The Internet Domain Name System

Hari Balakrishnan

6.829 Fall 2002

Goals

« DNS architecture
a How DNS works

« DNS uses

a Mail

Q Content Distribution Networks (CDNs)
« DNS Performance

a How well does it work?
Q Why does it work?

Why naming?

* Level(s) of indirection between a resource
and its location
« Convenience
Q For apps
a For humans
Q Autonomous organizational operation (real-world)

 Examples

a DNS, search engines, intentional names,...
Q Virtual memory, DHTs,...

DNS architecture

Two major components
A Name servers: Information repositories
Q Resolvers: Interface to client programs
* Stub resolver as libraries
* Forwarding name servers that proxy for stubs

DNS name space
Resource records

Database distribution
a Zones
a Caching

Datagram-based protocol

DNS name space

Organized as a variable-depth rooted tree

Each node in tree has associated label
Q Label = variable-length string of octets
O Case-insensitive

DNS name of node = path from node to root
Q E.g., nms.Ics.mit.edu. (“.” separates labels)

Q Joe.Schmoe@)lcs.mit.edu. (left of “@” is a single label, to the
right are four labels)

No implicit semantics in tree structure in general
Q Except for IN-ADDR.ARPA domain used for reverse lookups

Design tuned for administrative delegation of the
name space (more on this in a bit)

Resource Records (RRs)

Data in DNS structured using RRs
ldea is to help both apps and DNS itself

Classes are orthogonal to each other

aIN, ISO, CHAOS, XNS,... (pretty much only IN
today!)

Each class has a set of types; new types can

be added, but require standardization

Example IN types

a A, NS, MX, PTR, CNAME, ...

Example

dig www.google.com
www.google.com. 162 IN A 216.239.53.100

google.com. 345579 IN NS ns3.google.com.
google.com. 345579 IN NS ns4.google.com.
google.com. 345579 IN NS ns1.google.com.
google.com. 345579 IN NS ns2.google.com.
dig www.google.com —t MX

www.google.com. 86210 IN MX 20 smtp2.google.com.

What are the #s in the second column?
What’s the number next to the MX answer?

Advantage of one RR per type, versus single RR with multiple
values?

Database distribution

Two distribution mechanisms
a Zones
Q Caching

Separation invisible to user/application
Zone = complete description of a contiguous section
of the DNS name space

Q Stores RRs for labels

A And pointers to all other contiguous zones
a Zone divisions can be made anywhere in the name space

Zone logistics

« Persuade parent organization to delegate a
subzone consisting of a single node

a E.qg., persuade Ics.mit.edu. to delegate
nms.|lcs.mit.edu (the delegated node is “nms”)

Q Persuade com. to delegate label “cnn” to me

 New zone can grow to arbitrary size and
further delegated autonomously

Zone owner’s responsibilities

Authoritatively maintain the zone’s data

Arrange for replicated name servers for the zone

Q Typically, zone data is maintained in a master file and
loaded into a primary (master) server

O Replicated servers use TCP-based zone transfers specified
in DNS protocol to refresh their data

A name server authoritative for a zone does not have
to be in that zone (great idea)

A name server can handle any number of zones,
which don’t have to be contiguous

Example: dig cnn.com.
Q cnn.com. 600 IN NS twdns-02.ns.aol.com

Caching

Each name server aggressively caches
everything it can

Only control on caching: TTL field

a An expired TTL requires a fresh resolution
Q Each RR has its own TTL

Low TTL values reduces inconsistencies,
allows for dynamic name-to-RR mappings

Large TTL values reduce network and server
load

Example resolution

« Suppose you want to lookup A-record for
www.lcs.mit.edu. and nothing is cached

2
3

Iterative

resolutimi/
Recursive Local DNS - >
resolution 1 proxy N‘

_ —

App)
Stub resolver

Caching

In reality, one almost never sees the chain of
request-response messages of previous slide

NS records for labels higher up the tree usually have
long TTLs

E.g., the google.com example from before

But what about cnn.com?
cnn.com. 600 I[N NS twdns-02.ns.aol.com

Not a problem
twdns-02.ns.aol.com. 3600 I[N A 152.163.239.216
ns.aol.com. 3553 IN NS dns-02.ns.aol.com.

Cache not only positive answers, but also stuff that
does not exist

Communication protocol

Normal request response uses a UDP-based
datagram protocol with retransmissions

Retry timer is configurable, typically 4 or 8 seconds
Often, retries are extremely persistent (many times)
Use transaction ID field to disambiguate responses

Key point: App using DNS is typically decoupled from
the DNS resolver making recursive queries!

