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23. Networks — Links and Switches1 

This handout presents the basic ideas for transmitting digital data over links, and for connecting 
links with switches so that data can pass from lots of sources to lots of destinations. You may 
wish to read chapter 7 of Hennessy and Patterson for a somewhat different treatment, more 
focused on interconnecting the components of a multiprocessor computer. 

Links 

A link is an unreliable FIFO channel. As we mentioned in handout 21, it is an abstraction of a 
point-to-point wire or of a simple broadcast LAN. It is unreliable because noise or other physical 
problems can corrupt messages. 

There are many kinds of physical links, with cost and performance that vary based on length, 
number of drops, and bandwidth. Here are some current examples. Bandwidth is in 
bytes/second2, and the “+” signs mean that software latency must be added. The nature of the 
messages reflects the origins of the link. Computer people prefer variable-size packets, which are 
good for bursty traffic. Communications people have historically preferred bits or bytes, which 
are good for fixed-bandwidth voice traffic and minimize the latency and buffering added by 
collecting voice samples into a message. 

A physical link can be unidirectional (‘simplex’) or bidirectional (‘duplex’). A duplex link may 
operate in both directions at once (‘full-duplex’), or in one direction at a time (‘half-duplex’). A 
pair of simplex links in opposite directions forms a full-duplex link. So does a half-duplex link in 
which the time to reverse direction is negligible, but in this case the peak full-duplex bandwidth 
is half the half-duplex bandwidth. If most of the traffic is in one direction, however, the usable 
bandwidth of a half-duplex link may be nearly the same as that of a full-duplex link. 

To increase the bandwidth of a link, run several copies of it in parallel. This goes by different 
names; ‘space division multiplexing’ and ‘striping’ are two of them. Common examples are: 

Parallel busses, as in the first four lines of the table. 

Switched networks: the telephone system and switched LANs. 

Multiple disks, each holding part of a data block, that can transfer in parallel. 

Cellular telephony, using spatial separation to reuse the same frequencies. 

In the latter two cases the parallelism is being added to links that were originally designed to 
operate alone, so there must be physical switches to connect the parallel links. 

Another use for multiple links is fault tolerance, discussed earlier. 

1 My thanks to Alex Shvartsman for some of the figures in this handout. 

2 Beware: communications people usually quote bits/sec, so network bandwidth tends to be quoted this way. All the 

numbers in the table are in bytes, however, except for the bus width in bits. 


Medium Link Bandwidth Latency Width Message 
Alpha EV7 
chip 

on-chip bus 10 GB/s .8 ns 64 word 

PC board Rambus bus 1.6 GB/s 75 ns 16 memory packet 
PCI I/O bus 266 MB/s 250 ns 32/64 DMA block 

Wires Fibre channel3 125 MB/s 200 ns 1 packet 
IEEE 13944 50 MB/s 1 µs 1 packet 
USB 2 50 MB/s 1 µs 1 ? 
SCSI 40 MB/s 500 ns 16 32 
USB 1.5 MB/s 5 µs 1 ? 

LAN Gigabit 
Ethernet 

125 MB/s 1 + µs 1 packet, 64-1500 B 

Fast Ethernet5 12.5 MB/s 10 + µs 1 packet, 64-1500 B 
Ethernet 1.25 MB/s 100 + µs 1 packet, 64-1500 B 

Wireless 802.11a 6 MB/s 100 + µs 1 packet, < 1500 B 
Fiber (Sonet) OC-48 300 MB/s 5 µs/km 1 byte or 48 B cell 
Coax cable T3 6 MB/s 5 µs/km 1 byte 
Copper pair T1 0.2 MB/s 5 µs/km 1 byte 
Copper pair ISDN 16 KB/s 5 µs/km 1 byte 
Broadcast CAP 16 3 MB/s 3 µs/km 6 MHz byte or cell 

Flow control 

Many links do not have a fixed bandwidth that is known to the sender, because the link is being 
shared (that is, there is multiplexing inside the link) or because the receiver can’t always accept 
data. In particular, fixed bandwidth is bad when traffic is bursty, because it will be either too 
small or too large. If the sender doesn’t know the link bandwidth or can’t be trusted to stay 
below it, some kind of flow control is necessary to match the flow of traffic to the link’s or the 
receiver’s capacity. A link can provide this in two ways, by contention or by scheduling. In this 
case these general strategies take the form of backoff or backpressure. 

Backoff 

In backoff the link drops excess traffic and signals ‘trouble’ to the sender, either explicitly or by 
failing to return an acknowledgment. The sender responds by waiting for a while and then 
retransmitting. The sender increases the wait by some factor (say 2) after every trouble signal 
and decreases it with each trouble-free send. This is called ‘exponential backoff'; when the 

3 M. Sachs and A. Varman, Fibre channel and related standards. IEEE Communications 34, 8 (Aug. 1996), pp 40-
49. 

4 G. Hoffman and D. Moore, IEEE 1394: A ubiquitous bus. Digest of Papers, IEEE COMPCON ’95, 1995, pp 334-

338. 

5 M. Molle and G. Watson, 100Base-T/IEEE 802.12/Packet switching. IEEE Communications 34, 8 (Aug. 1996), pp 

63-73. 
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increasing factor is 2, it is ‘binary exponential backoff’. It is used in the Ethernet6 and in TCP7, 
and is analyzed in some detail in a later section. 

Exponential backoff works because it adjusts the rate of sending so that most packets get 
through. If every sender does this, then every sender’s delay will jiggle around the value at which 
the network is just managing to carry all the traffic. This is because a wait that is too short will 
overload the network, some packets will be lost, and the sender will increase the wait. On the 
other hand, a wait that is too long will always succeed, and the sender will decrease it. Of course 
these statements are probabilistic: sometimes a conservative sender will lose a packet because 
someone else overloaded the network. 

The precise details of how the wait should be lengthened (backed off) and shortened depend on 
the properties of the channel. If the ‘trouble’ signal comes back very quickly and the cost of 
trouble is small, senders can shorten their waits aggressively; this happens in the Ethernet, where 
collisions are detected in at most 64 byte times and abort the transmission immediately, so that 
senders can start with 0 wait for each new message. Under the opposite conditions, senders must 
shorten their waits cautiously; this happens in TCP, where the ‘trouble’ signal is only the lack of 
an acknowledgment, which can only be detected by timeout and which cannot abort the 
transmission immediately. The timeout should be roughly one round-trip time; the fact that in 
TCP it’s often impossible to get a good estimate of the round-trip time is a serious complication. 

An obvious problem with backoff is that it requires all the senders to cooperate. A sender who 
doesn’t play by the rules can get an unfair share of the link resource, and in many cases two such 
senders can cause the total throughput of the entire link to become very small. 

Backpressure 

In backpressure the link tells the sender explicitly how much it can send without suffering losses. 
This can take the form of start and stop signals, or of ‘credits’ that allow a certain amount of 
additional traffic to be sent. The number of unused credits the sender has is called its ‘window’. 
Let b be the bandwidth at which the sender can send when it has permission and r be the time for 
the link to respond to new traffic from the sender. A start–stop scheme can allow rb units of 
traffic between a start and a stop; a link that has to buffer this traffic will overrun and lose traffic 
if r is too large. A credit scheme needs rb credits when the link is idle to keep running at full 
bandwidth; a link will underrun and waste bandwidth if r is too large.8 

Start–stop is used in the Autonet9 (handout 22), and on RS-232 serial lines under the name XON­
XOFF. The Ethernet, although it uses backoff to control acquiring the channel, also uses 
backpressure, in the form of carrier sense, to keep a sender from interrupting another sender that 
has already acquired the channel; this is called ‘deference’. TCP uses credits to allow the receiver 
to control the flow. It also uses backoff to deal with congestion within the link itself (that is, in 

6 R. Metcalfe and D. Boggs: Ethernet: Distributed packet switching for local computer networks. Communications 

of the ACM 19, 395-404 (1976)

7 V. Jacobsen: Congestion avoidance and control. ACM SigComm Conference, 1988, pp 314-329. C. Lefelhocg et 

al., Congestion control for best-effort service. IEEE Network 10, 1 (Jan 1996), pp 10-19.

