∃ y. (D(y) Æ O(x,y)) v L(x) 

∀ x. (∃ y. D(y) Æ O(x,y)) → L(x) 

b. Anyone who owns a dog is a 
lover-of-animals 

∀ x. ¬ L(x) v (∀ y. ¬ A(y) v ¬ K(x,y)) 

∀ x. ¬ L(x) v (∀ y. A(y) → ¬ K(x,y)) 

∀ x. L(x) → (∀ y. A(y) → ¬ K(x,y)) 

c. Lovers-of-animals do not kill 
animals 

First, we get rid of the arrows, in two steps. 



36

Lecture 8 • 36 

Example: Converting to clausal form 

D(Fido) Æ O(J, Fido) 

∃ x. D(x) Æ O(J,x) 
a. John owns a dog 

∀ x. ∀ y. ¬ D(y) v ¬ O(x,y) v L(x) 

∀ x. ∀ y. ¬(D(y) Æ O(x,y)) v L(x) 

¬ D(y) v ¬ O(x,y) v L(x) 

∀ x. (¬∃ y. (D(y) Æ O(x,y)) v L(x) 

∀ x. (∃ y. D(y) Æ O(x,y)) → L(x) 

b. Anyone who owns a dog is a 
lover-of-animals 

¬ L(x) v ¬ A(y) v ¬ K(x,y) 

∀ x. ¬ L(x) v (∀ y. ¬ A(y) v ¬ K(x,y)) 

∀ x. ¬ L(x) v (∀ y. A(y) → ¬ K(x,y)) 

∀ x. L(x) → (∀ y. A(y) → ¬ K(x,y)) 

c. Lovers-of-animals do not kill 
animals 

Then we’re left with only universal quantifiers, which we drop, yielding one clause. 
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We just have three more easy ones.  “Either Jack killed Tuna or curiosity killed 
Tuna.”  Everything here is a constant, so we get K(J,T) or K(C,T). 

Lecture 8 • 37 

More converting to clausal form 

K(J,T) v K(C,T) 

d. Either Jack killed Tuna 
or curiosity killed Tuna 
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More converting to clausal form 

d. Either Jack killed Tuna 
or curiosity killed Tuna 

K(J,T) v K(C,T) 

e. Tuna is a cat 

C(T) 

“Tuna is a cat” just turns into C(T). 
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More converting to clausal form 

d. Either Jack killed Tuna 
or curiosity killed Tuna 

K(J,T) v K(C,T) 

e. Tuna is a cat 

C(T) 

f. All cats are animals 
¬ C(x) v A(x) 

And “All cats are animals” is not C(x) or A(x). I left out the steps here, but I’m sure 
you can fill them in. 
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Curiosity Killed the Cat 
aD(Fido) 

f¬ C(x) v A(x) 

eC(T) 

dK(J,T) v K(C,T) 

c ¬ L(x) v ¬ A(y) v ¬ K(x,y) 

b¬ D(y) v ¬ O(x,y) v L(x) 

aO(J,Fido) 

Given all these premises, we’re interested in proving that curiosity killed the cat. 
So, first, we start our proof by entering all of the clauses from the premises on 
lines 1 – 7. 
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Curiosity Killed the Cat 
aD(Fido) 

Neg ¬ K(C,T) 

f¬ C(x) v A(x) 

eC(T) 

dK(J,T) v K(C,T) 

c ¬ L(x) v ¬ A(y) v ¬ K(x,y) 

b¬ D(y) v ¬ O(x,y) v L(x) 

aO(J,Fido) 

Now, we add the negation of the conclusion, which is not K(C,T), and start doing 
the proof. 
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Curiosity Killed the Cat 
aD(Fido) 

5,8K(J,T) 

Neg ¬ K(C,T) 

f¬ C(x) v A(x) 

eC(T) 

dK(J,T) v K(C,T) 

c ¬ L(x) v ¬ A(y) v ¬ K(x,y) 

b¬ D(y) v ¬ O(x,y) v L(x) 

aO(J,Fido) 

We can apply the resolution rule to any pair of lines that contain unifiable literals. 
Here’s one way to do the proof. We’ll use the “set-of-support” heuristic (which 
says we should involve the negation of the conclusion in the proof), and resolve 
away K(C,T) from lines 5 and 8, yielding K(J,T). 
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Curiosity Killed the Cat 
aD(Fido) 

6,7 {x/T}A(T) 

5,8K(J,T) 

