
The Internet Domain Name System

Hari Balakrishnan

6.829 Fall 2002

Goals

•	 DNS architecture
� How DNS works

•	 DNS uses
� Mail
� Content Distribution Networks (CDNs)

•	 DNS Performance
� How well does it work?
� Why does it work?

Why naming?

•	 Level(s) of indirection between a resource
and its location

•	 Convenience
� For apps
� For humans
� Autonomous organizational operation (real-world)

•	 Examples
� DNS, search engines, intentional names,…
� Virtual memory, DHTs,…

DNS architecture

•	 Two major components
� Name servers: Information repositories
� Resolvers: Interface to client programs

• Stub resolver as libraries
• Forwarding name servers that proxy for stubs

• DNS name space
• Resource records
•	 Database distribution

� Zones
� Caching

• Datagram-based protocol

DNS name space

• Organized as a variable-depth rooted tree
•	 Each node in tree has associated label

� Label = variable-length string of octets
� Case-insensitive

•	 DNS name of node = path from node to root
� E.g., nms.lcs.mit.edu. (“.” separates labels)
� Joe.Schmoe@lcs.mit.edu. (left of “@” is a single label, to the

right are four labels)
•	 No implicit semantics in tree structure in general

� Except for IN-ADDR.ARPA domain used for reverse lookups
•	 Design tuned for administrative delegation of the

name space (more on this in a bit)

Resource Records (RRs)

• Data in DNS structured using RRs
• Idea is to help both apps and DNS itself
• Classes are orthogonal to each other
� IN, ISO, CHAOS, XNS,… (pretty much only IN

today!)
•	 Each class has a set of types; new types can

be added, but require standardization
•	 Example IN types
� A, NS, MX, PTR, CNAME, …

Example

•	 dig www.google.com
www.google.com. 162 IN A 216.239.53.100
google.com. 345579 IN NS ns3.google.com.
google.com. 345579 IN NS ns4.google.com.
google.com. 345579 IN NS ns1.google.com.
google.com. 345579 IN NS ns2.google.com.

•	 dig www.google.com –t MX
www.google.com. 86210 IN MX 20 smtp2.google.com.

• What are the #s in the second column?
• What’s the number next to the MX answer?
•	 Advantage of one RR per type, versus single RR with multiple

values?

Database distribution

•	 Two distribution mechanisms
� Zones
� Caching

• Separation invisible to user/application
• Zone = complete description of a contiguous section

of the DNS name space
� Stores RRs for labels
� And pointers to all other contiguous zones
� Zone divisions can be made anywhere in the name space

Zone logistics

• Persuade parent organization to delegate a
subzone consisting of a single node
� E.g., persuade lcs.mit.edu. to delegate

nms.lcs.mit.edu (the delegated node is “nms”)
� Persuade com. to delegate label “cnn” to me

•	 New zone can grow to arbitrary size and
further delegated autonomously

Zone owner’s responsibilities

• Authoritatively maintain the zone’s data
• Arrange for replicated name servers for the zone

�	 Typically, zone data is maintained in a master file and
loaded into a primary (master) server

�	 Replicated servers use TCP-based zone transfers specified
in DNS protocol to refresh their data

•	 A name server authoritative for a zone does not have
to be in that zone (great idea)

•	 A name server can handle any number of zones,
which don’t have to be contiguous

•	 Example: dig cnn.com.
� cnn.com. 600 IN NS twdns-02.ns.aol.com

Caching

•	 Each name server aggressively caches
everything it can

•	 Only control on caching: TTL field
� An expired TTL requires a fresh resolution
� Each RR has its own TTL

•	 Low TTL values reduces inconsistencies,
allows for dynamic name-to-RR mappings

•	 Large TTL values reduce network and server
load

Example resolution
• Suppose you want to lookup A-record for

www.lcs.mit.edu. and nothing is cached
Root

server

.edu
server

mit.edu
server

lcs.mit.edu
server

Local DNS
proxy

App
Stub resolver

1

Recursive
resolution

Iterative
resolution

2

3

4

5

Caching

•	 In reality, one almost never sees the chain of
request-response messages of previous slide

•	 NS records for labels higher up the tree usually have
long TTLs

• E.g., the google.com example from before
•	 But what about cnn.com?

cnn.com. 600 IN NS twdns-02.ns.aol.com
•	 Not a problem

twdns-02.ns.aol.com. 3600 IN A 152.163.239.216
ns.aol.com. 3553 IN NS dns-02.ns.aol.com.

