
1

Lecture 12 • 1

6.825 Techniques in Artificial Intelligence

Graph Plan

• Overview
• PO Planning – “human-like” but very slow

We’ve been talking about planning. We started with situation calculus, which,
because of its basis in full first-order logic is completely intractable.

So we moved to highly restricted operator representations, and then the partial order
planner, which seemed like a good idea because it would let you do non-linear
planning; to put in planned steps in whatever order you wanted to and hook
them up. And there's something attractive about the partial- order planners.
They seem almost like you might imagine that a person would go about
planning, right? You put these steps in and then try to fix up the problems, and
it seems kind of appealing and intuitive, and so, attractive to people, but they're
really awfully slow. The structure of the search space is kind of hard to
understand. It's not at all clear how to apply the things that we learned, say, in
the SAT stuff to partial order planning. It's not clear how to prune the state
space, how to recognize failures early, all those kinds of things.

2

Lecture 12 • 2

6.825 Techniques in Artificial Intelligence

Graph Plan

• Overview
• PO Planning – “human-like” but very slow

• Graph Plan
• Simplified planning model
• Efficient algorithm

So, in what appears to be a sort of a retrogressive move, the planning community
about maybe ten years ago kind of quit doing partial-order planning and said no,
wait a minute, maybe we can do better by looking at these planning problems in
some sense in a simpler and more primitive way. What we're going to do today
is talk about GraphPlan, which is described in the paper by Weld that we have
linked into the web.

3

Lecture 12 • 3

Graph Plan

Graphplan was invented by a couple of theoreticians, who said "Oh, these planning
people; they play around with algorithms, but what do they know? We know
about algorithms, so let's just try to take this planning problem they have and
get at it somehow more directly.”

4

Lecture 12 • 4

Graph Plan

• A propositional planner, that is, there are no
variables

The first big thing about Graphplan is that it’s a propositional planner. So that
means that there are no variables around in the course of planning. When we
did the partial order planning examples, we were doing the blocks world and we
had operator descriptions with variables that let us speak generally about
moving blocks, rather than naming particular ones. In GraphPlan, we're not
going to be able to have any variables floating around during the planning
process.

5

Lecture 12 • 5

Graph Plan

• A propositional planner, that is, there are no
variables
• Simpler – don’t have to worry about matching

Not having any variables makes your life simpler in the sense that you don't have to
worry about unification or variable matching or any of that stuff.

6

Lecture 12 • 6

Graph Plan

• A propositional planner, that is, there are no
variables
• Simpler – don’t have to worry about matching
• Bigger – if you have six blocks, you need 36

propositions to represent all On(x,y) assertions

But it may make it harder in that if you really do have six blocks and an on (A, B)
relation, then you'll have to make 36 propositions, one for every possible
instantiation of the variables in that relationship. So if you need to talk about
six different blocks and how they could be on each other, then that might be a
lot of propositions. But at least in this work, it's going to turn out that it's
worth having a big representation that's fairly easy to deal with; that it's going to
be more efficient to do that than to have a very concise but kind of complicated
representation as we have when we have variables. So that's the tradeoff, and
so in this case we're going to go for big but simple, the propositional planner.

7

Lecture 12 • 7

Graph Plan

• A propositional planner, that is, there are no
variables
• Simpler – don’t have to worry about matching
• Bigger – if you have six blocks, you need 36

propositions to represent all On(x,y) assertions

1. Make a plan graph of depth k
2. Search for a solution
3. If succeed, return a plan
4. Else k=k+1
5. Go to 1.

The graphplan algorithm has the following structure. This isn't really going to
make too much sense until we look at the pieces in detail, but the idea is that
you make a plan graph of depth k, and then you search for a solution, and if you
succeed you return a plan. Otherwise, you increment K and try again. So
that's the basic scheme.

8

Lecture 12 • 8

Plan Depth

A plan of depth k
• has k times steps
• may have multiple parallel actions per time step

Note that I wrote "make a plan graph of depth K." We're going to look for plans of
depth K, so if we look for a depth two plan, it will have two time steps, but it
will be partially ordered in the sense that multiple actions might possibly take
place in a single time step. Maybe you can or can not actually execute them in
parallel, but there will be some actions where you don't care what order they
occur in.

9

Lecture 12 • 9

Plan Depth

A plan of depth k
• has k times steps
• may have multiple parallel actions per time step

DoEDoD

DoC

DoBDoAt = 1

t = 2

t = 3

And so what you might get out of GraphPlan is a plan that looks like this and say
this is a depth three five-step plan. All right? So if you could actually execute
these things in parallel, then it would only take you three time steps. If you
have to linearize them, it's OK, and you could put DoA and DoB in any order
and DoD and DoE in any order. So the algorithm will search for a depth one
plan and then a depth two plan and then a depth three plan and so on, until we
find the answer. It’s a little like iterative deepening. Some of the motivations
for doing that are the same.

10

Lecture 12 • 10

Planning vs Scheduling

Scheduling: tasks are fixed

There are really two different, but highly related, problems. If you read the book,
they sometimes talk about planning versus scheduling. In scheduling, the tasks
are fixed. A scheduling problem might be that we have to figure out how to fit
all your classes into your schedule, or all the exams into the exam period. There
may be constraints on aspects of the schedule, but you don't have to figure out
which particular tasks you need to do. Typically, that's specified, and all you
have to do is find an ordering for them.

11

Lecture 12 • 11

Planning vs Scheduling

Planning: find steps and schedule

Scheduling: tasks are fixed

In planning, you have to decide which set of tasks or steps you need to do, as well
as to schedule them.

12

Lecture 12 • 12

Planning vs Scheduling

Planning: find steps and schedule

Scheduling: tasks are fixed

Graph Plan: find plans of a given depth

I think of GraphPlan as sitting in here somewhere in the middle. It iteratively
commits to a particular depth and then searches for a plan within that depth. It
circumscribes the set of tasks, or the set of steps that it's going to try to fit
together into a plan. So it tries to say, all right, I'm just going to look in the
space of two-step plans, that limits my options in some sense, and I can do that
somewhat more efficiently.