Zone transfers use TCP (bulk data, rather than RPC-
style comm.)

Definitions

gethostbyname() is a lookup

Local DNS server makes one or more queries
(recursive resolution)

Each contacted server responds with a
response

A response could be a referral, to go
someplace else

A response that is not a referral is an answer

Performance study motivation

 How well does DNS work today?
Q Scalability
A Robustness
Q Protocol

* Which of its mechanisms are actually useful?
Q Hierarchy
Q Caching
 DNS is being put to new uses: Is that likely to cause
problems?
a Load-balancing
A Content Distribution Networks

Suspicion

DNS in WAN traffic traces

Q 14% of all packets (estimate) in Danzig et al. 1990 8% in
1992

0 5% in NSFNET (1995)
Q 3% in 1997 (MCI traces, 1997)
But...
Q 18% of all “flows” in 1997
Q 1 out of 5 flows is a DNS flow?7??
But yet, the DNS seems to work OK

O Because of caching is traditional view

Low-TTL bindings have important benefits

a Load-balancing
Q Mobility

Analysis: Two Data Sets

MIT: Jan 2000 (mit-jan00) & Dec 2000 (mit-dec00)
O All DNS traffic at LCS/Al border and all TCP SYN/FIN/RST
Q Protocol analysis & cache simulations

KAIST, Korea: May 2001 (kaist-may01)
a All DNS traffic at border and some TCP SYN/FIN/RST
Q Protocol analysis & cache simulations

Key insight: Joint analysis of DNS and its driving
workload (TCP connection) can help understand
what’s going on

MIT LCS/Al Topology

L1
—
Collection
machine
/.
External S
network
LCS/AI

Router

KAIST Topology

Collection
machine

Cisco 7000

External

network

nsl.kaist.ac.kr

ns2.kaist.ac.kr

External

network

Basic Trace Statistics

mit-jan00 mit-dec00 | kaist-may01

Total lookups 2,530,430 | 4,160,954 4,339,473
Unanswered 23.5% 22.7% 20.1%
Answered with success 64.3% 63.6% 36.4%
Answered with failure 11.1% 13.1% 42.2%
Total query packets 6,039,582 | 10,617,796 5,326,527
TCP connections 3,619,173 | 4,623,761 6,337,269
#TCP:#valid “A” answers 7.3 4.9 7.8
Hit rate 86% 80% 87%

Why so many unanswered lookups?

Why so many failures?

Why so many query packets?
Why i1s hit rate not much higher than 80% and does 1t matter?

Unanswered lookups

 What's the main reason for this large
fraction”?

* Three syndromes
Q Zero referrals (5%-10%)
Q Non-zero referrals (13%-10%)
Q Loops (5%-3%)

Reason: Misconfigurations!

Many Lookups Elicit No Response
(MIT data)

100

——

g0

ao

COF

40

20

dns—janZk (answered lookups
dns-janzk {unanswered lookups
dns-decZk-a (answere ookups
dns-decZk-a (unanswere ookups

0 2 4 f g 10 1z 14

Number of retfransmissions

o I w I w I w
— = =
F =R
oo O D
e e e

ARY

« About 50% of the wide-area DNS packets are not necessary!

DNS Protocol

20-25% of all lookups are unresponded

Of all answered requests, 99.9% had at most two
retransmissions

Implementations retransmit every 4 or 8 secs
A And they keep on going and going and going...
A And becoming worse (more secondaries?)

But about 20% of the unanswered lookups gave up
after ZERO retransmits!

Q More in the KAIST data
This suggests schizophrenia!
Solution: tightly bound number of retransmissions

Failure Responses

mit-jan00 mit-dec00 kaist-may01

Failed 11.1% 13.1% 42.2%
lookups

NXDOMAIN and SERVFAIL are most common reasons

Most common NXDOMAIN reason: Reverse (PTR) lookups
for mappings that don’t exist

O Happens, e.g., because of access control or logging
mechanisms in servers

Other reasons

Q Inappropriate name search paths
(foobar.com.lcs.mit.edu)

Invalid queries: 1d
Negative caching ought to take care of this

Two Hacks

1. Use dig option to find BIND version

A Main result: flood of email from disgruntled administrators

O Hint: set up reverse DNS with a txt message explaining
what you're doing

2. Send back-to-back a.b.c.com to name servers

First one with recursion-desired bit, second not

With —ve caching, second query would respond with
NXDOMAIN and not a referral

* Result: 90% of name servers appear to implement
negative caching

« NXDOMAIN lookups are heavy-tailed too!