8 H. Kung and R. Morris, Credit-based flow control for ATM networks. IEEE Network 9, 2 (Mar. 1995), pp 40-48.

9 M. Schroeder et al., Autonet: A high-speed self-configuring local area network using point-to-point links. IEEE 

Journal on Selected Areas in Communication 9, 8 (Oct. 1991), pp 1318-1335. 
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the underlying packet network). Having both mechanisms is confusing, and it’s even more 
confusing (though clever) that the waits required by backoff are coded by fiddling with credits. 

The failure modes of the two backpressure schemes are different. A lost ‘stop’ may cause lost 
data. A lost credit may reduce the bandwidth but doesn’t cause data to be lost. On the other hand, 
‘start’ and ‘stop’ are idempotent, so that a good state is restored just be repeating them. This is 
not true for credits of the form “send n more messages”. There are several ways to get around 
this problem with credits: 

Number the messages, and send credits in the form “n messages after message k”. Such a 
credit resets the sender’s window completely. TCP uses this scheme, counting bytes rather 
than messages. On an unreliable channel, however, it only works if each message carries its 
own number, and this is extra overhead that is serious if the messages are small (for instance, 
ATM cells are only 53 bytes, and only 48 bytes of this are payload). 

Stop sending messages and send a ‘resync’ request. When the receiver gets this it returns an 
absolute rather than an incremental credit. Once the sender gets this it resets its window and 
starts sending again. There are various schemes for avoiding a hiccup during the resync. 

Know the round-trip time between sender and receiver, and keep track of m, the number of 
messages sent during the last round-trip time. The receiver sends an absolute credit n, and the 
sender sets its window to n – m, since there are m messages outstanding that the receiver 
didn’t know about when it issued n credits. This works well for links with no buffering (for 
example, simple wires), because the round-trip time is constant. It works poorly if the link 
has internal buffering, because the round-trip time varies. 

Another form of flow control that is similar to backpressure is called ‘rate-based’. It assigns a 
maximum transmission bandwidth or ‘rate’ to each sender, undertakes to deliver traffic up to that 
bandwidth with high probability, and is free to discard excess traffic. The rate is measured by 
taking a moving average across some time window.10 

Framing 

The idea of framing (sometimes called ‘acquiring sync’) is to take a stream of X’s and turn it into 
a stream of Y’s. An X might be a bit and a Y a byte, or an X might be a byte and a Y a packet. This 
is a parsing problem. It occurs repeatedly in communications, at every level from analog signals 
through bit streams, byte streams, and streams of cells up to encoded procedure calls. We looked 
at this problem abstractly and in the absence of errors when we studied encoding and decoding in 
handout 7. For communication the parsing has to work even though physical problems such as 
noise can generate an arbitrary prefix of X’s before a sequence of X’s that correctly encodes some 
Y’s. 

If an X is big enough to hold a label, framing is easy: You just label each X with the Y it is part of, 
and the position it occupies in that Y. For example, to frame (or encapsulate) an IP packet on the 
Ethernet, just make the ‘protocol type’ field of the packet be ‘IP’, and if the packet is too big to 

10 F. Bonomi and K. Fendick, The rate-based flow control framework for the available bit rate ATM service. IEEE 
Network 9, 2 (Mar. 1995), pp 25-39. 
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fit in an Ethernet packet, break it up into ‘fragments’ and add a part number to each part. The 
receiver collects all the parts and puts them back together.11 The jargon for the entire process is 
‘fragmentation/re-assembly’. 

If X is small, say a bit or a byte, or even the measurement of a signal’s voltage level, more 
cleverness is needed. There are many possibilities, all based on the idea of a ‘sync’ pattern that 
allows the receiver to recognize the start of a Y no matter what the previous sequence of X’s has 
been. 

Certain values of X can be reserved to mark the beginning or the end of a Y. In FDDI12, for 
example, 4 bits of data are coded in 5 bits on the wire (this is called a 4/5 code). This is done 
because the wire doesn’t work if there are too many 0’s or too many 1’s in a row, so it’s not 
possible to simply send the data bytes. However, the wire’s demands are weak enough that 
there are more than 16 allowable 5-bit combinations, and one of these is used as the sync 
mark for the start of a packet.13 If a ‘sync’ appears in the middle of a packet, that is taken as 
an error, and the next legal symbol is the start of a new packet. A simpler version of this idea 
requires at least one transition on every bit (in 10 Mb Ethernet) or byte (in RS-232); the 
absence of a transition for a bit or byte time is a sync. 

Certain sequences of X can be reserved to mark the beginning of a Y. If these sequences occur 
in the data, they must be ‘escaped’ or coded in some other way. A familiar example is C’s 
literal strings, in which '\' is used as an escape, and to represent a '\' you must write '\\'. 
In HDLC an X is a bit, the rule is that more than n 0 bits is a sync for some small value of n, 
and the escape mechanism, called ‘bit-stuffing’, adds a 1 after each sequence of n data zeros 
when sending and removes it when receiving. In RS-232 an X is a high or low voltage level, 
sampled at say 10 times the bit rate, a Y is (usually) 8 data bits plus a ‘start bit’ which must be 
high and a ‘stop bit’ which must be low. Thus every Y begins with a low-high transition 
which determines the phase for the rest of the Y (this is called ‘clock recovery’), and a 
sequence of 9 or more bit-times worth of low is a sync. 

The sequences used for sync can be detected probabilistically. In telephony T-1 signaling 
there is a ‘frame’ of 193 bits, one sync bit and 192 data bits. The data bits can be arbitrary, 
but they are xored with a ‘scrambling’ sequence to make them pseudo-random. The encoding 
specifies a definite pattern (say “010101”) for the sync bits of successive frames (which are 
not scrambled). The receiver decodes by guessing the start of a frame and checking a number 
of frames for the sync pattern. If it’s not there, the receiver makes a different guess. After at 
most 193 tries it will have guessed right. This takes a lot longer than the previous schemes to 
acquire sync, but it uses a constant amount of extra bandwidth (unlike escape schemes), and 
much less than fixed sync schemes: 1/193 for T-1 instead of 1/5 for FDDI, 1/2 for Ethernet, 
or 1/10 for RS-232. 

11 Actually fragmentation is usually done at the IP level itself, but the idea is the same. 

12 F. Ross: An overview of FDDI: The fiber distributed data interface. IEEE Journal on Selected Areas in 

Communication 7 (1989)

13 Another symbol is used to encode a token, and several others are used for somewhat frivolous purposes. 
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Multiplexing 

Multiplexing is a way to share a link among multiple senders and receivers. It raises two issues: 

Arbitration (for the sender)—when to send. 

Addressing (for the receiver)—when to receive. 

A ‘multiplexer’ implements arbitration; it combines traffic from several input links onto one 
output link. A ‘demultiplexer’ implements addressing; it separates traffic from one input link 
onto several output links. The multiplexed links are called ‘sub-channels’ of the one link, and 
each one has an address. Figure 1 shows various examples; the ovals are buffers. 

arbitration 

demux 

addressing 

perfect (lossless) mux 

output buffered mux broadcast 

input buffered mux 

unbuffered mux 

Fig. 1.  Multiplexers and demultiplexers. Traffic flows from left to right. Fatter lines are faster channels. 