13

Lecture 12 • 13

Planning vs Scheduling

Planning: find steps and schedule

Scheduling: tasks are fixed

NP-Complete

PSPACE-complete

Graph Plan: find plans of a given depth

For those of you who are interested in complexity stuff, scheduling is, in most
formulations, NP complete. There are basically exponentially many schedules,
and in the worst case you have to try them all. But planning is worse. Planning
is P-space complete because sometimes you might have a very small description
of your problem so there are just a few very general- purpose operators, but the
plan itself might be quite long, so there's variability in the length of a plan as
well as in all the different operations that you might have to put in, so planning,
where you have to have to think about what all the different operations are, is
more complicated because you don't know the length of the plan.

14

Lecture 12 • 14

Planning vs Scheduling

Planning: find steps and schedule

Scheduling: tasks are fixed

NP-Complete

PSPACE-complete

Graph Plan: find plans of a given depth

So GraphPlan tries to take good advantage of this fact and say, "Well, I'm going to
do something that's more like scheduling and I'm going to keep increasing my
horizon." Now, because it's doing planning in the worst case, it may have to
increase its horizon out pretty darned far and so it's still a hard problem, but it's
trying to leverage this idea of trying to work in a very limited space and just
increasing the size of the space it's thinking about as it goes.

15

Lecture 12 • 15

Plan Graph

Prop.
Level 0

P

S

R

¬Q

P

¬Q

¬P

pre eff

R

S

Prop.
Level 2

Action
Level 3

Prop.
Level 4

Action
Level 1

Pre-
cond

Effects

Not surprisingly, given its name, GraphPlan centers its work on a data structure
called a plan graph. A plan graph looks like this. You have a bunch of levels.
You start with level zero, level one, level two.

16

Lecture 12 • 16

Plan Graph

Prop.
Level 0

P

S

R

¬Q

P

¬Q

¬P

pre eff

R

S

Prop.
Level 2

Action
Level 3

Prop.
Level 4

Action
Level 1

Pre-
cond

Effects

At the even- numbered levels you have propositions, which they draw as a little
dot.

17

Lecture 12 • 17

Plan Graph

Prop.
Level 0

P

S

R

¬Q

P

¬Q

¬P

pre eff

R

S

Prop.
Level 2

Action
Level 3

Prop.
Level 4

Action
Level 1

Pre-
cond

Effects

At the odd-numbered levels, you have actions, shown as boxes.

18

Lecture 12 • 18

Plan Graph

Prop.
Level 0

P

S

R

¬Q

P

¬Q

¬P

pre eff

R

S

Prop.
Level 2

Action
Level 3

Prop.
Level 4

Action
Level 1

Pre-
cond

Effects

In this picture we have three proposition levels (levels 0, 2, and 4) and two action
levels (levels 1 and 3). In this graph, we are able to encode depth-two plans
(because there are two layers of actions). Action level 1 has the actions that we
might choose to do on the first step, and action level 3 has the actions we might
choose to do on the second step.

19

Lecture 12 • 19

Plan Graph

Prop.
Level 0

P

S

R

¬Q

P

¬Q

¬P

pre eff

R

S

Prop.
Level 2

Action
Level 3

Prop.
Level 4

Action
Level 1

Pre-
cond

Effects

And then it's within this structure that we’re going to try to look for a plan. So we
start by making a graph with levels 0 through 2, corresponding to a depth 1 plan,
and search for a satisfactory plan within that graph. If we can’t find one, we
extend the graph out by two more layers (an action layer and a proposition
layer), and then try to find a depth 2 plan. Etcetera.

20

Lecture 12 • 20

Making the Plan Graph

• Start with initial conditions

0

So to make the plan graph, you start with the initial conditions, putting each one in
proposition layer 0.

21

Lecture 12 • 21

Making the Plan Graph

• Start with initial conditions
• Add actions with satisfied preconditions

0 1

Then, you add to layer 1 all the actions that have their preconditions satisfied in
layer 0.

22

Lecture 12 • 22

Making the Plan Graph

• Start with initial conditions
• Add actions with satisfied preconditions
• Add all effects of actions at previous levels

0 21

Then, you add to proposition layer 2 all the propositions that are effects of actions in
layer 1.

23

Lecture 12 • 23

Making the Plan Graph

• Start with initial conditions
• Add actions with satisfied preconditions
• Add all effects of actions at previous levels
• Add maintenance actions

0 21

And you also add to proposition layer 2 all of the propositions that you had in layer
0, and connect them with maintenance actions, shown here as blue lines
connecting propositions from layer n to layer n + 2. These maintenance actions
represent the possibility of having some proposition be true at step n because it
was true at step n – 2, and we didn’t do anything to make it false; that is, that we
maintained its truth value.

24

Lecture 12 • 24

Making the Plan Graph

• Start with initial conditions
• Add actions with satisfied preconditions
• Add all effects of actions at previous levels
• Add maintenance actions

0 21

Then, when it’s time to grow the graph out another layer, you repeat the same
process:

25

Lecture 12 • 25

Making the Plan Graph

• Start with initial conditions
• Add actions with satisfied preconditions
• Add all effects of actions at previous levels
• Add maintenance actions

0 4321

Add actions to level 3 with satisfied precondition in level 2.

26

Lecture 12 • 26

Making the Plan Graph

• Start with initial conditions
• Add actions with satisfied preconditions
• Add all effects of actions at previous levels
• Add maintenance actions

0 4321

Add the effects of those actions to level4.

27

Lecture 12 • 27

Making the Plan Graph

• Start with initial conditions
• Add actions with satisfied preconditions
• Add all effects of actions at previous levels
• Add maintenance actions

0 4321

Add maintenance actions between level 2 and level 4. And now we have a 5-level
graph.

28

Lecture 12 • 28

Mutually Exclusive Actions

mutex
A

B

C

If we just leave it as it is, this graph is essentially a representation of the complete
search tree, down to a fixed depth. But what it enables us to do is a pruning
phase, in which we find and mark pairs of actions that are mutually exclusive.
That is, they can’t both be done on the same step; they can’t be done in parallel.
When two actions are mutex, we’ll show it in our graph by drawing an arc
between them, as shown in red here. Actions A and C are mutex, and actions B
and C are mutex. This means that we could execute both A and B in parallel,
but if we do C, we can’t do either of the others.