•	 Cache not only positive answers, but also stuff that
does not exist

Communication protocol

•	 Normal request response uses a UDP-based
datagram protocol with retransmissions

• Retry timer is configurable, typically 4 or 8 seconds
• Often, retries are extremely persistent (many times)
• Use transaction ID field to disambiguate responses
•	 Key point: App using DNS is typically decoupled from

the DNS resolver making recursive queries!
•	 Zone transfers use TCP (bulk data, rather than RPC-

style comm.)

Definitions

• gethostbyname() is a lookup
•	 Local DNS server makes one or more queries

(recursive resolution)
•	 Each contacted server responds with a

response
•	 A response could be a referral, to go

someplace else
• A response that is not a referral is an answer

Performance study motivation

•	 How well does DNS work today?
� Scalability
� Robustness
� Protocol

•	 Which of its mechanisms are actually useful?
� Hierarchy
� Caching

• DNS is being put to new uses: Is that likely to cause

problems?
� Load-balancing
� Content Distribution Networks

Suspicion

• DNS in WAN traffic traces
�	 14% of all packets (estimate) in Danzig et al. 1990 8% in

1992
� 5% in NSFNET (1995)
� 3% in 1997 (MCI traces, 1997)

• But…
� 18% of all “flows” in 1997
� 1 out of 5 flows is a DNS flow???

•	 But yet, the DNS seems to work OK
� Because of caching is traditional view

•	 Low-TTL bindings have important benefits
� Load-balancing
� Mobility

Analysis: Two Data Sets

•	 MIT: Jan 2000 (mit-jan00) & Dec 2000 (mit-dec00)
� All DNS traffic at LCS/AI border and all TCP SYN/FIN/RST
� Protocol analysis & cache simulations

•	 KAIST, Korea: May 2001 (kaist-may01)
� All DNS traffic at border and some TCP SYN/FIN/RST
� Protocol analysis & cache simulations

•	 Key insight: Joint analysis of DNS and its driving
workload (TCP connection) can help understand
what’s going on

MIT LCS/AI Topology

External
network

Collection
machine

LCS/AI
Router

Subnet 1

Subnet 2

Subnet 3

Subnet 24

KAIST Topology

External
network

Subnet 1

Subnet 2

Subnet 3

Subnet N;
N > 100

Collection
machine

ns1.kaist.ac.kr

ns2.kaist.ac.kr

External
network

Basic Trace Statistics

87%80%86%Hit rate
7.84.97.3#TCP:#valid “A” answers

6,337,2694,623,7613,619,173TCP connections
5,326,52710,617,7966,039,582Total query packets

42.2%13.1%11.1%Answered with failure
36.4%63.6%64.3%Answered with success
20.1%22.7%23.5%Unanswered

4,339,4734,160,9542,530,430Total lookups
kaist-may01mit-dec00mit-jan00

Why so many unanswered lookups?

Why so many failures?

Why so many query packets?

Why is hit rate not much higher than 80% and does it matter?

Unanswered lookups

•	 What’s the main reason for this large
fraction?

•	 Three syndromes
� Zero referrals (5%-10%)
� Non-zero referrals (13%-10%)
� Loops (5%-3%)

Reason: Misconfigurations!

Many Lookups Elicit No Response

(MIT data)

• About 50% of the wide-area DNS packets are not necessary!

DNS Protocol

• 20-25% of all lookups are unresponded
•	 Of all answered requests, 99.9% had at most two

retransmissions
•	 Implementations retransmit every 4 or 8 secs

� And they keep on going and going and going…
� And becoming worse (more secondaries?)