There are three main reasons for multiplexers: 

•	 Traffic may flow between one node and many on a single wire, for example when the one 
node is a busy server or the head end of a cable TV system. 

•	 One wide wire may be cheaper than many narrow ones, because there is only one thing to 
install and maintain, or because there is only one connection at the other end. Of course the 
wide wire is more expensive than a single narrow one, and the multiplexers must also be paid 
for. 

•	 Traffic aggregated from several links may be more predictable than traffic from a single one. 
This happens when traffic is bursty (varies in bandwidth) but uncorrelated on the input links. 
An extreme form of bursty traffic is either absent or present at full bandwidth. This is 
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standard in telephony, where extensive measurements of line utilization have shown that it’s 
very unlikely for more than 10% of the lines to be active at one time, at least for voice calls. 

There are many techniques for multiplexing. In the analog domain: 

•	 Frequency division (FDM) uses a separate frequency band for each sub-channel, taking 
advantage of the fact that eint is a convenient basis set of orthogonal functions. The address is 
the frequency band of the sub-channel. FDM is used to subdivide the electromagnetic 
spectrum in free space, on cables, and on optical fibers. On fibers it’s usually called ‘wave 
division multiplexing’, and they talk about wavelength rather than frequency, but of course 
it’s the same thing. 

•	 Code division (CDM, usually called CDMA for ‘code division multiple access’) uses a 
different coordinate system in which a basis vector is a time-dependent sequence of 
frequencies. This smears out the cross-talk between different sub-channels. The address is the 
‘code’, the sequence of frequencies. CDM is used for military communications and in newer 
varieties of cellular telephony. Figure 2 illustrates the simplest form of CDM, in which n 
senders share a digital channel. Bits on the channel have length 1, each sender’s bits have 
length n (5 in the figure), and a sender has an n-bit ‘code’ (10010 in the figure) which it xor’s 
with its current data bit. The receiver xor’s the code in again and looks for either all zeros or 
all ones. If it sees something intermediate, that is interference from a sender with a different 
code. If the codes are sufficiently orthogonal (agree in few enough bits), the contributions of 
other senders will cancel out. Clearly longer code words work better. 

Data 101 

Code 10010 

Send 01101 
10010 
01101 

Receive with 
code 10010 

Receive with 
code 01000 

0 5 

3 2 2 

5 

Fig 2: Simple code division multiplexing 

In the digital domain time-division multiplexing (TDM) is the standard method. It comes in two 
flavors: 

—Fixed TDM, in which n sub-channels are multiplexed by dividing the data sequence on the 
main channel into fixed-size slots (single bits, bytes, or whatever) and assigning every nth slot to 
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the same sub-channel. Usually all the slots are the same size, but it’s sufficient for the sequence 
of slot sizes to be fixed. The 1.5 Mbit/sec T1 line that we discussed earlier, for example, has 24 
sub-channels and ‘frames’ of 193 bits. One bit marks the start of the frame, after which the first 
byte belongs to sub-channel 1, the second to sub-channel 2, and so forth. Slots are numbered 
from the start of the frame, and a sub-channel’s slot number is its address. Note that this scheme 
requires framing to find the start of the frame (hence the name). But the addressing has no direct 
code (there is an “internal fragmentation” cost if the fixed channels are not fully utilized). 

—Variable TDM, in which the data sequence on the main channel is divided into ‘packets’. One 
packet carries data for one sub-channel, and the address of the sub-channel appears explicitly in 
the packet. If the packets are fixed size, they are often called ‘cells’, as in the Asynchronous 
Transfer Mode (ATM) networking standard. Fixed-size packets are used in other contexts, 
however, for instance to carry load and store messages on a programmed I/O bus. Variable sized 
packets (up to some maximum that either is fixed or depends on the link) are usual in computer 
networking, for example on the Ethernet, token ring, FDDI, or Internet, as well as for DMA bursts 
on I/O busses. 

All these methods fix the division of bandwidth among sub-channels except for variable TDM, 
which is thus better suited to handle the burstiness of computer traffic. This is the only 
architectural difference among them. But there are other architectural differences among 
multiplexers, resulting from the different ways of coding the basic function of arbitrating among 
the input channels. The fixed schemes do this in a fixed way that is determined which the sub-
channels are assigned. This is illustrated at the top of figure 1, where the wide main channel has 
enough bandwidth to carry all the traffic the input channels can offer. Arbitration is still 
necessary when a sub-channel is assigned to an input channel; this operation is usually called 
‘circuit setup’. 

With variable TDM there are many ways to arbitrate, but they fall into two main classes, which 
parallel the two methods of flow control described in the section on links above: 

•	 Collision (parallel to backoff): an input channel simply sends its traffic, but has some way to 
tell whether the traffic was accepted. If not, it ‘backs off’ by waiting for a while, and then 
retries. The input channel can get an explicit and immediate collision signal, as on the 
Ethernet, it can get a delayed collision signal in the form of a ‘negative acknowledgment’, or 
it can infer a collision from the lack of an acknowledgment, as in TCP. 

•	 Scheduling (parallel to backpressure): an input channel makes a request for service and the 
multiplexer eventually grants it; I/O busses and token rings work this way. Granting can be 
centralized, as in many I/O busses, or distributed, as in a daisy-chained bus or a token ring 
like FDDI. 

Flow control means buffering, as we saw earlier, and there are several ways to arrange buffering 
around a multiplexer, shown on the left side of figure 1. Having the buffers near the arbitration 
point is good because it reduces the round-trip time r and hence the size of the buffers. Output 
buffering is good because it allows arbitration to ignore contention for the output until the buffer 
fills up, but the buffer may cost more because it has to accept traffic at the total bandwidth of all 
the inputs. A switch implemented by a shared memory pays this cost automatically, and the 
shared memory acts as a shared buffer for all the outputs. 
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A multiplexer can be centralized, like a T1 multiplexer or a crosspoint in a crossbar switch, or it 
can be distributed along a bus. It seems natural to use scheduling with a centralized multiplexer 
and collision with a distributed one, but the examples of the Monarch memory switch14 and the 
token ring described below show that the other combinations are also possible. 

Multiplexers can be cascaded to increase the fan-in. This structure is usually combined with a 
converter. For example, 24 voice lines, each with a bandwidth of 64 Kb/s, are multiplexed to one 
1.5 Mb/s T1 line, 30 of these are multiplexed to one 45 Mb/s T3 line, and 50 of these are 
multiplexed to one 2.4 Gb/s OC-48 fiber which carries 40,000 voice sub-channels. In the Vax 
8800, 16 Unibuses are multiplexed to one BI bus, and 4 of these are multiplexed to one internal 
processor-memory bus. 

Demultiplexing uses the same physical mechanisms as multiplexing, since one is not much use 
without the other. There is no arbitration, however; instead, there is addressing, since the input 
channel must select the proper output channel to receive each sub-channel. Again both 
centralized and distributed versions are possible, as the right side of figure 1 shows. A distributed 
implementation broadcasts the input channel to all the output channels, and an address decoder 
picks off the sub-channel as its data fly past. Either way it’s easy to broadcast a sub-channel to 
any number of output channels. 

Broadcast networks 

From the viewpoint of the preceding discussion of links, a broadcast network is a link that carries 
packets, roughly one at a time, and has lots of receivers, all of which see all the packets. Each 
packet carries a destination address, each receiver knows its own address, and a receiver’s job is 
to pick out its packets. It’s also possible to view a broadcast network as a special kind of 
switched network, taking the viewpoint of the next section. 