29

Lecture 12 • 29

Mutually Exclusive Actions

Two action instances at level i are mutex if:

mutex
A

B

C

If two actions can’t be done in parallel we’ll say they’re mutually exclusive or
mutex. The mutex relations will vary from layer to layer, so we’ll look at the
question of when two actions are mutex at level i. This can be true in three
possible circumstances.

30

Lecture 12 • 30

Mutually Exclusive Actions

Two action instances at level i are mutex if:
• Inconsistent effects: effect of one action is

negation of effect of another

mutex
A

B

C

The first case is called inconsistent effects. If the effect of one action is the
negation of the effect of another, then those two actions are mutex. So if one
action causes P to be true and another action causes P to be false, you can't
execute them both at the same time.

31

Lecture 12 • 31

Mutually Exclusive Actions

Two action instances at level i are mutex if:
• Inconsistent effects: effect of one action is

negation of effect of another
• Interference: one action deletes the precondition

of the other

mutex
A

B

C

The next case is called interference. If one action deletes the preconditions of
another – then that’s also a case where you can't execute the two actions at the
same time. Because remember, we said that when we had one of these plans
that had two action steps at the same point in time, our assumption was that you
could linearize them in either order, and clearly, if one deletes a precondition
of the other then you can't linearize them in any order, so that's not OK.

32

Lecture 12 • 32

Mutually Exclusive Actions

Two action instances at level i are mutex if:
• Inconsistent effects: effect of one action is

negation of effect of another
• Interference: one action deletes the precondition

of the other
• Competing needs: the actions have

preconditions that are mutex at level i-1

mutex
A

B

C

The third case is called: competing needs. If two actions have preconditions that
are mutually exclusive at the previous level, then the actions are mutex. So one
thing that can make actions mutually exclusive is essentially if their
preconditions can't possibly both be satisfied during this time step, then there's
no way you could execute these two actions now at the next time step.

33

Lecture 12 • 33

Mutually Exclusive Actions

Two action instances at level i are mutex if:
• Inconsistent effects: effect of one action is

negation of effect of another
• Interference: one action deletes the precondition

of the other
• Competing needs: the actions have

preconditions that are mutex at level i-1

mutex
A

B

C

So that's how you decide if actions are mutually exclusive, and you do it making
reference only to properties of the actions and to mutual exlusion relationships
between the preconditions of the previous step. Next we'll give a definition of
what makes two propositions be mutually exclusive, and you'll see that you are
able to just sweep forward through a graph calculating which things are
mutually exclusive with which other ones, one layer at a time.

34

Lecture 12 • 34

Mutually Exclusive Propositions

Now, so what makes propositions mutually exclusive?

35

Lecture 12 • 35

Mutually Exclusive Propositions

Two propositions at level
i are mutex if:

• Negation: they are
negations of one
another

We're going to say two propositions at level I are mutex if they're negations of one
another. It's pretty clear you can't have P and !P true in the same step.

36

Lecture 12 • 36

Mutually Exclusive Propositions

Two propositions at level
i are mutex if:

• Negation: they are
negations of one
another

• Inconsistent support:
all ways of achieving
the propositions at
level i-1 are pairwise
mutex.

Another thing that makes two propositons mutually exclusive is if all the ways of
achieving a proposition at the previous level are pair-wise mutually exclusive.

37

Lecture 12 • 37

Mutually Exclusive Propositions

Two propositions at level
i are mutex if:

• Negation: they are
negations of one
another

• Inconsistent support:
all ways of achieving
the propositions at
level i-1 are pairwise
mutex.

Inconsistent
support

mutex
A

B

C

D

So, for example, consider a case in which you have two propositions, each of which
can be made true by two actions in the previous layer. But it just happens that
action A is mutex with actions C and D, and that action B is mutex with actions
C and D. Then there’s no way to make both of our propositions true on this
step.

38

Lecture 12 • 38

Mutually Exclusive Propositions

Two propositions at level
i are mutex if:

• Negation: they are
negations of one
another

• Inconsistent support:
all ways of achieving
the propositions at
level i-1 are pairwise
mutex.

Inconsistent
support

mutex
A

B

C

D

So, we show in our figure that they’re mutex by drawing an arc between the
propositions.

39

Lecture 12 • 39

Solution Extraction

Once we’ve grown our graph out to an odd level, we look to see if it could possibly
contain a solution.

40

Lecture 12 • 40

Solution Extraction

• If all the literals in the goal appear at the deepest
level and not mutex, then search for a solution for
each subgoal at level i

First, we look to see if all the literals in the goal appear at the deepest level and are
not mutually exclusive. If so, there’s a chance that this plan graph contains a
solution, and we have to search for it. If not, we have to grow the graph out
another level and try again.

41

Lecture 12 • 41

Solution Extraction

• If all the literals in the goal appear at the deepest
level and not mutex, then search for a solution for
each subgoal at level i

Okay. If all of our subgoals exist at the deepest level (that means, if our goal is P
and not Q, then both P and not Q are in the last proposition level) and they’re
not mutex, we look for a plan. We can describe our search method using
nondeterministic choice via the choose and fail mechanism.

42

Lecture 12 • 42

Solution Extraction

• If all the literals in the goal appear at the deepest
level and not mutex, then search for a solution for
each subgoal at level i

• For each subgoal at level i
–Choose an action to achieve it
–If it’s mutex with another action, Fail

Let I be the deepest level in the graph. For each of our subgoals, we have to pick an
action that can achieve it. So, we start by picking an action at level I – 1 to
achieve P. Then, we pick one of the actions at level I – 1 to achieve not Q. If
they are mutex, then we fail. Failing will cause us to go back and pick a
different way to satisfy P. We search within this level until we find a set of
level I- 1 actions, one for each of our level I subgoals, such that the level I-1
actions are not mutex. If we can’t find such a set, then we fail.

