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Goals


•	 DNS architecture 
� How DNS works 

•	 DNS uses 
� Mail 
� Content Distribution Networks (CDNs) 

•	 DNS Performance 
� How well does it work? 
� Why does it work? 



Why naming?


•	 Level(s) of indirection between a resource
and its location 

•	 Convenience 
� For apps 
� For humans 
� Autonomous organizational operation (real-world) 

•	 Examples 
� DNS, search engines, intentional names,… 
� Virtual memory, DHTs,… 



DNS architecture 

•	 Two major components 
� Name servers: Information repositories 
� Resolvers: Interface to client programs 

• Stub resolver as libraries 
• Forwarding name servers that proxy for stubs 

• DNS name space 
• Resource records 
•	 Database distribution 

� Zones 
� Caching 

• Datagram-based protocol 



DNS name space


• Organized as a variable-depth rooted tree 
•	 Each node in tree has associated label 

� Label = variable-length string of octets 
� Case-insensitive 

•	 DNS name of node = path from node to root 
� E.g., nms.lcs.mit.edu. (“.” separates labels) 
� Joe.Schmoe@lcs.mit.edu. (left of “@” is a single label, to the

right are four labels) 
•	 No implicit semantics in tree structure in general 

� Except for IN-ADDR.ARPA domain used for reverse lookups 
•	 Design tuned for administrative delegation of the

name space (more on this in a bit) 



Resource Records (RRs)


• Data in DNS structured using RRs 
• Idea is to help both apps and DNS itself 
• Classes are orthogonal to each other 
� IN, ISO, CHAOS, XNS,… (pretty much only IN

today!) 
•	 Each class has a set of types; new types can

be added, but require standardization 
•	 Example IN types 
� A, NS, MX, PTR, CNAME, … 



Example


•	 dig www.google.com 
www.google.com. 162 IN  A 216.239.53.100 
google.com. 345579 IN NS ns3.google.com. 
google.com. 345579 IN NS ns4.google.com. 
google.com. 345579 IN NS ns1.google.com. 
google.com. 345579 IN NS ns2.google.com. 

•	 dig www.google.com –t MX 
www.google.com. 86210 IN MX 20 smtp2.google.com. 

• What are the #s in the second column? 
• What’s the number next to the MX answer? 
•	 Advantage of one RR per type, versus single RR with multiple 

values? 



Database distribution


•	 Two distribution mechanisms 
� Zones 
� Caching 

• Separation invisible to user/application 
• Zone = complete description of a contiguous section 


of the DNS name space 
� Stores RRs for labels 
� And pointers to all other contiguous zones 
� Zone divisions can be made anywhere in the name space 



Zone logistics


• Persuade parent organization to delegate a 
subzone consisting of a single node 
� E.g., persuade lcs.mit.edu. to delegate 

nms.lcs.mit.edu (the delegated node is “nms”) 
� Persuade com. to delegate label “cnn” to me


•	 New zone can grow to arbitrary size and 
further delegated autonomously 



Zone owner’s responsibilities


• Authoritatively maintain the zone’s data 
• Arrange for replicated name servers for the zone 

�	 Typically, zone data is maintained in a master file and
loaded into a primary (master) server 

�	 Replicated servers use TCP-based zone transfers specified
in DNS protocol to refresh their data 

•	 A name server authoritative for a zone does not have 
to be in that zone (great idea) 

•	 A name server can handle any number of zones,
which don’t have to be contiguous 

•	 Example: dig cnn.com. 
� cnn.com. 600 IN NS twdns-02.ns.aol.com 



Caching


•	 Each name server aggressively caches
everything it can 

•	 Only control on caching: TTL field 
� An expired TTL requires a fresh resolution 
� Each RR has its own TTL 

•	 Low TTL values reduces inconsistencies, 
allows for dynamic name-to-RR mappings 

•	 Large TTL values reduce network and server
load 



Example resolution 
• Suppose you want to lookup A-record for 

www.lcs.mit.edu. and nothing is cached 
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Caching


•	 In reality, one almost never sees the chain of
request-response messages of previous slide 

•	 NS records for labels higher up the tree usually have
long TTLs 

• E.g., the google.com example from before 
•	 But what about cnn.com? 

cnn.com. 600 IN NS twdns-02.ns.aol.com 
•	 Not a problem 

twdns-02.ns.aol.com. 3600 IN  A 152.163.239.216 
ns.aol.com. 3553 IN NS  dns-02.ns.aol.com. 

