Massachusetts Institute of Technology
Department of Electrical Engineering and Computer Science
6.826 Principles of Computer Systems

PROBLEM SET 1 SOLUTIONS

Problem 1: Matrix Multiplication

a) Each element mc(i,j) of the matrix is equal to a sum of products. We calculate the sum by generating
the sequence of the elements in the sum and then folding the elements of the sequence using the + : construct.

FUNC isMatMul (ma: Matrix, mb: Matrix, mc: Matrix) -> Bool =
<< RET (ALL i: Range | ALL j: Range |
mc(i,j) =+ : {k :INO .. n-1 | | ma(i,k)*mb(k,j) }) >>

b) The following implementation corresponds to an implementation of matrix multiplication in a conven-
tional imperative language.

APROC MatMul(ma: Matrix, mb: Matrix) -> Matrix =
<< VAR mc: Matrix |
VAR i: Int := 0 |
DO i< n=>
VAR j: Int := 0 |
DO j < n =>
VAR sum: Int :=
VAR k: Int := 0 |
DOk < n =>
sum := sum + ma(i,k)*mb(k,]j);
k = kt1l

Problem 2: Distribution of Prime Numbers

a) The following Spec function closely follows the mathematical definitions of prime numbers. (Operator
// denotes the remainder in division of integers.)

FUNC isPrime(p: Int) -> Bool =
(p>1) /\
{n:Int ln>0/\Np// n=01%={1, p}

FUNC isPrimeBetween(p: Int, n: Int) -> Bool =
isPrime(p) /\ n<p /\ p < 2xn

b) This is a simple-minded implementation of the specification in the previous part. The atomic procedure
primeBetween does a linear search for prime numbers from n + 1 to 2n — 1 and returns the least number
that is prime. The primality test is implemented in the isPrimeImpl atomic procedure by a linear search
that attempts to find the smallest factor k of p where 2 <k < ,/p.

APROC isPrimeImpl(p: Int) -> Bool =
<< VAR k: Int := 2 |
DO (k*k <= p) =>
IF (p // k = 0) => RET false [*] SKIP FI;
k = k+1
0D;
RET true
>>
APROC primeBetween(n: Int) -> Int
<< VAR x: Int := n+1 |
DO x < 2%n =>
IF isPrimeImpl(x) => RET x
[*] x := x+1
FI
0D
>>

c) For example, let n =7 and p = 13. Procedure primeBetween returns always 11, never 13.

Problem 3. Shortest Path

a) The shortest path predicate considers the set of all paths from n; to ng and then ensures that path has
the minimum length.

FUNC isPathFromTo(g: Graph[Node].G,
nl: Node, n2: Node,
path: SEQ Node) -> Bool =
g.paths(path) /\
path.head=nl1 /\ path.last=n2

FUNC isShortestPath(g: Graph[Node] .G,
nl: Node, n2: Node,
path: SEQ Node) -> Bool =
isPathFromTo(g,nl,n2,path) /\
path.size = { path2: SEQ Node | isPathFromTo(g,nl,n2,path2)
| path2.size }.min

b) The implementation performs a breadth-first search in the graph finding the shortest distance to
every reachable node from the node nil. The breadth-first search is implemented using a queue rep-
resented as a list of nodes queue. After reaching the target node n2, the path is reconstructed using
the atomic procedure recoverPath. The reconstruction traverses the path backwards using the fact that
dist(path(i+1))=dist(path(i))+1 on the shortest path.

APROC recoverPath(g : Graph[Node] .G,
dist : Node -> IN O .. n+1,
n2 : Node) -> SEQ Node =
<< IF dist(n2)=0 => RET {n2}
[*x] VAR nd: Node := { nd2: Node |
g(nd2,n2) /\ dist(n2)=dist(nd2)+1 }.min

RET recoverPath(g,dist,nd) + {nd}
FI
>>

APROC shortestPath(g: Graph[Node].G,
nl: Node, n2: Node) -> SEQ Node =
<< VAR queue: SEQ Node := { nl1 } |
VAR dist: Node -> IN O .. n+l1 := (\ nd:Node | n+1) |
dist(nl) := 0;
DO queue.size > 0 =>
VAR first: Node := queue.head |
IF first=n2 => RET recoverPath(g,dist,n2)
[*] queue := queue.tail;
VAR succ: SEQ Node :=
{nd :IN1 .. n | g(first,nd) /\ dist(nd) = n+l } |
queue := queue + succ;
DO succ.size > 0 =>
dist(succ.head) := dist(first) + 1;
succ := succ.tail;
0D
FI
0D;
% There is no path from nl to n2. Procedure fails.
false => SKIP
>>

¢) One of the examples is the following. Let n = 4, n1 = 1, n2 = 4, and let the graph g be

g ::{(172)v(1a3)7(2’4)5(374)}

The path path = [1, 3, 4] satisfies isShortestPath(nl,n2,path) but the result of shortestPath(g,nl,n2)
is always the path [1,2,4].