Viewed as a link, a broadcast network has to solve the problems of arbitration and addressing. 
Addressing is simple, since all the receivers see all the packets. All that is needed is ‘address 
filtering’ in the receiver. If a receiver has more than one address the code for this may get tricky, 
but a simple, if costly, fallback position is for the receiver to accept all the packets, and rely on 
some higher-level mechanism to sort out which ones are really meant for it. 

The tricky part is arbitration. A computer’s I/O bus is an example of a broadcast network, and it 
is one in which each device requests service, and a central ‘arbiter’ grants bus access to one 
device at a time. In nearly all broadcast networks that are called networks, it is an article of 
religion that there is no central arbiter, because that would be a single point of failure, and 
another scheme would be required so that the distributed nodes could communicate with it15. 
Instead, the task is distributed among all the senders. As with link arbitration in general, there are 
two ways to do it: scheduling and contention. 

14 R. Rettberg et al.: The Monarch parallel processor hardware design. IEEE Computer 23, 18-30 (1990)

15 There are times when this religion is inappropriate. For instance, in a network based on cable TV there is a highly

reliable place to put the central arbiter: at the head end (or, in a fiber-to-the-neighborhood system, in the fiber-to-

coax converter. And by measuring the round-trip delays between the head end and each node, the head end can 

broadcast “node n can make its request now” messages with timing which ensures that a request will never collide 

with another request or with other traffic.


6.826—Principles of Computer Systems 2002 

Arbitration by scheduling: Token rings 

Scheduling is deterministic, and the broadcast networks that use it are called ‘token rings’. The 
idea is that each node is connected to two neighbors, and the resulting line is closed into a circle 
or ring by connecting the two ends. Bits travel around the ring in one direction. Except when it is 
sending or receiving its own packets, a node retransmits every bit it receives. A single ‘token’ 
circulates around the ring, and a node can send when the token arrives at the node. After sending 
one or more packets, the node regenerates the token so that the next node can send. When its 
packets have traveled all the way around the ring and returned, the node ‘strips’ them from the 
ring. This results in round-robin scheduling, although there are various ways to add priorities and 
semi-synchronous service. 

Node 

Node Node 

Node 
token 

Rings are difficult to engineer because of the closure properties they need to have: 

•	 Clock synchronization: each node transmits everything that it receives except for sync marks 
and its own packets. It’s not possible to simply use the receive clock for transmitting because 
errors in decoding the clock will accumulate, so the node must generate its own clock. 
However, it must keep this clock very close to the clock of the preceding node on the ring to 
keep from having to add sync marks or buffer a lot of data. 

•	 Maintaining the single token: with multiple tokens the broadcasting scheme fails. With no 
tokens, no one can send. So each node must monitor the ring. When it finds a bad state, it 
cooperates with other nodes to clear the ring and elect a ‘leader’ who regenerates the token. 
The strategy for election is that each node has a unique ID. A node starts an election by 
broadcasting its ID. When a node receives the ID of another node, it forwards it unless its 
own ID is larger, in which case it sends its own ID. When a node receives its own ID, it 
becomes the leader; this works because every other node has seen the leader’s ID and 
determined that it is larger than its own. Compare this with the Paxos scheme for electing a 
leader (in handout 18). 

•	 Preserving the ring connectivity in spite of failures. In a simple ring, the failure of a single 
node or link breaks the ring and stops the network from working at all. A ‘dual-attachment’ 
ring is actually two rings, which can run in parallel when there are no failures. If a node fails, 
splicing the two rings together as shown in figure 3 restores a single ring. Tolerating a single 
failure can be useful for a ring that runs in a controlled environment like a machine room, but 
is not of much value for a LAN where there is no reason to believe that only one node or link 
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will fail. FDDI has dual attachment because it was originally designed as a machine room 
interconnect; today this feature adds complexity and confuses customers. 

Fig. 3: A dual-attachment ring tolerates failure of one node 

•	 A practical way to solve this problem is to connect all the nodes to a single ‘hub’ in a so-
called ‘star’ configuration, as shown in figure 4. The hub detects when a node fails and cuts it 
out of the ring. If the hub fails, of course, the entire ring goes down, but the hub is a simple, 
special-purpose device installed in a wiring closet or machine room, so it’s much less likely 
to fail than a node. The drawback of a hub is that it contains much of the hardware needed for 
the switches discussed in the next lecture, but doesn’t provide any of the performance gains 
that switches do. 

Fig. 4: A ring with a hub tolerates multiple failures 

In spite of these problems, two token rings are in wide use (though much less wide than Ethernet, 
and rapidly declining): the IBM token ring and FDDI. In the case of the IBM token ring this 
happened because of IBM’s marketing prowess; the salesmen persuaded bankers that they didn’t 
want precious packets carrying dollars to collide on the Ethernet. In the case of FDDI it happened 
because most people were busy deploying Ethernet and developing Ethernet bridges and 
switches; the FDDI standard gained momentum before anyone noticed that it’s not very good. 

Arbitration by contention: Ethernet 

Contention, using backoff, is probabilistic, as we saw when we discussed backoff on links. It 
wastes some bandwidth in unsuccessful transmissions. In the case of a broadcast LAN, 
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bandwidth is wasted whenever two packets overlap at the receiver; this is called a ‘collision’. 
How often does it happen? 

In a ‘slotted Aloha’ network a node can’t tell that anyone else is sending; this model is 
appropriate for the radio transmission from feeble terminals to a central hub that was used in the 
original Aloha network. If everyone sends the same size packet (desirable in this situation 
because long packets are more likely to collide) and the senders are synchronized, we can think 
of time as a sequence of ‘slots’, each one packet long. In this situation exponential backoff gives 
an efficiency of 1/e = .37 (see below). 

If a node that isn’t sending can tell when someone else is sending (‘carrier sense’), then a 
potential sender can ‘defer’ to a current sender. This means that once a sender’s signal has 
reached all the nodes without a collision, it has ‘acquired’ the medium and will be able to send 
the rest of its packet without further danger of collision. If a sending node can tell when someone 
else is sending (‘collision detection’) both can stop immediately and back off. Both carrier sense 
and collision detection are possible on a shared bus and are used in the Ethernet. They are also 
possible in a system with a head end that can hear all the nodes, even if the nodes can’t hear each 
other: the head end sends a collision signal whenever it hears more than one sender. 

packet packet packet idle 

Contention 
slots 

packet 

Contention time 
interval 

The critical parameter for a ‘CSMA/CD’ (Carrier Sense Multiple Access/Collision Detection) 
network like the Ethernet is the round-trip time for a signal to get from one node to another and 
back; see the figure below. After a maximum round-trip time RT without a collision, a sender 
knows it has acquired the medium. For the Ethernet this time is about 50 µs = 64 bytes at the 10 
Mbits/sec transmission time; this comes from a maximum diameter of 2 km = 10 µs (at 5 µs/km 
for signal propagation in cable), 10 µs for the time a receiver needs to read the ‘preamble’ of the 
packet and either synchronize with the clock or detect a collision, and 5 µs to pass through a 
maximum of two repeaters, which is 25 µs, times 2 for the round trip. A packet must be at least 
this long or the sender might finish sending it before detecting a collision, in which case it 
wouldn’t know whether the transmission was successful. 

