6.825 Recitation Problems: Spring Final

Solutions

December 13, 2001

1 Gaussian Units

You were not responsible for this problem.

2 Network Structure

Nodes A and B have no parents.
Node C has two parents: A and B
Node D has one parent: C

3 At the Races

1. You should bet on Bell. The expected value is $\$ 0.40$.
2. You should take the $\$ 2$ insurance and bet on Belle. The expected value is $\$ 1.7$.

4 Still At The Races

Nodes F and H have no parents.
Node W has two parents: H and F .
Node B has one parent: H
Node T has one parent: B

$$
\begin{aligned}
& P(W)=\Sigma_{F, H} P(W \mid F, H) P(F) P(H) \\
& P(W \mid T)=\frac{P(W, T)}{P(T)} \\
&=\frac{\Sigma_{B, H, F} P(W \mid H, F) P(H) P(F) P(T \mid B) P(B \mid H)}{\Sigma_{B, H} P(T \mid B) P(B \mid H) P(H)}
\end{aligned}
$$

5 Logic

1. $\forall x . B(x) \wedge H(x) \rightarrow S(x)$
2. $\forall x \cdot S(x) \wedge H(x) \rightarrow B(x)$
3. $\forall x . S(x) \rightarrow B(x) \wedge H(x)$
4. $\exists x \cdot S(x) \wedge H(x) \wedge B(x)$
5. $\exists x . H(x) \wedge B(x) \wedge \forall y .(x \neq y \wedge H(x) \rightarrow \operatorname{Slower}(x, y))$
6. $\forall r . R(r) \rightarrow \exists x . W(x, r)$

6 Clausal Form

$\neg o(r) \vee w(f(r))$

7 Logic

$p(b)=$ false
And one (or both) of $p(a)$ and $p(c)$ is true.
So any of the following three would work
$p(a)=$ true $; p(b)=$ false $; p(c)=$ false
$p(a)=$ false $; p(b)=$ false $; p(c)=$ true
$p(a)=$ true $; p(b)=$ false $; p(c)=$ true

8 Bayesian Network Structure

- No
- Yes
- Yes
- No

Remove node G.
Now node I has parents E, F, H.
Node H has parent, E, F.

9 True and False

1. False
2. True
3. True
4. False
5. False
6. False
7. True
8. False