43

Lecture 12 • 43

Solution Extraction

• If all the literals in the goal appear at the deepest
level and not mutex, then search for a solution for
each subgoal at level i

• For each subgoal at level i
–Choose an action to achieve it
–If it’s mutex with another action, Fail

• Repeat for preconditions at level i-2

Now, we figure out what the level I-2 preconditions are of the level I-1 actions, and
we make that set of propositions our new set of subgoals. Now we search for a
non mutex set of actions at level I-3 that can make the I-2 subgoals true, and so
on. If we fail at any level, we go back and try to find a different way of
satisfying the preconditions at the previous level.

44

Lecture 12 • 44

Solution Extraction

• If all the literals in the goal appear at the deepest
level and not mutex, then search for a solution for
each subgoal at level i

• For each subgoal at level i
–Choose an action to achieve it
–If it’s mutex with another action, Fail

• Repeat for preconditions at level i-2

We’ll illustrate this algorithm in detail in the example we’re about to work out.

45

Lecture 12 • 45

Birthday Dinner Example

So here's a really simple planning domain. It's completely propositional and very,
very simple. It's the one from the paper. The idea is that we’re getting a
birthday dinner ready for someone who is at home and asleep.

46

Lecture 12 • 46

Birthday Dinner Example
• Goal: ¬ garb Æ dinner Æ present

So our goal is to not have garbage in the kitchen, and to have dinner cooked, and to
have a present

47

Lecture 12 • 47

Birthday Dinner Example
• Goal: ¬ garb Æ dinner Æ present
• Init: garb Æ clean Æ quiet

In our initial state, there is garbage all around, our hands are clean, and it's quiet.

48

Lecture 12 • 48

Birthday Dinner Example
• Goal: ¬ garb Æ dinner Æ present
• Init: garb Æ clean Æ quiet

• Actions:

And here are the operators.

49

Lecture 12 • 49

Birthday Dinner Example
• Goal: ¬ garb Æ dinner Æ present
• Init: garb Æ clean Æ quiet

• Actions:
• Cook

– Pre: clean
– Effect:dinner

There's a Cook operator. The precondition is that we have to have clean hands
(that’s nice!) and the effect is that dinner is ready.

50

Lecture 12 • 50

Birthday Dinner Example
• Goal: ¬ garb Æ dinner Æ present
• Init: garb Æ clean Æ quiet

• Actions:
• Cook

– Pre: clean
– Effect:dinner

• Wrap
– Pre: quiet
– Effect: present

There’s a wrap operator. Its effect is to get the present ready. It needs to be quiet
while we wrap the present so that the guest doesn’t wake up and see the present
before it’s wrapped. (This isn’t a very sensible example, really, but it’s simple
enough to do completely).

51

Lecture 12 • 51

Birthday Dinner Example
• Goal: ¬ garb Æ dinner Æ present
• Init: garb Æ clean Æ quiet

• Actions:
• Cook

– Pre: clean
– Effect:dinner

• Wrap
– Pre: quiet
– Effect: present

• Carry
– Pre: garb
– Effect: ¬ garb Æ ¬ clean

There’s a carry operator, which takes out the garbage, but it also makes our hands
dirty.

52

Lecture 12 • 52

Birthday Dinner Example
• Goal: ¬ garb Æ dinner Æ present
• Init: garb Æ clean Æ quiet

• Actions:
• Cook

– Pre: clean
– Effect:dinner

• Wrap
– Pre: quiet
– Effect: present

• Carry
– Pre: garb
– Effect: ¬ garb Æ ¬ clean

• Dolly
– Pre: garb
– Effect: ¬ garb Æ ¬ quiet

And there’s a dolly operator, which takes out the garbage using a dolly (a kind of a
hand-cart). It doesn’t make our hands dirty, but it makes a lot of noise. (I
should note that, in the paper, the carry and dolly operators don’t have garbage
as a precondition (I guess you can pretend to take out the garbage if you want
to). We have added it in our example, but it doesn’t really change anything).

53

Lecture 12 • 53

clean

garb

quiet

¬ garb ^ ¬ quietgarbDolly

¬ garb ^ ¬ cleangarbCarry

presentquietWrap

dinnercleanCook

PostPreAction

garb ^ clean ^ quietInit

¬ garb ^ dinner ^ presentGoal

Let’s make the plan graph. We start by putting in the initial conditions.

54

Lecture 12 • 54

cook

wrap

carry

dolly

clean

garb

quiet

¬ garb ^ ¬ quietgarbDolly

¬ garb ^ ¬ cleangarbCarry

presentquietWrap

dinnercleanCook

PostPreAction

garb ^ clean ^ quietInit

¬ garb ^ dinner ^ presentGoal

Given those initial conditions, all four of our actions could possibly be executed on
the first step, so we add them to the graph.

55

Lecture 12 • 55

clean

garb

cook

wrap

carry

dolly

quiet

dinner

present

¬ garb

¬ clean

¬ quiet

clean

garb

quiet

¬ garb ^ ¬ quietgarbDolly

¬ garb ^ ¬ cleangarbCarry

presentquietWrap

dinnercleanCook

PostPreAction

garb ^ clean ^ quietInit

¬ garb ^ dinner ^ presentGoal

Now we add all of our old propositions to the next layer, as well as all the
propositions that could be effects of the actions. And we draw in the
maintenance actions, as well.

56

Lecture 12 • 56

clean

garb

cook

wrap

carry

dolly

quiet

dinner

present

¬ garb

¬ clean

¬ quiet

clean

garb

quiet

¬ garb ^ ¬ quietgarbDolly

¬ garb ^ ¬ cleangarbCarry

presentquietWrap

dinnercleanCook

PostPreAction

garb ^ clean ^ quietInit

¬ garb ^ dinner ^ presentGoal

Now it’s time to do the mutexes. None of the initial propositions are mutex (or
we’re starting in an impossible state). So, let’s look at the actions in layer 1.