Neg ¬ K(C,T) 

f¬ C(x) v A(x) 

eC(T) 

dK(J,T) v K(C,T) 

c ¬ L(x) v ¬ A(y) v ¬ K(x,y) 

b¬ D(y) v ¬ O(x,y) v L(x) 

aO(J,Fido) 

Then, we can resolve C(T) and C(x) in lines 6 and 7 by substituting T for x, and 
getting A(T). 
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Curiosity Killed the Cat 
aD(Fido) 

6,7 {x/T}A(T) 

4,9 {x/J, y/T}¬ L(J) v ¬ A(T) 

5,8K(J,T) 

Neg ¬ K(C,T) 

f¬ C(x) v A(x) 

eC(T) 

dK(J,T) v K(C,T) 

c ¬ L(x) v ¬ A(y) v ¬ K(x,y) 

b¬ D(y) v ¬ O(x,y) v L(x) 

aO(J,Fido) 

Using lines 4 and 9, and substituting J for x and T for Y, we get not L(J) or not 
A(T). 
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Curiosity Killed the Cat 
aD(Fido) 

6,7 {x/T}A(T) 

4,9 {x/J, y/T}¬ L(J) v ¬ A(T) 

10,11¬ L(J) 

5,8K(J,T) 

Neg ¬ K(C,T) 

f¬ C(x) v A(x) 

eC(T) 

dK(J,T) v K(C,T) 

c ¬ L(x) v ¬ A(y) v ¬ K(x,y) 

b¬ D(y) v ¬ O(x,y) v L(x) 

aO(J,Fido) 

From lines 10 and 11, we get not L(J). 
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Curiosity Killed the Cat 

3,12 {x/J}¬ D(y) v ¬ O(J,y) 

aD(Fido) 

6,7 {x/T}A(T) 

4,9 {x/J, y/T}¬ L(J) v ¬ A(T) 

10,11¬ L(J) 

5,8K(J,T) 

Neg ¬ K(C,T) 

f¬ C(x) v A(x) 

eC(T) 

dK(J,T) v K(C,T) 

c ¬ L(x) v ¬ A(y) v ¬ K(x,y) 

b¬ D(y) v ¬ O(x,y) v L(x) 

aO(J,Fido) 

From 3 and 12, substituting J for X, we get not D(y) or not O(J,y). 
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Curiosity Killed the Cat 

3,12 {x/J}¬ D(y) v ¬ O(J,y) 

13,2 {x/Fido}¬ D(Fido) 

aD(Fido) 

6,7 {x/T}A(T) 

4,9 {x/J, y/T}¬ L(J) v ¬ A(T) 

10,11¬ L(J) 

5,8K(J,T) 

Neg ¬ K(C,T) 

f¬ C(x) v A(x) 

eC(T) 

dK(J,T) v K(C,T) 

c ¬ L(x) v ¬ A(y) v ¬ K(x,y) 

b¬ D(y) v ¬ O(x,y) v L(x) 

aO(J,Fido) 

From 13 and 2, substituting Fido for x, we get not D(Fido). 
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Curiosity Killed the Cat 

3,12 {x/J}¬ D(y) v ¬ O(J,y) 

13,2 {x/Fido}¬ D(Fido) 

aD(Fido) 

6,7 {x/T}A(T) 

4,9 {x/J, y/T}¬ L(J) v ¬ A(T) 

10,11¬ L(J) 

5,8K(J,T) 

14,1• 

Neg ¬ K(C,T) 

f¬ C(x) v A(x) 

eC(T) 

dK(J,T) v K(C,T) 

c ¬ L(x) v ¬ A(y) v ¬ K(x,y) 

b¬ D(y) v ¬ O(x,y) v L(x) 

aO(J,Fido) 

And finally, from lines 13 and 2, we derive a contradiction. Yay! Curiosity did kill 
the cat. 
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Proving validity 

How do we use resolution refutation to prove 
something is valid? 

So, if we want to use resolution refutation to prove that something is valid, what 
would we do?  What do we normally do when we do a proof using resolution 
refutation? 
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Proving validity 

How do we use resolution refutation to prove 
something is valid? 

Normally, we prove a sentence is entailed by the set 
of axioms 

We say, well, if I know all these things, I can prove this other thing I want to prove. 
We prove that the premises entail the conclusion. 
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Proving validity 

How do we use resolution refutation to prove 
something is valid? 

Normally, we prove a sentence is entailed by the set 
of axioms 

Valid sentences are entailed by the empty set of 
sentences 

• φ is valid 
• {  } ² φ [empty set of sentences entails φ] 
• {  } ` φ [empty set of sentences proves φ] 

What does it mean for a sentence to be valid, in the language of entailment?  That 
it's true in all interpretations. What that means really is that it should be 
derivable from  nothing. A valid sentence is entailed by the empty set of 
sentences. The valid sentence is true no matter what. So we're going to prove 
something with no assumptions. 
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Proving validity 

How do we use resolution refutation to prove 
something is valid? 