•	 Cache not only positive answers, but also stuff that
does not exist 



Communication protocol


•	 Normal request response uses a UDP-based 
datagram protocol with retransmissions 

• Retry timer is configurable, typically 4 or 8 seconds 
• Often, retries are extremely persistent (many times) 
• Use transaction ID field to disambiguate responses 
•	 Key point: App using DNS is typically decoupled from 

the DNS resolver making recursive queries! 
•	 Zone transfers use TCP (bulk data, rather than RPC-

style comm.) 



Definitions


• gethostbyname() is a lookup 
•	 Local DNS server makes one or more queries

(recursive resolution) 
•	 Each contacted server responds with a 

response 
•	 A response could be a referral, to go

someplace else 
• A response that is not a referral is an answer 



Performance study motivation 

•	 How well does DNS work today? 
� Scalability 
� Robustness 
� Protocol 

•	 Which of its mechanisms are actually useful? 
� Hierarchy 
� Caching 

• DNS is being put to new uses: Is that likely to cause

problems? 
� Load-balancing 
� Content Distribution Networks 



Suspicion


• DNS in WAN traffic traces 
�	 14% of all packets (estimate) in Danzig et al. 1990 8% in 

1992 
� 5% in NSFNET (1995) 
� 3% in 1997 (MCI traces, 1997) 

• But… 
� 18% of all “flows” in 1997 
� 1 out of 5 flows is a DNS flow??? 

•	 But yet, the DNS seems to work OK 
� Because of caching is traditional view 

•	 Low-TTL bindings have important benefits 
� Load-balancing 
� Mobility 



Analysis: Two Data Sets 

•	 MIT: Jan 2000 (mit-jan00) & Dec 2000 (mit-dec00) 
� All DNS traffic at LCS/AI border and all TCP SYN/FIN/RST 
� Protocol analysis & cache simulations 

•	 KAIST, Korea: May 2001 (kaist-may01) 
� All DNS traffic at border and some TCP SYN/FIN/RST 
� Protocol analysis & cache simulations 

•	 Key insight: Joint analysis of DNS and its driving 
workload (TCP connection) can help understand 
what’s going on 



MIT LCS/AI Topology
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KAIST Topology
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Basic Trace Statistics


87%80%86%Hit rate 
7.84.97.3#TCP:#valid “A” answers 

6,337,2694,623,7613,619,173TCP connections 
5,326,52710,617,7966,039,582Total query packets 

42.2%13.1%11.1%Answered with failure 
36.4%63.6%64.3%Answered with success 
20.1%22.7%23.5%Unanswered 

4,339,4734,160,9542,530,430Total lookups 
kaist-may01mit-dec00mit-jan00 

Why so many unanswered lookups?

Why so many failures?

Why so many query packets?

Why is hit rate not much higher than 80% and does it matter?




Unanswered lookups 

•	 What’s the main reason for this large 
fraction? 

•	 Three syndromes 
� Zero referrals (5%-10%) 
� Non-zero referrals (13%-10%) 
� Loops (5%-3%) 

Reason: Misconfigurations! 



Many Lookups Elicit No Response 

(MIT data) 

• About 50% of the wide-area DNS packets are not necessary! 



DNS Protocol


• 20-25% of all lookups are unresponded 
•	 Of all answered requests, 99.9% had at most two

retransmissions 
•	 Implementations retransmit every 4 or 8 secs 

� And they keep on going and going and going… 
� And becoming worse (more secondaries?) 