The 100 Mbits/sec fast Ethernet has the same minimum packet size, and hence a maximum 
diameter of 5 µs, 10 times smaller. Gigabit Ethernet has a maximum diameter of .5 µs or 100 m. 
However, it normally operates in ‘full-duplex’ mode, in which a wire connects only two nodes 
and is used in only one direction, so that two wires are needed for each pair of nodes. With this 
arrangement only one node ever sends on a given wire, so there is no multiplexing and hence no 
need for arbitration. The CSMA/CD stuff is still in the standard because any change to the 
standard would mean a whole new standards process, during which lots of people would try to 

Handout 23. Networks — Links and Switches 11 Handout 23. Networks — Links and Switches 12 



6.826—Principles of Computer Systems 2002 

introduce their own crazy ideas. It’s much faster and safer to leave in the unused features. In any 
case, the logic for CSMA/CD must be in the chips so that they can run at the slower speeds as 
well, in order to ensure that the network will still work no matter how it’s wired up. 

time 

Node B 

Node A 

Distance 
on bus 

B 
starts 

B 
heard 

A 
Bus 
idle 

RT 

A 
starts A 

heard 
B 

Here is how to calculate the throughput of Ethernet. If there are k nodes trying to send, p is the 
probability of one station sending, and r is the round trip time, then the probability that one of the 
nodes will succeed is A = kp(1-p)k-1. This has a maximum at p=1/k, and the limit of the 
maximum for large k is 1/e = .37. So if the packets are all of minimum length this is the 
efficiency. The expected number of tries is 1/A = e = 2.7 at this maximum, including the 
successful transmission. The waste, also called the ‘contention interval’, is therefore 1.7r. For 
packets of length l the efficiency is l/(l + 1.7r)=1/(1 + 1.7r/l) ~ 1 - 1.7r/l when 1.7r/l is small. 
The biggest packet allowed on the Ethernet is 1.5 Kbytes = 20 r, and this yields an efficiency of 
91.5% for the maximum r. Most networks have a much smaller r than the maximum, and 
correspondingly higher efficiency. 

But how do we get all the nodes to behave so that p=1/k? This is the magic of exponential 
backoff. A is quite sensitive to p, so if several nodes are estimating k too small they will fail and 
increase their estimate. With carrier sense and collision detect, it’s OK to start the estimate at 0 
each time as long as you increase it rapidly. An Ethernet node does this, doubling its estimate at 
each backoff by doubling its maximum backoff time, and making it smaller by resetting its 
backoff time to 0 after each successful transmission. Of course each node must chose its actual 
backoff time randomly in the interval [0 .. maximum backoff]. As long as all the nodes obey the 
rules, they share the medium fairly, with one exception: if there are very few nodes, say two, and 
one has lots of packets to send, it will tend to ‘capture’ the network because it always starts with 
0 backoff, whereas the other nodes have experienced collisions and therefore has a higher 
backoff. 

The TCP version of exponential backoff doesn’t have the benefit of carrier sense or collision 
detection. On the other hand, routers have some buffering, so it’s not necessary to avoid 
collisions completely. As a result, TCP has ‘slow start’; it transmits slowly until it gets some 
acknowledgments, and then speeds up. When it starts losing packets, it slows down. Thus each 
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sender’s estimate of k oscillates around the true value (which of course is always changing as 
well). 

All versions of backoff arbitration have the problem that a selfish sender that doesn’t obey the 
rules can get more than its share. This isn’t a problem for Ethernet because there are very few 
sources of interface chips, and each one has been careful engineered to behave correctly. For 
TCP there are similarly few sources of widely used code, but on the other hand the code can 
fairly easily be patched to misbehave. This doesn’t have much benefit for clients in the Internet, 
however, since most traffic is from servers to clients. It might have some benefit for servers, but 
they are usually run by organizations that can be made to suffer if detected in misbehavior. So in 
both cases social mechanisms keep things working. 

Since the Ethernet works by sharing a passive medium, a failing node can only cause trouble by 
‘babbling’, transmitting more than the protocol allows. The most likely form of babbling is 
transmitting all the time, and Ethernet interfaces have a very simple way of detecting this and 
shutting off the transmitter. 

Most Ethernet installations do not use a single wire with all the nodes attached to it. Although 
this configuration is possible, the hub arrangement shown in figure 5 is much more common 
(contrary to the expectations of the Ethernet’s designers). An Ethernet hub just repeats an 
incoming signal to all the nodes. Hub wiring has three big advantages: 

It’s easier to run Ethernet wiring in parallel with telephone wiring, which runs to a hub. 

The hub is a good place to put sensors that can measure traffic from each node and switches 
that can shut off faulty or suspicious nodes. 

Once wiring goes to a hub, it’s easy to replace the simple repeating hub with a more 
complicated one that does some amount of switching and thus increases the total bandwidth. 
It’s even possible to put in a multi-protocol hub that can detect what protocol each node is 
using and adjust itself accordingly. This arrangement is standard for fast Ethernet, which runs 
at 100 Mbits/sec instead of 10, but is otherwise very similar. A fast Ethernet hub 
automatically handles either speed on each of its ports. 

Fig. 5: An Ethernet with a hub can switch out failed nodes 
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A drawback is that the hub is a single point of failure. Since it is very simple, this is not a major 
problem. It would be possible to connect each network interface to two hubs, and switch to a 
backup if the main hub fails, but people have not found it necessary to do this. Instead, nodes 
that need very high availability of the network have two network interfaces connected to two 
different hubs. 

(a) The usual representation of a switch 

mux demux 

full bandwidth 

limited bandwidth 

(b) Mux–demux code 

demux mux 

= 

(c) Demux–mux code, usually drawn as a crossbar 

Fig. 6.  Switches. 
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Switches 

The modern trend in local area networks, however, is to abandon broadcast and replace hubs 
with switches. A switch has much more silicon than a hub, but silicon follows Moore’s law and 
gets cheaper by 2x every 18 months. The cost of the wires, connectors, and packaging is the 
same, and there is much more aggregate bandwidth. Furthermore, a switch can have a number of 
slow ports and a few fast ones, which is exactly what you want to connect a local group of clients 
to a higher bandwidth ‘backbone’ network that has more global scope. 

In the rest this handout we describe the different kinds of switches, and consider ways of 
connecting switches with links to form a larger link or switch. 

A switch is a generalization of a multiplexer or demultiplexer. Instead of connecting one link to 
many, it connects many links to many. Figure 6(a) is the usual drawing for a switch, with the 
input links on the left and the output links on the right. We view the links as simplex, but usually 
they are paired to form full-duplex links so that every input link has a corresponding output link 
which sends data in the reverse direction. Often the input and output links are connected to the 
same nodes, so that the switch allows any node to send to any other. 

A basic switch can be built out of multiplexers and demultiplexers in the two ways shown in 
figure 6(b) and 6(c). The latter is sometimes called a ‘space-division’ switch since there are 
separate multiplexers and demultiplexers for each link. Such a switch can accept traffic from 
every link provided each is connected to a different output link. With full-bandwidth 
multiplexers this restriction can be lifted, usually at a considerable cost. If it isn’t, then the switch 
must arbitrate among the input links, generalizing the arbitration done by its component 
multiplexers, and if input traffic is not reordered the average switch bandwidth is limited to 58% 
of the maximum by ‘head-of-line blocking’.16 

Some examples reveal the range of current technology. The range in latencies for the LAN 
switches and IP routers is because they receive an entire packet before starting to send it on. For 
Email routers, latency is not usually considered important. 