QO Many for non-existent TLDs: loopback, workgroup,
cow

DNS Scalability Reasons

DNS scales because of good NS-record caching,
which partitions the database

Q Alleviates load on root/gTLD servers

Hierarchy is NOT the reasons for DNS scalability

Q The namespace is essentially flat in practice

A-record caching is, to first-order, a non-contributor to
scalability
a Make ‘em all 5 minutes (or less!) and things will be just fine
Q Large-scale sharing doesn’t improve hit-rates

NS-record caching is critical

100

0 ¢

a0 r

70 ¢

Bl

90 ¢

COF

40 |

30 ¢

20 ¢

10 ¢
N3 cache hit ——
NS cache miss ——

0

1 10 100 1000 10000 100000

Latency (ms)

« Substantially reduces DNS lookup latency
* Reduces root load by about 4-5X

Effectiveness of A-record Caching

Cache sharing amongst clients
O How much aggregation is really needed?

Impact of TTL on caching effectiveness?
Q Is the move to low TTLs bad for caching?

What does the cache hit rate depend on?

A Name popularity distribution
O Name TTL distribution
a Inter-arrival distribution

Methodology

Q Trace-driven simulation

DNS Caching: Locality of
References

Name popularity

Percentage of requests ()

20

10 mit-jan00

mit-decO0
kaist-mayll ——
4] 10 20 a0 40 a0 iyl 70 alo] 90 100

Percentage of query names (%)

The top 10% account for more than 68% of

total answers

A long tail: 9.0% unique names

» Root queries regardless of caching scheme

CDF

100

0

g0

70

&0

S0

40

30

20

10

TTL distribution

mit-jan0l) ——
mit-dec0l ——
kaist-maydl ——

1 hpur

15 minutes

10 100 1000 10000 100000
TTL {sec)

Shorter TTL names are more frequently
accessed

The fraction of accesses to short TTLs
has greatly increased

» Indicating increased deployment of DNS-
based server selection

Trace-driven Simulation

« Key insight: correlate DNS traffic with driving
TCP workload

« Parse traces to get:

Q Outgoing TCP SYNs per client to external
addresses

Q Databases containing
* |P-to-Name bindings
* Name-to-TTL bindings per simulated cache

Algorithm

Randomly divide the TCP clients into groups of size
S. Give each group a shared cache.

For each new TCP connection in the trace,
determine the group G and look for a name N in the
cache of group G.

If N exists and the cached TTL has not expired,
record a hit. Otherwise record a miss.

On a miss, make an entry in G's cache for N, and
copy the TTL from the TTL DB to N's cache entry

Same name may have many IPs (handled)
Same IP may have many names (ignored)

Effect of Sharing on Hit Rate

100

p————— N — L —
Boﬁﬂ{/’ _

B0

Hit rate (%)

40

20

mit-janll ——
mit-decll ——
kaist-mayll ——

10 20 30 40 an 6o 0 g0 a0 100

Group size

« 64% (s=1)vs.91% (s - 1000)
« Small s (10 or 20 clients per cache) are enough

O Small # of very popular names
O Each remaining name is of interest to only a tiny fraction of clients

Hit rate (%)

100

g0

60

40

20

0

Impact of TTL on Hit Rate

mit-decO00

n—

group size = 1 ——
group size = 25 ——
group size = 100 ——

4] 500 1000 1500 2000 2500 3000 3500 4000 4500 S000
TTL (sec)

(%)

Hit rate

100

g0

60

40

20

0

kaist-may0Ol

-

group size = 1 —
group size = 25 ——
group size = 100 ——0

4] 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
TTL (sec)

Peg TTL to some value T in each simulation run; vary

T

TTL of even 200s gives most of the benefit of
caching, showing that long-TTL A-record caching is

not critical

Bottom line

The importance of TTL-based caching may have
been greatly exaggerated

Q NS-record caching is critical: reduces root & WAN load
Q Large TTLs for A-records aren’t critical to hit rates
* 10-min TTLs don’t add extra root or WAN load
* 0 TTL with client caching would only increase load by 2X
The importance of hierarchy may have been greatly
exaggerated
Q Most of the name space is flat; resolved within 2 referrals

What matters is partitioning of the distributed
database

The DNS protocol would work better without all that
retransmit persistence

Other issues

How does reverse name lookup work?

Q Trie data structure of numeric |IP addresses
treated as part of the in-addr.arpa zone

Dynamic updates?
0 DNS update spec standard now, in BIND 9

Secure updates?
0 DNS updates need authentication (also std now)

Attacks on DNS?
a PS 3 question!

