

In-class: User-level threads

In-class: User-level threads
In this assignment you will complete a simple user-level thread package by implementing the code to perform context
switching between threads.

Please feel free to collaborate with others on these exercises.

Switching threads

Download uthread.c and uthread_switch.S into your xv6 directory. Make sure uthread_switch.S ends with .S, not .s.
Add the following rule to the xv6 Makefile after the _forktest rule:

_uthread: uthread.o uthread_switch.o

 $(LD) $(LDFLAGS) -N -e main -Ttext 0 -o _uthread uthread.o uthread_switch.o $(ULIB)

 $(OBJDUMP) -S _uthread > uthread.asm

Make sure that the blank space at the start of each line is a tab, not spaces.

Add _uthread in the Makefile to the list of user programs defined by UPROGS.

Run xv6, and run uthread from the xv6 shell, and you will observe a panic.

Your job is to complete thread_switch.S, so that you see output similar to this (make sure to run with CPUS=1):

~/classes/6828/xv6$ make CPUS=1 qemu-nox

dd if=/dev/zero of=xv6.img count=10000

10000+0 records in

10000+0 records out

5120000 bytes transferred in 0.037167 secs (137756344 bytes/sec)

dd if=bootblock of=xv6.img conv=notrunc

1+0 records in

1+0 records out

512 bytes transferred in 0.000026 secs (19701685 bytes/sec)

dd if=kernel of=xv6.img seek=1 conv=notrunc

307+1 records in

307+1 records out

157319 bytes transferred in 0.003590 secs (43820143 bytes/sec)

qemu -nographic -hdb fs.img xv6.img -smp 1 -m 512

Could not open option rom 'sgabios.bin': No such file or directory

xv6...

cpu0: starting

init: starting sh

$ uthread

my thread running

my thread 0x2A30

my thread running

my thread 0x4A40

my thread 0x2A30

my thread 0x4A40

my thread 0x2A30

my thread 0x4A40

....

Before jumping into uthread_switch.S, first understand how uthread.c uses thread_switch. uthread.c has two
global variables current_thread and next_thread. Each is a pointer to a thread structure. The thread structure has a
stack for a thread and a saved stack pointer (sp, which points into the thread's stack). The job of uthread_switch is to
save the current thread state into the structure pointed to by current_thread, restore next_thread's state, and make
current_thread point to where next_thread was pointing to, so that when uthread_switch returns next_thread is
running and is the current_thread.

You should study thread_create, which sets up the initial stack for a new thread. It provides you good hint what
thread_switch should do. In particular, note that thread_create allocates 32 bytes of space for saving registers. That
is all x86 registers, and the intent is that thread_switch use the assembly instructions popal and pushal to restore and

1

In-class: User-level threads

save registers.

To write the assembly in thread_switch, you need to know how the C compiler lays out struct thread in memory,
which is as follows:

 | 4 bytes for state|

 | stack size bytes |

 | for stack |

 | 4 bytes for sp |

-------------------- <--- current_thread

 | 4 bytes for state|

 | stack size bytes |

 | for stack |

 | 4 bytes for sp |

-------------------- <--- next_thread

The variables next_thread and current_thread each contain the address of a struct thread.

To write the sp field of the struct that current_thread points to, you should write assembly like this:

 movl current_thread, %eax

 movl %esp, (%eax)

This saves %esp in current_thread->sp. This works because sp is at offset 0 in the struct. You can study the

assembly the compiler generates for uthread.c by looking at uthread.asm.

To test your code it might be helpful to single step through your thread_switch using gdb. You can do this as

follows:

(gdb) symbol-file _uthread

Load new symbol table from "/Users/kaashoek/classes/6828/xv6/_uthread"? (y or n) y

Reading symbols from /Users/kaashoek/classes/6828/xv6/_uthread...done.

(gdb) b thread_switch

Breakpoint 1 at 0x204: file uthread_switch.S, line 9.

(gdb) c

In your xv6 shell, type "uthread", and gdb will break at thread_switch. Now you can type commands like the

following to inspect the state of uthread:

(gdb) print /x *next_thread

$3 = {sp = 0x49e8, stack = {0x0 , 0x66, 0x1, 0x0, 0x0},

 state = 0x1}

What address is 0x166, which sits on the top of the stack of next_thread?

Submit: your modified uthread_switch.S

Challenge exercises

The user-level thread package interacts badly with the operating system in several ways. For example, if one user-
level thread blocks in a single call, another user-level thread won't run, because the user-level threads scheduler
doesn't know that one of its threads has been descheduled by the xv6 scheduler. As another example, two user-level
threads will not run concurrently on different cores, because the xv6 scheduler isn't aware that there are multiple
threads that could run in parallel. Note that if two user-level threads were to run truly in parallel, this implementation
won't work because of several races (e.g., two threads on different processors could call thread_schedule
concurrently, select the same runnable thread, and both run it on different processors.)

2

In-class: User-level threads

There are several ways of addressing these problems. One is using scheduler activations and another is to use one
kernel thread per user-level thread (as Linux kernels do). Implement one of these ways in xv6.

Add locks, condition variables, barriers, etc. to your thread package.

3

MIT OpenCourseWare
http://ocw.mit.edu

6.828 Operating System Engineering
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

	Local Disk
	In-class: User-level threads

