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Quiz II 

All problems are open-ended questions. In order to receive credit you must answer the question 
as precisely as possible. You have 80 minutes to finish this quiz. 

Write your name on this cover sheet AND at the bottom of each page of this booklet. 

Some questions may be harder than others. Read them all through first and attack them in the 
order that allows you to make the most progress. If you find a question ambiguous, be sure to 
write down any assumptions you make. Be neat. If we can’t understand your answer, we can’t 
give you credit! 

THIS IS AN OPEN BOOK, OPEN NOTES EXAM. 

Please do not write in the boxes below.
 

I (xx/36) II (xx/20) III (xx/22) IV (xx/16) V (xx/6) Total (xx/100) 

Name:
 

1 



I Paper questions 

1. [6 points]: Many disks have a cache of disk blocks inside the disk and reorder writes to get 
better performance. Such reordering could cause problems for the version of ext3 as described by 
Tweedie in “Journaling the Linux ext2fs Filesystem;” give a scenario that results in inconsistent file 
system metadata structures. 

2. [6 points]: How could you extend ext3 to fix this problem without disabling the disk’s cache? 

3. [6 points]: KeyKOS’s use of capabilities is motivated by the “confused deputy” problem. Give 
an example of the confused deputy problem in Unix. Give an example how a KeyKOS application 
developer uses capabilities to avoid your example of the confused deputy problem in Unix. 
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4. [6 points]: To track dependencies introduced by Unix system calls, BackTracker (as described 
in “Backtracking Intrusions” by King and Chen) maintains objects for processes, files, and filenames. 
Ben thinks it’s redundant to maintain both file objects, which identify files by inode numbers, and file
name objects, which identify files by absolute path. He proposes modifying BackTracker to collapse 
the two into just filename objects, identifying files solely by their absolute path. Alyssa argues that 
this change will make BackTracker inaccurate (i.e., BackTracker could fail to identify an attack that 
influences a suspicious file or process). Give an example showing that Alyssa is correct. 

5. [6 points]: Louis Reasoner proposes to extend BackTracker to recover from attacks by undoing 
all the attacker’s actions, but not regular user actions. Using BackTracker, he can identify the starting 
event of an attack. He proposes to first use ReVirt to roll the system back to just before that starting 
event. For example, for the attack in Figure 1 of the paper, he would roll the system back to just before 
the “[sh,bash]” process was created. He would then selectively roll the system forward using ReVirt, 
skipping all the events that could have been influenced by the attacker, according to the dependencies 
that BackTracker has computed. For example, Louis’ extension would not replay any operation that 
depended on the “[sh,bash]” node. Ben points out that this approach may fail to re-execute regular 
user actions. Give an example showing that Ben is right. 

6. [6 points]: Figure 8 in the Klee paper (“Unassisted and automatic generation of high-coverage 
tests for complex systems programs”) shows an example of a bug found by Klee in the pr utility. 
Specially, executing pr -e t2.txt will result in a buffer overflow if t2.txt has the content: 

\b\b\b\b\b\b\b\t 

Explain how Klee is able to construct this input. 
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II Lock-free data structures
 

Joe Buck is increasing the performance of the the Linux physical page allocator using a lock-free LIFO data 
structure to track free pages. He reasons that recently freed pages will still be in on-chip hardware caches, 
so allocating those pages first will improve performance. Joe Buck’s code for the lock-free LIFO is below. 

// Compare the value at addr with oldval. If equal, store newval 
// at addr and return 1, otherwise return 0. Executes atomically. 
int cmpxchg(void *addr, uint32_t oldval, uint32_t newval); 

struct page { 
struct page *next; 
/* Other page metadata ... */ 

};
 
struct page *head;
 

void push(struct page *page) {
 
while (1) {
 

page->next = head;
 
if (cmpxchg(&head, (uint32_t)page->next, (uint32_t)page))
 

break; 
} 

} 

struct page * pop(void) { 
while (1) {
 

struct page *page = head;
 
if (page == NULL)
 

return NULL;
 
struct page *next = page->next;
 
if (cmpxchg(&head, (uint32_t)page, (uint32_t)next))
 

return page; 
} 

} 

7. [10 points]: Unfortunately Joe Buck’s code has a race condition. Describe a sequence of 
events for two CPUs that could cause the LIFO to be in an inconsistent state (that is, an allocated page 
appears in the LIFO or an unallocated page does not appear in the LIFO). For your convenience, we 
provided the first two events of a sequence; your job is to add the others. 

1. Initially, head → page A → page B → page C → NULL. 

2. CPU 1 starts to pop; it sets page = A and next = B. 
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8. [10 points]: Some CPUs provide atomic instructions that make it easier to write lock-free 
code. For example, PowerPC CPUs provide the Load-Linked and Store-Conditional instructions. LL 
must be paired with a SC. LL loads a value from memory and the CPU remembers that the address is 
load-linked. SC stores a value to an address if the address has not been written to by any other CPU 
since the corresponding LL. Write a correct lock-free LIFO implementation that uses LL and SC. 

// Return the 32-bit value at addr and remember addr is load-linked.
 
uint32_t ll(void *addr);
 
// Store val at addr if *addr has not been written to since the last ll from addr.
 