Medium Bandwidth Latency Links 
Alpha chip register file 60 GB/s .8 ns 6 
Wires T3D 122 GB/s 1 µs 2K 
LAN gigabit 

Ethernet 
4 5-100 µs 32 

FDDI Gigaswitch 275 10–400 µs 22 
Switched Ethernet 40 MB/s 100–1200 µs 32 

IP router many 1-6400 MB/s 50–5000 µs 16 
Email router SMTP 10-1000 KB/s 1-100 s many 
Copper pair Central office 80 MB/s 125 µs 50K 

Link 

Cray 
Switched GB/s 

MB/s 

Storage can serve as a switch of the kind shown in figure 6(b). The storage device is the 
common channel, and queues keep track of the addresses that input and output links should use. 

16 M. Karol et al., Input versus output queuing on a space-division packet switch. IEEE Transactions on 
Communications 35, 12 (Dec. 1987), pp 1347-1356. 
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If the switching is coded in software, the queues are kept in the same storage, but sometimes they 
are maintained separately. Bridges and routers usually code their switches this way. 

Pipelines 

What can we make out of a collection of links and switches. The simplest thing to do is to 
concatenate two links using a connecting node, as in figure 7, making a longer link. This 
structure is sometimes called a ‘pipeline’. 

3 2 

concatenate 

3 4 2 

Fig. 7.  Composing switches by concatenating. 

The only interesting thing about it is the rules for forwarding a single traffic unit: 

Can the unit start to be forwarded before it is completely received (‘wormholes’ or ‘cut­
through’)17, and 

Can parts of two units be intermixed on the same link (‘interleaving’), or must an entire unit 
be sent before the next one can start? 

Node 

L1

Store and L2

forward L3
 Time 

Time = Links * (Latency + Time-on-link) 

Node 

L1Wormhole L2 
L3 Time 

Time = Links * Latency + Time-on-link 

As we shall see, wormholes give better performance when the time to send a unit is not small, 
and often it is not because often a unit is an entire packet. Furthermore, wormholes mean that a 
switch need not buffer an entire packet. 

The latency of the composite link is the total delay of its component links (the time for a single 
bit to traverse the link) plus a term that reflects the time the unit spends entering links (or leaving 

17 L. Ni and P. McKinley: A survey of wormhole routing techniques in direct networks. IEEE Computer 26, 62-76 
(1993). 
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them, which takes the same time). With no wormholes a unit doesn’t start into link i until all of it 
has left link i-1, so this term is the sum of the times the unit spends entering each link (the size of 
the unit divided by the bandwidth of the link). With wormholes and interleaving, it is the time 
entering the slowest link, assuming that the granularity of interleaving is fine enough. With 
wormholes but without interleaving, each point where a link feeds a slower one adds the 
difference in the time a unit spends entering them; where a link feeds a faster one there is no 
added time because the faster link gobbles up the unit as fast as the slower one can deliver it. 

B2 Bn 

L2 L3 Ln 

B1 B3 

L1 
Latency = L1 + L2 + L3 + Ln 

This rule means that a sequence of links with increasing times is equivalent to the slowest, and a 
sequence with decreasing times to the fastest, so we can summarize the path as alternating slow 
and fast links s1 f1 s2 f2 ... sn fn (where fn could be null), and the entering time is the total time to 
enter slow links minus the total time to enter fast links. We summarize these facts: 

Wormhole Interleaving Time on links 
No Σ ti 
Yes Σ tsi – Σ tfi = Σ (tsi – tfi ) 
Yes ax ti 

— 
No 

mYes 

The moral is to use either wormholes or small units, and to watch out for alternating fast and 
slow links if you don’t have interleaving. However, a unit shouldn’t be too small on a variable 
TDM link because it must always carry the overhead of its address. Thus ATM cells, with 48 bytes 
of payload and 5 bytes of overhead, are about the smallest practical units (though the Cambridge 
slotted ring used cells with 2 bytes of payload). This is not an issue for fixed TDM, and indeed 
telephony uses 8 bit units. 

There is no need to use wormholes for ATM cells, since the time to send 53 bytes is small in the 
intended applications. But Autonet, with packets that take milliseconds to transmit, uses 
wormholes, as do multiprocessors like the J-machine18 which have short messages but care about 
every microsecond of latency and every byte of network buffering. The same considerations 
apply to pipelines. 

18 W. Dally: A universal parallel computer architecture. New Generation Computing 11, 227-249 (1993). 
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Meshes 

If we replace the connectors with switch nodes, we can assemble a mesh like the one in figure 8. 
The mesh can code the bigger switch above it; note that this switch has the same nodes on the 
input and output links. The heavy lines in both the mesh and the switch show the path from node 
3 to node 2. The pattern of links between internal switches is called the ‘topology’ of the mesh. 
The figure is oversimplified in at least two ways: Any of the intermediate nodes might also be an 
end node, and the Internet has 300 million nodes rather than 4. 

The new mechanism we need to make this work is routing, which converts an address into a 
‘path’, a sequence of decisions about what output link to use at each switch. Routing is done with 
a map from addresses to output links at each switch. In addition the address may change along 
the path; this is coded with a second map, from input addresses to output addresses. 

1 

1 

2 3 

4 

route 

b 
a 

c 
e d 

5i 

1

2 2


Abstract 3 3

4 4


Concrete 

Fig. 8. Composing switches in a mesh. 

What spec does a mesh network satisfy? We saw earlier that a broadcast network provides 
unreliable FIFO delivery. In general, a mesh provides unreliable unordered delivery, because the 
routes can change, allowing one packet to overtake another, even if the links are FIFO. This is 
fine for IP on the Internet, which doesn’t promise FIFO delivery. When switches are used to 
extend a broadcast LAN transparently, however, great care has to be taken in changing routes to 
preserve the FIFO property, even though it has very little value to most clients. This use of 
switching is called ‘bridging’. 

Addresses 

There are three kinds of addresses. In order of increasing cost to code the maps, and increasing 
convenience to the end nodes, they are: 

•	 Source addresses: the address is just the sequence of output links to use; each switch strips 
off the one it uses. In figure 8, the source addresses of node 2 from node 3 are (d, e) and (a, 
b, c, e).The IBM token ring and several multiprocessors (including the MIT J-machine and the 
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Cosmic Cube19) use this. A variation distributes the source route across the path; the address 
(called a ‘virtual circuit’) is local to a link, and each switch knows how to map the addresses 
on its incoming links. ATM uses this variation, and so does the ‘shuffle-exchange’ network 
shown below. 

000 
001 
010 
011 
100 
101 
110 
111 

000 
001 
010 
011 
100 
101 
110 
111 

Routing positions 

Broadcast positions 

1 0 1 

•	 Hierarchical addresses: the address is hierarchical. Each switch corresponds to one node in 
the address tree and knows what links to use to get to its siblings, children, and parent. The 
Internet20 and cascaded I/O busses use this. 

•	 Flat addresses: the address is flat, and each switch knows what links to use for every address. 
Broadcast networks like Ethernet and FDDI use this; the code is easy since every receiver sees 
all the addresses and can just pick off those destined for it. Bridged LANs also use flat 
routing, falling back on broadcast when the bridges lack information about where an end-
node address is. The mechanism for routing 800 telephone numbers is mainly flat. 

Deadlock 

Traffic traversing a composite link needs a sequence of resources (most often buffer space) to 
reach the end. Usually it acquires a resource while holding on to existing ones, since you need to 
get the next buffer before you can free the current one. This means that deadlock is possible. The 
left side of figure 9 shows the simplest case: two nodes with a single buffer pool in each, and 
links connecting them. If traffic must acquire a buffer at the destination before giving up its 
buffer at the source, it is possible for all the messages to deadlock waiting for each other to 
release their buffers.21 

The simple rule for avoiding deadlock is well known (see handout 14): define a partial order on 
the resources, and require that a resource cannot be acquired unless it is greater in this order than 
all the resources already held. In our application it is usual to treat the links as resources and 
require paths to be increasing in the link order. Of course the ordering relation must be big 
enough to ensure that a path exists from every sender to every receiver. 