57

Lecture 12 • 57

clean

garb

cook

wrap

carry

dolly

quiet

dinner

present

¬ garb

¬ clean

¬ quiet

clean

garb

quiet

¬ garb ^ ¬ quietgarbDolly

¬ garb ^ ¬ cleangarbCarry

presentquietWrap

dinnercleanCook

PostPreAction

garb ^ clean ^ quietInit

¬ garb ^ dinner ^ presentGoal

The first reason that actions can be mutex is due to inconsistent effects. So, carry
and maintaining clean have inconsistent effects (because carry makes clean
false).

58

Lecture 12 • 58

clean

garb

cook

wrap

carry

dolly

quiet

dinner

present

¬ garb

¬ clean

¬ quiet

clean

garb

quiet

¬ garb ^ ¬ quietgarbDolly

¬ garb ^ ¬ cleangarbCarry

presentquietWrap

dinnercleanCook

PostPreAction

garb ^ clean ^ quietInit

¬ garb ^ dinner ^ presentGoal

And maintaining garb has inconsistent effects with both carry and dolly (which
make garb false).

59

Lecture 12 • 59

clean

garb

cook

wrap

carry

dolly

quiet

dinner

present

¬ garb

¬ clean

¬ quiet

clean

garb

quiet

¬ garb ^ ¬ quietgarbDolly

¬ garb ^ ¬ cleangarbCarry

presentquietWrap

dinnercleanCook

PostPreAction

garb ^ clean ^ quietInit

¬ garb ^ dinner ^ presentGoal

And maintaining quiet has inconsistent effects with dolly (which makes quiet false).

60

Lecture 12 • 60

clean

garb

cook

wrap

carry

dolly

quiet

dinner

present

¬ garb

¬ clean

¬ quiet

clean

garb

quiet

¬ garb ^ ¬ quietgarbDolly

¬ garb ^ ¬ cleangarbCarry

presentquietWrap

dinnercleanCook

PostPreAction

garb ^ clean ^ quietInit

¬ garb ^ dinner ^ presentGoal

Another kind of mutex is due to interference: one action negates the precondition of
another. Here we have interference between cook and carry (carry makes clean
false, which is required for cook).

61

Lecture 12 • 61

clean

garb

cook

wrap

carry

dolly

quiet

dinner

present

¬ garb

¬ clean

¬ quiet

clean

garb

quiet

¬ garb ^ ¬ quietgarbDolly

¬ garb ^ ¬ cleangarbCarry

presentquietWrap

dinnercleanCook

PostPreAction

garb ^ clean ^ quietInit

¬ garb ^ dinner ^ presentGoal

And we also have interference between wrap and dolly (dolly makes quiet false,
which is required for wrap.)

62

Lecture 12 • 62

clean

garb

cook

wrap

carry

dolly

quiet

dinner

present

¬ garb

¬ clean

¬ quiet

clean

garb

quiet

¬ garb ^ ¬ quietgarbDolly

¬ garb ^ ¬ cleangarbCarry

presentquietWrap

dinnercleanCook

PostPreAction

garb ^ clean ^ quietInit

¬ garb ^ dinner ^ presentGoal

Finally, we have interference between carry and dolly, because they each require
that garbage be present, and they each remove it. There are two other situations
in which we could have action mutexes, but they don’t apply here.

63

Lecture 12 • 63

clean

garb

cook

wrap

carry

dolly

quiet

dinner

present

¬ garb

¬ clean

¬ quiet

clean

garb

quiet

¬ garb ^ ¬ quietgarbDolly

¬ garb ^ ¬ cleangarbCarry

presentquietWrap

dinnercleanCook

PostPreAction

garb ^ clean ^ quietInit

¬ garb ^ dinner ^ presentGoal

Okay. Now let’s do the mutexes on the propositions in layer 2.

64

Lecture 12 • 64

clean

garb

cook

wrap

carry

dolly

quiet

dinner

present

¬ garb

¬ clean

¬ quiet

clean

garb

quiet

¬ garb ^ ¬ quietgarbDolly

¬ garb ^ ¬ cleangarbCarry

presentquietWrap

dinnercleanCook

PostPreAction

garb ^ clean ^ quietInit

¬ garb ^ dinner ^ presentGoal

First of all, every proposition is mutex with its negation.

65

Lecture 12 • 65

clean

garb

cook

wrap

carry

dolly

quiet

dinner

present

¬ garb

¬ clean

¬ quiet

clean

garb

quiet

¬ garb ^ ¬ quietgarbDolly

¬ garb ^ ¬ cleangarbCarry

presentquietWrap

dinnercleanCook

PostPreAction

garb ^ clean ^ quietInit

¬ garb ^ dinner ^ presentGoal

Then, the other reason we might have mutexes is because of inconsistent support
(all ways of achieving the propositions are pairwise mutex). So, here we have
that garbage is mutex with not clean and with not quiet (the only way to make
garbage true is to maintain it, which is mutex with carry and with dolly).

66

Lecture 12 • 66

clean

garb

cook

wrap

carry

dolly

quiet

dinner

present

¬ garb

¬ clean

¬ quiet

clean

garb

quiet

¬ garb ^ ¬ quietgarbDolly

¬ garb ^ ¬ cleangarbCarry

presentquietWrap

dinnercleanCook

PostPreAction

garb ^ clean ^ quietInit

¬ garb ^ dinner ^ presentGoal

Dinner is mutex with not clean because cook and carry, the only way of achieving
these propositions, are mutex at the previous level.

67

Lecture 12 • 67

clean

garb

cook

wrap

carry

dolly

quiet

dinner

present

¬ garb

¬ clean

¬ quiet

clean

garb

quiet

¬ garb ^ ¬ quietgarbDolly

¬ garb ^ ¬ cleangarbCarry

presentquietWrap

dinnercleanCook

PostPreAction

garb ^ clean ^ quietInit

¬ garb ^ dinner ^ presentGoal

And present is mutex with not quiet because wrap and dolly are mutex at the
previous level.