• But about 20% of the unanswered lookups gave up

after ZERO retransmits!
� More in the KAIST data

• This suggests schizophrenia!
• Solution: tightly bound number of retransmissions

Failure Responses

42.2%13.1%11.1%Failed
lookups

kaist-may01mit-dec00mit-jan00

• NXDOMAIN and SERVFAIL are most common reasons
• Most common NXDOMAIN reason: Reverse (PTR) lookups

for mappings that don’t exist
�	 Happens, e.g., because of access control or logging

mechanisms in servers
• Other reasons

� Inappropriate name search paths
(foobar.com.lcs.mit.edu)

• Invalid queries: ld

• Negative caching ought to take care of this

Two Hacks

1. Use dig option to find BIND version
� Main result: flood of email from disgruntled administrators
�	 Hint: set up reverse DNS with a txt message explaining

what you’re doing
2. Send back-to-back a.b.c.com to name servers

• First one with recursion-desired bit, second not
•	 With –ve caching, second query would respond with

NXDOMAIN and not a referral
•	 Result: 90% of name servers appear to implement

negative caching
• NXDOMAIN lookups are heavy-tailed too!

�	 Many for non-existent TLDs: loopback, workgroup,
cow

DNS Scalability Reasons

• DNS scales because of good NS-record caching,
which partitions the database
� Alleviates load on root/gTLD servers

•	 Hierarchy is NOT the reasons for DNS scalability
� The namespace is essentially flat in practice

• A-record caching is, to first-order, a non-contributor to

scalability
� Make ‘em all 5 minutes (or less!) and things will be just fine
� Large-scale sharing doesn’t improve hit-rates

NS-record caching is critical

• Substantially reduces DNS lookup latency
• Reduces root load by about 4-5X

Effectiveness of A-record Caching

•	 Cache sharing amongst clients
� How much aggregation is really needed?

•	 Impact of TTL on caching effectiveness?
� Is the move to low TTLs bad for caching?

•	 What does the cache hit rate depend on?
� Name popularity distribution
� Name TTL distribution
� Inter-arrival distribution

•	 Methodology
� Trace-driven simulation

DNS Caching: Locality of

References

Name popularity TTL distribution

•	 The top 10% account for more than 68% of • Shorter TTL names are more frequently
total answers accessed

• A long tail: 9.0% unique names • The fraction of accesses to short TTLs
Root queries regardless of caching scheme has greatly increased

Indicating increased deployment of DNS-
based server selection

Trace-driven Simulation

•	 Key insight: correlate DNS traffic with driving
TCP workload

• Parse traces to get:
� Outgoing TCP SYNs per client to external

addresses
� Databases containing

• IP-to-Name bindings
• Name-to-TTL bindings per simulated cache

Algorithm

1.	 Randomly divide the TCP clients into groups of size
S. Give each group a shared cache.

2.	 For each new TCP connection in the trace,
determine the group G and look for a name N in the
cache of group G.

3.	 If N exists and the cached TTL has not expired,
record a hit. Otherwise record a miss.

4.	 On a miss, make an entry in G’s cache for N, and
copy the TTL from the TTL DB to N’s cache entry

• Same name may have many IPs (handled)
• Same IP may have many names (ignored)

Effect of Sharing on Hit Rate

• 64% (s = 1) vs. 91% (s → 1000)

• Small s (10 or 20 clients per cache) are enough

� Small # of very popular names
� Each remaining name is of interest to only a tiny fraction of clients

Impact of TTL on Hit Rate

mit-dec00 kaist-may01

•	 Peg TTL to some value T in each simulation run; vary
T

•	 TTL of even 200s gives most of the benefit of
caching, showing that long-TTL A-record caching is
not critical

Bottom line

• The importance of TTL-based caching may have
been greatly exaggerated
� NS-record caching is critical: reduces root & WAN load
� Large TTLs for A-records aren’t critical to hit rates

• 10-min TTLs don’t add extra root or WAN load
• 0 TTL with client caching would only increase load by 2X

•	 The importance of hierarchy may have been greatly
exaggerated
� Most of the name space is flat; resolved within 2 referrals

•	 What matters is partitioning of the distributed
database

•	 The DNS protocol would work better without all that
retransmit persistence

Other issues

• How does reverse name lookup work?
� Trie data structure of numeric IP addresses

treated as part of the in-addr.arpa zone
•	 Dynamic updates?
� DNS update spec standard now, in BIND 9

•	 Secure updates?
� DNS updates need authentication (also std now)

•	 Attacks on DNS?
� PS 3 question!