19 C. Seitz: The cosmic cube. Communications of the ACM 28, 22-33 (1985)

20 W. Stallings, IPV6: The new Internet protocol. IEEE Communications 34, 7 (Jul 1996), pp 96-109.

21 Actually, this simple configuration can only deadlock if each node fills up with traffic going to the other node. 

This is very unlikely; usually some of the buffers will hold traffic for other nodes to the left or right, and this will 

drain out in time. 
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4 1 

2 3 

1 4 

3 2 

Fig. 9. Deadlock. The version on the left is simplest, but can’t happen with more than 1 buffer/node 

The right side of figure 9 shows what can happen even at one cell of a simple rectangular grid if 
this problem is ignored. The four paths use links as follows: 1—EN, 2—NW, 3—WS, 4—SE. 
There is no ordering that will allow all four paths, and if each path acquires its first link there is 
deadlock. 

The standard order on a grid is: l1 < l2 iff they are head to tail, and either they point in the same 
direction, or l1 goes east or west and l2 goes north or south. So the rule is: “Go east or west first, 
then north or south.” On a tree l1 < l2 iff they are head to tail, and either both go up toward the 
root, or l2 goes down away from the root. The rule is thus “First up, then down.” On a DAG 
impose a spanning tree and label all the other links up or down arbitrarily; the Autonet does this. 

Note that this kind of rule for preventing deadlock may conflict with an attempt to optimize the 
use of resources by sending traffic on the least busy links. 

Although figure 9 suggests that the resources being allocated are the links, this is a bit 
misleading. It is the buffers in the receiving nodes that are the physical resource in short supply. 
This means that it’s possible to multiplex several ‘virtual’ links on a single physical link, by 
dedicating separate buffers to each virtual link. Now the virtual links are resources that can run 
out, but the physical links are not. The Autonet does not do this, but it could, and other mesh 
networks such as AN222 have done so, as do modern multiprocessor interconnects. 

Topology 

In the remainder of the handout, we study mechanisms for routing in more detail.23 It’s 
convenient to divide the problem into two parts: computing the topology of the network, and 
making routing decisions based on some topology. We begin with topology, in the context of a 
collection of links and nodes identified by index types L and N. A topology T specifies the nodes 
that each link connects. For this description it’s not useful to distinguish routers from hosts or 
end-nodes, and indeed in most networks a node can play both roles. 

22 T. Anderson et al., High-speed switch scheduling for local area networks. ACM Transactions on Computer 

Systems 11, 4 (Nov. 1993), pp 319-352.

23 This is a complicated subject, and our treatment leaves out a lot. An excellent reference is R. Perlman, 

Interconnections: Bridges and Routers , Addison-Wesley, 1992. Chapter 4 on source routing bridges is best left 

unread. 
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These are simplex links, with a single sender and a single receiver. We have seen that a 
broadcast LAN can be viewed as a link with n senders and receivers. However, for our current 
purposes it is better to model it as a switch with 2n links to and from each attached node. 
Concretely, we can think of a link to the switch as the physical path from a node onto the LAN, 
and a link from the switch as the physical path the other way together with the address filtering 
mechanism. 

Note that a path is not uniquely determined by a sequence of nodes (much less by endpoints), 
because there may be multiple links between two nodes. This is why we define a path as SEQ L 
rather than SEQ N. Note also that we are assuming a global name space N for the nodes; this is 
usually coded with some kind of UID such as a LAN address, or by manually assigned addresses 
like IP addresses. If the nodes don’t have unique names, life becomes a lot more confusing. 

We name links with local names that are relative to the sending node, rather than with global 
names. This reflects the fact that a link is usually addressed by an I/O device address. The link 
from a broadcast LAN node to another node connected to that LAN is named by the second 
node’s LAN address. 

MODULE Network[
L % Link; local name 
N ] % Node; global name 

TYPE 	Ns = SET N 
T = N -> L -> N SUCHTHAT (\ t | t.dom={n|true}) % Topology; defined at each N 
P = [n, r: SEQ L] WITH {"<=":=Prefix} % Path starting at n 

Here t(n)(l) is the node reached from node n on link l. For the network of figure 8, 
t(3)(a) = 1
t(3)(d) = 4
t(1)(a) = 3
t(1)(b) = 5i
etc. 

Note that a T is defined on every node, though there may not be any links from a node. 

The End function computes the end node of a path. A P is actually a path if End is defined on it, 
that is, if each link actually exists. A path is acyclic if the number of distinct nodes on it is one 
more than the number of links. We can compute all the nodes on a path and all the paths between 
two nodes. All these notions only make sense in the context of a topology that says how the 
nodes and links are hooked up. 

FUNC End(t, p) -> N = RET (p.r = {} => p.n [*] End(t, P{t(p.n)(p.r.head), p.r.tail}) 

FUNC IsPath(t, p) -> Bool = RET End!(t, p) 

FUNC Prefix(p1, p2) -> Bool = RET p1.n = p2.n /\ p1.r <= p2.r 

FUNC Nodes(t, p) -> Ns = RET {p' | p' <= p | End(t, p')) 

FUNC IsAcyclic(t, p) -> Bool = RET IsPath(t, p) /\ Nodes(t, p).size = p.r.size + 1 

FUNC 	Paths(t, n1, n2) -> SET p =
RET {p | p.n = n1 /\ End(t, p) = n2 /\ IsAcyclic(t, p)} 
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Like anything else in computing, a network can be recursive. This means that a connected sub-
network can be viewed as a single node. To make this precise we define the restriction of a 
topology to a set of nodes, keeping only the links between nodes in the set. Then we can collapse 
a topology to a smaller one in which a connected ns appears as a single representative node n0, 
by replacing all the links into ns with links to n0 and discarding all the internal links. The 
outgoing links have to be named by pairs [n, ll], since the naming scheme is local to a node; 
here we use ll for the ‘lower-level’ links of the original T. Often collapsing is tied to hierarchical 
addressing, so that an entire subtree will be collapsed into a single node for the purposes of 
higher-level routing. 

n1 

n2 
n3 n0 

ns = {n1, n2, n3}
n0 IN ns 

TYPE L = (L + [n, ll]) 

FUNC Restrict(t, ns) -> T =
RET (\ n | (\ l | (n IN ns /\ (t(n)(l) IN ns => t(n)(l)) )) 

FUNC IsConnected(t, ns) -> Bool =
RET (ALL n1 :IN ns, n2 :IN ns | Paths(Restrict(t, ns), n1, n2) # {}) 

FUNC Collapse(t, ns, n0) -> T = n0 IN ns /\ IsConnected(t, ns) =>
RET (\ n | (\ l |

( ~ n IN ns => (t(n)(l) IN ns => n0 [*] t(n)(l))
[*] n = n0 /\ l IS [n, ll] /\ l.n IN n’ /\ ~ t(l.n)(l.ll) IN ns =>

t(l.n)(l.ll) ) )) 

How does a network find out what its topology is? Aside from supplying it manually, there are 
two approaches. In both, each node learns which nodes are ‘neighbors’, that is, are connected to 
its links, by sending ‘hello’ messages down the links. 

1.	 Run a global computation in which one node is chosen to learn the whole topology by 
becoming the root of a spanning tree. The root collects all the neighbor information and 
broadcasts what it has learned to all the nodes. The Autonet uses this method. 