68

Lecture 12 • 68

clean

garb

cook

wrap

carry

dolly

quiet

dinner

present

¬ garb

¬ clean

¬ quiet

clean

garb

quiet

¬ garb ^ ¬ quietgarbDolly

¬ garb ^ ¬ cleangarbCarry

presentquietWrap

dinnercleanCook

PostPreAction

garb ^ clean ^ quietInit

¬ garb ^ dinner ^ presentGoal

Finally not clean is mutex with not quiet because carry and dolly are mutex at the
previous level. Whew. That’s all the mutexes.

69

Lecture 12 • 69

clean

garb

cook

wrap

carry

dolly

quiet

dinner

present

¬ garb

¬ clean

¬ quiet

clean

garb

quiet

¬ garb ^ ¬ quietgarbDolly

¬ garb ^ ¬ cleangarbCarry

presentquietWrap

dinnercleanCook

PostPreAction

garb ^ clean ^ quietInit

¬ garb ^ dinner ^ presentGoal

So first of all, let's try to ask the question, could the goal conceivably be true? Our
goal is !garbage and dinner and present. Layer 2 contains !garbage and dinner
and present. So it looks like these could possibly be true. They're not
obviously inconsistent.

70

Lecture 12 • 70

clean

garb

cook

wrap

carry

dolly

quiet

dinner

present

¬ garb

¬ clean

¬ quiet

clean

garb

quiet

¬ garb ^ ¬ quietgarbDolly

¬ garb ^ ¬ cleangarbCarry

presentquietWrap

dinnercleanCook

PostPreAction

garb ^ clean ^ quietInit

¬ garb ^ dinner ^ presentGoal

So, we’ll start looking for a plan by finding a way to make not garbage true.

71

Lecture 12 • 71

clean

garb

cook

wrap

carry

dolly

quiet

dinner

present

¬ garb

¬ clean

¬ quiet

clean

garb

quiet

¬ garb ^ ¬ quietgarbDolly

¬ garb ^ ¬ cleangarbCarry

presentquietWrap

dinnercleanCook

PostPreAction

garb ^ clean ^ quietInit

¬ garb ^ dinner ^ presentGoal

We’ll try using the carry action.

72

Lecture 12 • 72

clean

garb

cook

wrap

carry

dolly

quiet

dinner

present

¬ garb

¬ clean

¬ quiet

clean

garb

quiet

¬ garb ^ ¬ quietgarbDolly

¬ garb ^ ¬ cleangarbCarry

presentquietWrap

dinnercleanCook

PostPreAction

garb ^ clean ^ quietInit

¬ garb ^ dinner ^ presentGoal

Now, we’ll try to make dinner true the only way we can, with the cook action.

73

Lecture 12 • 73

clean

garb

cook

wrap

carry

dolly

quiet

dinner

present

¬ garb

¬ clean

¬ quiet

clean

garb

quiet

¬ garb ^ ¬ quietgarbDolly

¬ garb ^ ¬ cleangarbCarry

presentquietWrap

dinnercleanCook

PostPreAction

garb ^ clean ^ quietInit

¬ garb ^ dinner ^ presentGoal

But cook and carry are mutex, so this won’t work.

74

Lecture 12 • 74

clean

garb

cook

wrap

carry

dolly

quiet

dinner

present

¬ garb

¬ clean

¬ quiet

clean

garb

quiet

¬ garb ^ ¬ quietgarbDolly

¬ garb ^ ¬ cleangarbCarry

presentquietWrap

dinnercleanCook

PostPreAction

garb ^ clean ^ quietInit

¬ garb ^ dinner ^ presentGoal

Because there aren’t any other ways to make dinner, we fail, and have to try a
different way of making not garbage true. This time, we’ll try dolly.

75

Lecture 12 • 75

clean

garb

cook

wrap

carry

dolly

quiet

dinner

present

¬ garb

¬ clean

¬ quiet

clean

garb

quiet

¬ garb ^ ¬ quietgarbDolly

¬ garb ^ ¬ cleangarbCarry

presentquietWrap

dinnercleanCook

PostPreAction

garb ^ clean ^ quietInit

¬ garb ^ dinner ^ presentGoal

Now, we can cook dinner, and we don’t have any mutex problems with dolly.

76

Lecture 12 • 76

clean

garb

cook

wrap

carry

dolly

quiet

dinner

present

¬ garb

¬ clean

¬ quiet

clean

garb

quiet

¬ garb ^ ¬ quietgarbDolly

¬ garb ^ ¬ cleangarbCarry

presentquietWrap

dinnercleanCook

PostPreAction

garb ^ clean ^ quietInit

¬ garb ^ dinner ^ presentGoal

We have to make present true as well. The only way of doing that is with wrap, but
wrap is mutex with dolly. So, we fail completely. Sigh.

77

Lecture 12 • 77

clean

garb

cook

wrap

carry

dolly

quiet

dinner

present

¬ garb

¬ clean

¬ quiet

clean

garb

quiet

cook

wrap

carry

dolly

clean

garb

quiet

dinner

present

¬ garb

¬ clean

¬ quiet
¬ garb ^ ¬ quietgarbDolly

¬ garb ^ ¬ cleangarbCarry

presentquietWrap

dinnercleanCook

PostPreAction

garb ^ clean ^ quietInit

¬ garb ^ dinner ^ presentGoal

There’s no way to achieve all of these goals in parallel. So we have to consider a
depth two plan. We start by adding another layer to the plan graph.

78

Lecture 12 • 78

clean

garb

cook

wrap

carry

dolly

quiet

dinner

present

¬ garb

¬ clean

¬ quiet

clean

garb

quiet

cook

wrap

carry

dolly

clean

garb

quiet

dinner

present

¬ garb

¬ clean

¬ quiet
¬ garb ^ ¬ quietgarbDolly

¬ garb ^ ¬ cleangarbCarry

presentquietWrap

dinnercleanCook

PostPreAction

garb ^ clean ^ quietInit

¬ garb ^ dinner ^ presentGoal

We have the same set of mutexes on actions that we had before.