Normally, we prove a sentence is entailed by the set 
of axioms 

Valid sentences are entailed by the empty set of 
sentences 

• φ is valid 
• {  } ² φ [empty set of sentences entails φ] 
• {  } ` φ [empty set of sentences proves φ] 

To prove validity by refutation, negate the sentence 
and try to derive contradiction. 

We can prove it by resolution refutation by negating the sentence and trying to 
derive a contradiction. 
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Proving validity: example 

Prove validity of: 
∃ x. (P(x) → P(A)) Æ (P(x) → P(B)) 

So, let’s do an example. Imagine that we would like to show the validity of this 
sentence. 
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Proving validity: example 

Prove validity of: 
∃ x. (P(x) → P(A)) Æ (P(x) → P(B)) 

¬ ∃ x. (P(x) → P(A)) Æ (P(x) → P(B)) 

¬ ∃ x. ((¬ P(x) v P(A)) Æ (¬ P(x) v P(B)) 

∀ x. ¬((¬ P(x) v P(A)) Æ (¬ P(x) v P(B)) 

∀ x. ¬(¬ P(x) v P(A)) v ¬(¬ P(x) v P(B)) 

∀ x. (P(x) Æ ¬ P(A)) v (P(x) Æ ¬ P(B)) 

We start by negating it and converting to clausal form. It takes quite a few steps to 
drive in all the negations, but eventually we end up with this universally 
quantified statement. 



55

Lecture 8 • 55 

Proving validity: example 

Prove validity of: 
∃ x. (P(x) → P(A)) Æ (P(x) → P(B)) 

¬ ∃ x. (P(x) → P(A)) Æ (P(x) → P(B)) 

¬ ∃ x. ((¬ P(x) v P(A)) Æ (¬ P(x) v P(B)) 

∀ x. ¬((¬ P(x) v P(A)) Æ (¬ P(x) v P(B)) 

∀ x. ¬(¬ P(x) v P(A)) v ¬(¬ P(x) v P(B)) 

∀ x. (P(x) Æ ¬ P(A)) v (P(x) Æ ¬ P(B)) 

(P(x) Æ ¬ P(A)) v (P(x) Æ ¬ P(B)) 

Since there are no other quantifiers, we can just drop the universals. 
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Proving validity: example 

Prove validity of: 
∃ x. (P(x) → P(A)) Æ (P(x) → P(B)) 

¬ ∃ x. (P(x) → P(A)) Æ (P(x) → P(B)) 

¬ ∃ x. ((¬ P(x) v P(A)) Æ (¬ P(x) v P(B)) 

∀ x. ¬((¬ P(x) v P(A)) Æ (¬ P(x) v P(B)) 

∀ x. ¬(¬ P(x) v P(A)) v ¬(¬ P(x) v P(B)) 

∀ x. (P(x) Æ ¬ P(A)) v (P(x) Æ ¬ P(B)) 

(P(x) Æ ¬ P(A)) v (P(x) Æ ¬ P(B)) 

(P(x) v P(x)) Æ (P(x) v ¬ P(B)) 
Æ (¬ P(A) v P(x)) Æ (¬ P(A) v ¬ P(B)) 

And now all we have to do is distribute, to get these four clauses. 



57

6

5

4

3

2

1

Lecture 8 • 57 

Proving validity: example 

(P(x) Æ ¬ P(A)) v (P(x) Æ ¬ P(B)) 

∀ x. (P(x) Æ ¬ P(A)) v (P(x) Æ ¬ P(B)) 

∀ x. ¬(¬ P(x) v P(A)) v ¬(¬ P(x) v P(B)) 

(P(x) v P(x)) Æ (P(x) v ¬ P(B)) 
Æ (¬ P(A) v P(x)) Æ (¬ P(A) v ¬ P(B)) 

∀ x. ¬((¬ P(x) v P(A)) Æ (¬ P(x) v P(B)) 

¬ ∃ x. ((¬ P(x) v P(A)) Æ (¬ P(x) v P(B)) 

¬ ∃ x. (P(x) → P(A)) Æ (P(x) → P(B)) 

¬ P(A) v ¬ P(B) 

¬ P(A) v P(x) 

P(x) v ¬ P(B) 

P(x) 