// Return 0 on failure, 1 on success.
 
int sc(uint32_t val, void *addr);
 

void push(struct page *page) {
 

}
 

struct page * pop(void) {
 

} 
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III VMM
 

Many x86 CPUs now have support in hardware for CPU, MMU, and IO port virtualization. The CPU virtu
alization features provide each guest VM with its own segment/interrupt descriptor tables, control registers, 
and segment registers. A virtual machine monitor (VMM) can use CPU virtualization to trap a VM when it 
executes an instruction or causes an event that could affect the VMM or other VMs. IO port virtualization 
allows VMMs to control VM access to IO ports, trapping into the VMM when the VM accesses certain IO 
ports. 

9. [6 points]: AMD virtualization hardware allows the VMM to intercept certain CPU instructions 
and events by setting bits in a bitmask. As discussed in Section 4.4 of “A Comparison of Software and 
Hardware for x86 Virtualization” the performance of a VMM depends on the frequency of exits from 
the VM. To help avoid frequent exits, AMD hardware copies (or shadows) CPU state into a Virtual 
Machine Control Block (VMCB). Guest instructions that manipulate CPU state (e.g. lcr0) operate 
on the shadow state instead of the real CPU state. Circle the instructions that the VMM must intercept, 
because it is not possible to shadow the state they manipulate. 

– Instructions that read or write control registers (e.g. cr3) 

– Instructions that cause the computer to shutdown 

– Instructions that load descriptor tables (e.g. lgdt) 

– Instructions that clears cache contents without writing back to memory 

– pushf and popf 

– iret 

10. [6 points]: You are unhappy with the performance of networking in JOS. On x86 hardware, 
port-based IO is not optimized and JOS’s e100 driver is executing many in and out instructions, 
which hurt performance. The e100 exposes all of the same control registers using memory-mapped 
IO, which is much faster than port-based IO. Suppose we’re running JOS in a virtual machine, but 
giving it direct access to our host’s e100 card. Describe how you might use dynamic binary translation 
in the VMM to transparently convert JOS’s e100 driver from using in and out port-based IO to using 
memory-mapped IO. 
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11. [10 points]: Modern MMU virtualization hardware works as described in Section 7.4 of “A 
Comparison of Software and Hardware for x86 Virtualization.” As usual, guest VMs create guest 
page tables that translate from guest virtual addresses to guest physical addresses. However, with 
MMU virtualization, guest physical addresses are then further translated through a nested page table, 
created by the VMM, which maps guest physical addresses to host physical addresses. 

When preparing a VM to run, the VMM must allocate physical pages for the guest’s memory and 
initialize this nested page table. Write the code to do this below. Your implementation should allo
cate npages host physical pages and map them in the page table pgdir starting at guest physical 
address 0. Return 0 from the function on success, or return a negative value on an error. 

/* Helper functions from JOS */
 
int page_insert(pde_t *pgdir, struct Page *pp, void *va, int perm);
 
int page_alloc(struct Page **pp_store);
 
physaddr_t page2pa(struct Page *pp);
 

/* Guest permission bits */
 
#define PTE_GUEST (PTE_P|PTE_W|PTE_U)
 

int
 
vm_init_mem(unsigned int npages, pde_t *pgdir)
 
{
 

} 
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IV High-performance JOS 

12. [10 points]: Ben, a little sleep-deprived from the network lab, dreams of turning JOS into the 
next big, high-performance web serving platform. He took the easy route in his network lab and made 
his receive syscall always return immediately, even if no packet is available, which is less than ideal 
for CPU utilization. He starts by making his receive syscall block, much like sys ipc recv. 

Ben keeps around his old non-blocking receive function for use in the new implementation. Now that 
he’s no longer polling, he configures the e100 to generate an interrupt whenever it puts a packet in the 
receive ring and installs e100 rx intr as the interrupt handler. Finally, since only one environment 
can receive at a time, he adds a few global variables to track the currently receiving environment. 

// Copy the next packet into dst and return the length of the packet.
 
// If the receive ring is empty, return 0.
 
int e100_recv_nonblocking(void *dst);
 

// Environment currently blocked on receive, or NULL if none.
 
struct Env *e100_receiver;
 
// Packet buffer of the currently receiving environment.
 
void *e100_receiver_dst;
 

Give pseudo-code for the new blocking syscall implementation and for e100 rx intr. You can 
assume dst is a valid pointer to a sufficiently large buffer. 

int sys_e100_recv(void *dst) { 

} 

void e100_rx_intr(void) { 
// Acknowledge the interrupt. Otherwise, the e100 blocks further interrupts. 
e100_ack_rx(); 

} 
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13. [6 points]: Is your solution susceptible to receive livelock? If so, give a scenario that 
demonstrates the livelock. If not, explain why not. 
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V 6.828 

We’d like to hear your opinions about 6.828, so please answer the following questions. (Any answer, except 
no answer, will receive full credit.) 

14. [2 points]: The network lab took more time on average than we had intended. What would have 
saved you the most time? If it’s test cases, which test cases would you add? If it’s documentation, 
what would you like documentation on? 

15. [2 points]: What is the best aspect of 6.828? 

16. [2 points]: What is the worst aspect of 6.828? 

End of Quiz
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