79

Lecture 12 • 79

clean

garb

cook

wrap

carry

dolly

quiet

dinner

present

¬ garb

¬ clean

¬ quiet

clean

garb

quiet

cook

wrap

carry

dolly

clean

garb

quiet

dinner

present

¬ garb

¬ clean

¬ quiet
¬ garb ^ ¬ quietgarbDolly

¬ garb ^ ¬ cleangarbCarry

presentquietWrap

dinnercleanCook

PostPreAction

garb ^ clean ^ quietInit

¬ garb ^ dinner ^ presentGoal

There is also a large set of additional mutexes between maintenance actions for not
garbage, not clean, and not quiet. I’m going to leave them out of this graph, in
the interests of making it readable (and they’re not going to affect the planning
process in this example).

80

Lecture 12 • 80

clean

garb

cook

wrap

carry

dolly

quiet

dinner

present

¬ garb

¬ clean

¬ quiet

clean

garb

quiet

cook

wrap

carry

dolly

clean

garb

quiet

dinner

present

¬ garb

¬ clean

¬ quiet
¬ garb ^ ¬ quietgarbDolly

¬ garb ^ ¬ cleangarbCarry

presentquietWrap

dinnercleanCook

PostPreAction

garb ^ clean ^ quietInit

¬ garb ^ dinner ^ presentGoal

So let’s look at the proposition mutexes in layer 4. We still have that every
proposition is mutex with its negation.

81

Lecture 12 • 81

clean

garb

cook

wrap

carry

dolly

quiet

dinner

present

¬ garb

¬ clean

¬ quiet

clean

garb

quiet

cook

wrap

carry

dolly

clean

garb

quiet

dinner

present

¬ garb

¬ clean

¬ quiet
¬ garb ^ ¬ quietgarbDolly

¬ garb ^ ¬ cleangarbCarry

presentquietWrap

dinnercleanCook

PostPreAction

garb ^ clean ^ quietInit

¬ garb ^ dinner ^ presentGoal

And we get some of the same mutexes that we had in the previous proposition layer.

82

Lecture 12 • 82

clean

garb

cook

wrap

carry

dolly

quiet

dinner

present

¬ garb

¬ clean

¬ quiet

clean

garb

quiet

cook

wrap

carry

dolly

clean

garb

quiet

dinner

present

¬ garb

¬ clean

¬ quiet
¬ garb ^ ¬ quietgarbDolly

¬ garb ^ ¬ cleangarbCarry

presentquietWrap

dinnercleanCook

PostPreAction

garb ^ clean ^ quietInit

¬ garb ^ dinner ^ presentGoal

In layer 2, we had a mutex between dinner and not clean. But we don’t have it in
layer 4, because it’s possible to make dinner true by maintaining it, and making
not clean true by carry. And those two actions are consistent with one another at
level 3.

83

Lecture 12 • 83

clean

garb

cook

wrap

carry

dolly

quiet

dinner

present

¬ garb

¬ clean

¬ quiet

clean

garb

quiet

cook

wrap

carry

dolly

clean

garb

quiet

dinner

present

¬ garb

¬ clean

¬ quiet
¬ garb ^ ¬ quietgarbDolly

¬ garb ^ ¬ cleangarbCarry

presentquietWrap

dinnercleanCook

PostPreAction

garb ^ clean ^ quietInit

¬ garb ^ dinner ^ presentGoal

Similarly, in layer 2 we had a mutex between present and not quiet. But we don’t
have it here because we can make present true by maintaining it and make not
quiet true by dolly.

84

Lecture 12 • 84

clean

garb

cook

wrap

carry

dolly

quiet

dinner

present

¬ garb

¬ clean

¬ quiet

clean

garb

quiet

cook

wrap

carry

dolly

clean

garb

quiet

dinner

present

¬ garb

¬ clean

¬ quiet
¬ garb ^ ¬ quietgarbDolly

¬ garb ^ ¬ cleangarbCarry

presentquietWrap

dinnercleanCook

PostPreAction

garb ^ clean ^ quietInit

¬ garb ^ dinner ^ presentGoal

It’s important to see that, by giving ourselves an added time step, there are fewer
mutexes, and so more things we can accomplish.

85

Lecture 12 • 85

clean

garb

cook

wrap

carry

dolly

quiet

dinner

present

¬ garb

¬ clean

¬ quiet

clean

garb

quiet

cook

wrap

carry

dolly

clean

garb

quiet

dinner

present

¬ garb

¬ clean

¬ quiet
¬ garb ^ ¬ quietgarbDolly

¬ garb ^ ¬ cleangarbCarry

presentquietWrap

dinnercleanCook

PostPreAction

garb ^ clean ^ quietInit

¬ garb ^ dinner ^ presentGoal

Now it’s time to try to find a plan again. All of our goal conditions are present in
the last layer, so let’s start searching.

86

Lecture 12 • 86

clean

garb

cook

wrap

carry

dolly

quiet

dinner

present

¬ garb

¬ clean

¬ quiet

clean

garb

quiet

cook

wrap

carry

dolly

clean

garb

quiet

dinner

present

¬ garb

¬ clean

¬ quiet
¬ garb ^ ¬ quietgarbDolly

¬ garb ^ ¬ cleangarbCarry

presentquietWrap

dinnercleanCook

PostPreAction

garb ^ clean ^ quietInit

¬ garb ^ dinner ^ presentGoal

Starting with not garbage, let’s try to satisfy it with carry.

87

Lecture 12 • 87

clean

garb

cook

wrap

carry

dolly

quiet

dinner

present

¬ garb

¬ clean

¬ quiet

clean

garb

quiet

cook

wrap

carry

dolly

clean

garb

quiet

dinner

present

¬ garb

¬ clean

¬ quiet
¬ garb ^ ¬ quietgarbDolly

¬ garb ^ ¬ cleangarbCarry

presentquietWrap

dinnercleanCook

PostPreAction

garb ^ clean ^ quietInit

¬ garb ^ dinner ^ presentGoal

Now we need to satisfy dinner. Since we already know that cook won’t be
compatible with carry at this level, let’s try maintaining dinner from the
previous time step. (Of course, it’s hard to make a computer as clever as we are,
but these are the kinds of tricks that people do when they’re making a planner
really work efficiently).