Prove validity of: 
∃ x. (P(x) → P(A)) Æ (P(x) → P(B)) 

We enter the clauses into our proof. 
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Proving validity: example 

(P(x) Æ ¬ P(A)) v (P(x) Æ ¬ P(B)) 

∀ x. (P(x) Æ ¬ P(A)) v (P(x) Æ ¬ P(B)) 

∀ x. ¬(¬ P(x) v P(A)) v ¬(¬ P(x) v P(B)) 

(P(x) v P(x)) Æ (P(x) v ¬ P(B)) 
Æ (¬ P(A) v P(x)) Æ (¬ P(A) v ¬ P(B)) 

∀ x. ¬((¬ P(x) v P(A)) Æ (¬ P(x) v P(B)) 

¬ ∃ x. ((¬ P(x) v P(A)) Æ (¬ P(x) v P(B)) 

¬ ∃ x. (P(x) → P(A)) Æ (P(x) → P(B)) 

1,4 

{x/A} 

¬ P(B)5 

¬ P(A) v ¬ P(B)4 

¬ P(A) v P(x)3 

P(x) v ¬ P(B)2 

P(x)1 

Prove validity of: 
∃ x. (P(x) → P(A)) Æ (P(x) → P(B)) 

Now, we can resolve lines 1 and 4, substituting A for x, to get not P(B). 
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Proving validity: example 

(P(x) Æ ¬ P(A)) v (P(x) Æ ¬ P(B)) 

∀ x. (P(x) Æ ¬ P(A)) v (P(x) Æ ¬ P(B)) 

∀ x. ¬(¬ P(x) v P(A)) v ¬(¬ P(x) v P(B)) 

(P(x) v P(x)) Æ (P(x) v ¬ P(B)) 
Æ (¬ P(A) v P(x)) Æ (¬ P(A) v ¬ P(B)) 

∀ x. ¬((¬ P(x) v P(A)) Æ (¬ P(x) v P(B)) 

¬ ∃ x. ((¬ P(x) v P(A)) Æ (¬ P(x) v P(B)) 

¬ ∃ x. (P(x) → P(A)) Æ (P(x) → P(B)) 

1,5 
{x/B} 

• 

1,4 
{x/A} 

¬ P(B) 

¬ P(A) v ¬ P(B) 

¬ P(A) v P(x) 

P(x) v ¬ P(B) 

P(x) 

Prove validity of: 
∃ x. (P(x) → P(A)) Æ (P(x) → P(B)) 

And we can resolve 1 and 5, substituting B for x, to get a contradiction. 
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Recitation Problems 

In each group, derive the last sentence from the 
others using resolution refutation. 

∀ xy.F(x,y) 

∀ xy.F(y,x) 

∃ x.F(x) 

∃ y.F(y) 

∀ x.F(x)→ (G(x) Ç H(x)) 

G(A)↔ (H(A)Æ ¬ G(A)) 

¬ F(A) 

∀ xyz.F(x,y)Æ F(y,z)→ F(x,z) 

¬ F(x,x) 

∀ xy.F(x,y)→ ¬ F(y,x) 

∀ x.F(x)Ç G(x) 

∃ x.¬ G(x) 

∀ x.H(x)→ ¬ F(x) 

∃ x.¬ H(x) 

∀ x.∃ y.L(x,y) 

∀ xy.L(x,y)→ H(x) 

∀ x.H(x) 
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A Silly Recitation Problem 

Symbolize the following argument, and then derive 
the conclusion from the premises using resolution 
refutation. 

• Nobody who really appreciates Beethoven fails 
to keep silence while the Moonlight sonata is 
being played. 

• Guinea pigs are hopelessly ignorant of music. 
• No one who is hopelessly ignorant of music ever 

keeps silence while the moonlight sonata is 
being played. 

• Therefore, guinea pigs never really appreciate 
Beethoven. 

(Taken from a book by Lewis Carroll, logician and 
author of Alice in Wonderland.) 
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Another, Sillier Problem 

You don’t have to do this one. It’s just for fun.  Same type as 
the previous one.  Also from Lewis Carroll. 

• The only animals in this house are cates 
• Every animal that loves to gaze at the moon is suitable for 

a pet 
• When I detest an animal, I avoid it 
• No animals are carnivorous unless they prowl at night 
• No cat fails to kill mice 
• No animals ever like me, except those that are in this 

house 
• Kangaroos are not suitable for pets 
• None but carnivorous animals kill mice 
• I detest animals that do not like me 
• Animals that prowl at night always love to gaze at the 

moon 
• Therefore, I always avoid a kangaroo 