2.	 Run a distributed computation in which each node periodically tells its neighbors everything 
it knows about the topology. In time, any change in a node’s neighbors will spread 
throughout the network. There are some subtleties about what a node should do when it gets 
conflicting information. The Internet uses this method, which is called ‘link-state routing’, 
and calls it OSPF. 
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In a LAN with many connected nodes, usually most are purely end-nodes, that is, do not do any 
switching of other people’s packets. The end-nodes don’t participate in the neighbor 
computation, since that would be an n2 process. Instead, only the routers on the LAN participate, 
and there is a separate scheme for the end-nodes. There are two mechanisms needed: 

1.	 Routers need to know what end-nodes are on the LAN. Each end-node can periodically 
broadcast its IP address and LAN address, and the routers listen to these broadcasts and 
cache the results. The cache times out in a few broadcast intervals, so that obsolete 
information doesn’t keep being used. Similarly, the routers broadcast the same information 
so that end-nodes can find out what routers are available. The Internet often doesn’t do this, 
however. Instead, information about the routers and end-nodes on a LAN is manually 
configured. 

2.	 An end-node n1 needs to know which router can reach a node n2 that it wants to talk to; that 
is, n1 needs the value of sw(n1)(n2) defined below. To get it, n1 broadcasts n2 and expects 
to get back a LAN address. If node n2 is on the same LAN, it returns its LAN address. 
Otherwise a router that can reach n2 returns the router’s LAN address. In the Internet this is 
done by the address resolution protocol (ARP). Of course n1 caches this result and times out 
the cache periodically. 

The Autonet paper describes a variation on this, in which end-nodes use an ARP protocol to map 
Ethernet addresses into Autonet short addresses. This is a nice illustration of recursion in 
communication, because it turns the Autonet into a ‘generic LAN’ that is essentially an Ethernet, 
on top of which IP protocols will do another level of ARP to map IP addresses to Ethernet 
addresses. 

Routing 

For traffic to make it through the network, each switch must know which link to send it on. We 
begin by studying a simplified situation in which traffic is addressed by the N of its destination 
node. Later we consider the relationship between these globally unique addresses and real 
addresses. 

A SW tells for each node how to map a destination node into a link24 on which to send traffic; you 
can think of it as the dual of a topology, which for each node maps a link to a destination node. 
Then a route is a path that is chosen by sw. 

TYPE SW = N -> N -> L 

PROC Route(t, sw, n1, n2) -> P = VAR p :IN Paths(t, n1, n2) |
(ALL p' | p' <= p /\ p'.r # {} ==>

p'.r.last = sw(End(t, p'{r := p'.r.reml})(n2)) => RET p 

Here sw(n1)(n2) gives the link on which to reach n2 from n1. Note that if n1 = n2, the empty 
path is a possible result. There is nothing in this definition that says the route must be efficient. 
Of course, Route is not part of the code, but simply a spec. 

24 or perhaps a set of links, though we omit this complication here. 
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We could generalize SW to N -> N -> SET L, and then 

PROC Route(t, sw, n1, n2) -> SET P = RET {p :IN Paths(t, n1, n2) |
(ALL p' | p' <= p /\ p'.r # {} ==>

p'.r.last IN sw(End(t, p'{r := p'.r.reml})(n2))} 

We want consistency between sw and t: the path sw chooses actually gets to the destination and 
is acyclic. Ideally, we want sw to choose a cheapest path. This is easy to arrange if everyone 
knows the topology and the Cost function. For concreteness, we give a popular cost function: the 
length of the path. 

FUNC IsConsistent(t, sw) -> Bool =
RET ( ALL n1, n2 | Route(t, sw, n1, n2) IN Paths(t, n1, n2) ) 

FUNC IsBest(t, sw) -> Bool = VAR best := {p :IN Paths(t,n1,n2) | | Cost(p)}.min |
RET ( ALL n1, n2 | Cost(Route(t, sw, n1, n2)) = best ) 

FUNC Cost(p) -> Int = RET p.r.size % or your favorite 

Don’t lose sight of the fact that this is not code, but rather the spec for computing sw from t. 
Getting t, computing sw, and using it to route are three separate operations. 

There might be more than one suitable link, in which case L is replaced by SET L, or by a 
function that gives the cost of each possible L. We work out the former: 

TYPE SW = N -> N -> SET L 

PROC Routes(t, sw, n1, n2) -> SET P = RET { p :IN Paths(t, n1, n2) |
(ALL p' | p' <= p /\ p'.r # {} ==>

p'.r.last IN sw(End(t, p'{r := p'.r.reml})(n2)) } 

FUNC IsConsistent(t, sw) -> Bool =
RET ( ALL n1, n2 | Routes(t, sw, n1, n2) <= Paths(t, n1, n2) ) 

FUNC IsBest(t, sw) -> Bool = VAR best := {p :IN Paths(t,n1,n2) | | Cost(p)}.min |
RET ( ALL n1, n2 | (ALL p :IN Routes(t, sw, n1, n2) | Cost(p) = best) ) 

Addressing 

In a broadcast network addressing is simple: since every node sees all the traffic, all that’s 
needed is a way for each node to recognize its own addresses. In a mesh network the sw function 
in every router has to map each address to a link that leads there. The structure of the address can 
make it easy or hard for the router to do the switching, and for all the nodes to learn the topology. 
Not surprisingly, there are tradeoffs. 

It’s useful to classify addressing schemes as local (dependent on the source) or global (the same 
address works throughout the network), and as hierarchical or flat. 
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Flat Hierarchical 

Local — Source routing 
Circuits = distributed source routing: 
route once, keep state in routers. 

Global LANs: router knows links to everywhere IP, OSI: router knows links to parent, 
By broadcast children, and siblings. 
By learning 

Fallback is broadcast, e.g. in bridges. 

Source routing is the simplest for the switches, since all work of planning the routes is unloaded 
on the sender and the resulting route is explicitly encoded in the address. The drawbacks are that 
the address is bigger and, more seriously, that changes to the topology of the network must be 
reflected in changes to the addresses. 

Congestion control 

As we have seen, we can view an entire mesh network as a single switch. Like any structure that 
involves multiplexing, it requires arbitration for its resources. This network-level arbitration is 
not the same as the link-level arbitration that is requires every time a unit is sent on a link. 
Instead, its purpose is to allocate the resources of the network as a whole. To see the need for 
network-level arbitration, consider what happens when some internal switch or link becomes 
overloaded. 

As with any kind of arbitration, there are two possibilities: scheduling, or contention and 
backoff. Scheduling can be done statically, by allocating a fixed bandwidth to a path or ‘circuit’ 
from a sender to a receiver. The telephone system works this way, and it does not allow traffic to 
flow unless it can commit all the necessary resources. A variation that is proposed for ATM 
networks is to allocate a maximum bandwidth for each path, but to overcommit the network 
resources and rely on traffic statistics to make it unlikely that the bluff will be called. 

Alternatively, scheduling can be done dynamically by backpressure, as in the Autonet and AN2. 
We studied this method in connection with links, and the issues are the same in networks. One 
difference is that the round-trip time may be longer, so that more buffering is needed to support a 
given bandwidth. In addition, the round-trip time is usually much more variable, because traffic 
has to queue at each switch. Another difference is that because a circuit that is held up by 
backpressure may be tying up resources, deadlock is possible. 

Contention and backoff are also similar in links and networks; indeed, one of the backoff links 
that we studied was TCP, which is normally coded on top of a network. When a link or switch is 
overloaded, it simply drops some traffic. The trouble signal is usually coded by timeout waiting 
for an ack. There have been a number of proposals for an explicit ‘congested’ signal, but it’s 
difficult to ensure that this signal gets back to the sender reliably. 
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