88

Lecture 12 • 88

clean

garb

cook

wrap

carry

dolly

quiet

dinner

present

¬ garb

¬ clean

¬ quiet

clean

garb

quiet

cook

wrap

carry

dolly

clean

garb

quiet

dinner

present

¬ garb

¬ clean

¬ quiet
¬ garb ^ ¬ quietgarbDolly

¬ garb ^ ¬ cleangarbCarry

presentquietWrap

dinnercleanCook

PostPreAction

garb ^ clean ^ quietInit

¬ garb ^ dinner ^ presentGoal

Last, we need to satisfy present. Let’s try doing it with wrap.

89

Lecture 12 • 89

clean

garb

cook

wrap

carry

dolly

quiet

dinner

present

¬ garb

¬ clean

¬ quiet

clean

garb

quiet

cook

wrap

carry

dolly

clean

garb

quiet

dinner

present

¬ garb

¬ clean

¬ quiet
¬ garb ^ ¬ quietgarbDolly

¬ garb ^ ¬ cleangarbCarry

presentquietWrap

dinnercleanCook

PostPreAction

garb ^ clean ^ quietInit

¬ garb ^ dinner ^ presentGoal

Subgoals: garb ^ dinner ^ quiet

We found a way to satisfy all of our conditions at level 4. So now we have to take
all the preconditions of the actions we picked and see if we can satisfy them at
level 2. Now our subgoals are garbage and dinner and quiet.

90

Lecture 12 • 90

clean

garb

cook

wrap

carry

dolly

quiet

dinner

present

¬ garb

¬ clean

¬ quiet

clean

garb

quiet

cook

wrap

carry

dolly

clean

garb

quiet

dinner

present

¬ garb

¬ clean

¬ quiet
¬ garb ^ ¬ quietgarbDolly

¬ garb ^ ¬ cleangarbCarry

presentquietWrap

dinnercleanCook

PostPreAction

garb ^ clean ^ quietInit

¬ garb ^ dinner ^ presentGoal

Subgoals: garb ^ dinner ^ quiet

Let’s start by satisfying garbage by maintaining it. (We don’t have any way to
make garbage. Though usually when I cook, it makes garbage!).

91

Lecture 12 • 91

clean

garb

cook

wrap

carry

dolly

quiet

dinner

present

¬ garb

¬ clean

¬ quiet

clean

garb

quiet

cook

wrap

carry

dolly

clean

garb

quiet

dinner

present

¬ garb

¬ clean

¬ quiet
¬ garb ^ ¬ quietgarbDolly

¬ garb ^ ¬ cleangarbCarry

presentquietWrap

dinnercleanCook

PostPreAction

garb ^ clean ^ quietInit

¬ garb ^ dinner ^ presentGoal

Subgoals: garb ^ dinner ^ quiet

We can also easily satisfy quiet by maintaining it.

92

Lecture 12 • 92

clean

garb

cook

wrap

carry

dolly

quiet

dinner

present

¬ garb

¬ clean

¬ quiet

clean

garb

quiet

cook

wrap

carry

dolly

clean

garb

quiet

dinner

present

¬ garb

¬ clean

¬ quiet
¬ garb ^ ¬ quietgarbDolly

¬ garb ^ ¬ cleangarbCarry

presentquietWrap

dinnercleanCook

PostPreAction

garb ^ clean ^ quietInit

¬ garb ^ dinner ^ presentGoal

Subgoals: garb ^ dinner ^ quiet

And we can satisfy dinner with the cook action.

93

Lecture 12 • 93

clean

garb

cook

wrap

carry

dolly

quiet

dinner

present

¬ garb

¬ clean

¬ quiet

clean

garb

quiet

cook

wrap

carry

dolly

clean

garb

quiet

dinner

present

¬ garb

¬ clean

¬ quiet
¬ garb ^ ¬ quietgarbDolly

¬ garb ^ ¬ cleangarbCarry

presentquietWrap

dinnercleanCook

PostPreAction

garb ^ clean ^ quietInit

¬ garb ^ dinner ^ presentGoal

Subgoals: garb ^ dinner ^ quiet

Subgoals: garb ^ clean ^ quiet

Now we have to be sure that we can satisfy all of these preconditions at level 0. Our
subgoals now are garbage, clean, and wrap. They’re all true at level 0, so we’re
done! There were actually a lot of plans that would have worked, but here’s one
of them. If we’re going to do actions in order, this plan will allow us to do cook
then wrap then carry, or cook then carry, then wrap. The crucial thing is that it
forces us to do cook before carry, which we couldn’t enforce in a depth 1 plan.

94

Lecture 12 • 94

Extensions

So the thing is, you can take a planning problem and even a pretty big planning
problem, even some of these blocks-world planning problems where the
operating descriptions have variables in them, and feed it into GraphPlan. All
you have to do is say, "Here's my limited domain of discourse: I have these six
blocks or these five blocks or these twelve blocks." Then you just turn a crank
and generate all the propositions and you generate these graphs that are really
big. I mean, you still at every level, you just have all the possible propositions.
Now, the place where something exponential happens is in the search for a
solution within the graph. That might turn out to be fairly complicated. Even
so, optimized versions of GraphPlan have been very successful in planning
competitions.

95

Lecture 12 • 95

Extensions

• Lots of time optimizations

There are lots of possible extensions to graphplan, which are discussed in detail in
the Weld paper. In particular, we’ve talked about a pretty naïve way of
implementing the algorithm. there are a lot of computational optimizations
possible, that will really make it work much faster.

96

Lecture 12 • 96

Extensions

• Lots of time optimizations
• Disjunctive preconditions
• Universally quantified (sort of) preconditions and

effects

In addition, people have extended graphplan to deal with disjuctive preconditions
and with a kind of universally quantified preconditions and effects. The
universal quantification is really just a kind of finite quantification over all
objects in the domain of discourse.

97

Lecture 12 • 97

Extensions

• Lots of time optimizations
• Disjunctive preconditions
• Universally quantified (sort of) preconditions and

effects
• Conditional planning

Finally, there are extensions to conditional planning, which we’ll talk about at least
a little bit in the next lecture.