• But about 20% of the unanswered lookups gave up

after ZERO retransmits! 
� More in the KAIST data 

• This suggests schizophrenia! 
• Solution: tightly bound number of retransmissions 



Failure Responses


42.2%13.1%11.1%Failed 
lookups 

kaist-may01mit-dec00mit-jan00 

• NXDOMAIN and SERVFAIL are most common reasons 
• Most common NXDOMAIN reason: Reverse (PTR) lookups

for mappings that don’t exist 
�	 Happens, e.g., because of access control or logging

mechanisms in servers 
• Other reasons 

� Inappropriate name search paths
(foobar.com.lcs.mit.edu) 

• Invalid queries: ld 

• Negative caching ought to take care of this 



Two Hacks


1. Use dig option to find BIND version 
� Main result: flood of email from disgruntled administrators 
�	 Hint: set up reverse DNS with a txt message explaining 

what you’re doing 
2. Send back-to-back a.b.c.com to name servers 

• First one with recursion-desired bit, second not 
•	 With –ve caching, second query would respond with

NXDOMAIN and not a referral 
•	 Result: 90% of name servers appear to implement

negative caching 
• NXDOMAIN lookups are heavy-tailed too! 

�	 Many for non-existent TLDs: loopback, workgroup,
cow 



DNS Scalability Reasons


• DNS scales because of good NS-record caching, 
which partitions the database 
� Alleviates load on root/gTLD servers 

•	 Hierarchy is NOT the reasons for DNS scalability 
� The namespace is essentially flat in practice 

• A-record caching is, to first-order, a non-contributor to 

scalability 
� Make ‘em all 5 minutes (or less!) and things will be just fine 
� Large-scale sharing doesn’t improve hit-rates 



NS-record caching is critical 

• Substantially reduces DNS lookup latency 
• Reduces root load by about 4-5X 



Effectiveness of A-record Caching


•	 Cache sharing amongst clients 
� How much aggregation is really needed? 

•	 Impact of TTL on caching effectiveness? 
� Is the move to low TTLs bad for caching? 

•	 What does the cache hit rate depend on? 
� Name popularity distribution 
� Name TTL distribution 
� Inter-arrival distribution 

•	 Methodology 
� Trace-driven simulation 



DNS Caching: Locality of 

References


Name popularity TTL distribution


•	 The top 10% account for more than 68% of • Shorter TTL names are more frequently 
total answers accessed 

• A long tail: 9.0% unique names • The fraction of accesses to short TTLs 
Root queries regardless of caching scheme has greatly increased 

Indicating increased deployment of DNS-
based server selection 



Trace-driven Simulation


•	 Key insight: correlate DNS traffic with driving 
TCP workload 

• Parse traces to get: 
� Outgoing TCP SYNs per client to external 

addresses 
� Databases containing 

• IP-to-Name bindings 
• Name-to-TTL bindings per simulated cache 



Algorithm


1.	 Randomly divide the TCP clients into groups of size
S. Give each group a shared cache. 

2.	 For each new TCP connection in the trace, 
determine the group G and look for a name N in the 
cache of group G. 

3.	 If N exists and the cached TTL has not expired,
record a hit. Otherwise record a miss. 

4.	 On a miss, make an entry in G’s cache for N, and 
copy the TTL from the TTL DB to N’s cache entry 

• Same name may have many IPs (handled) 
• Same IP may have many names (ignored) 



Effect of Sharing on Hit Rate


• 64% (s = 1) vs. 91% (s → 1000) 

• Small s (10 or 20 clients per cache) are enough


� Small # of very popular names 
� Each remaining name is of interest to only a tiny fraction of clients 



Impact of TTL on Hit Rate

mit-dec00 kaist-may01 

•	 Peg TTL to some value T in each simulation run; vary
T 

•	 TTL of even 200s gives most of the benefit of
caching, showing that long-TTL A-record caching is
not critical 



Bottom line


• The importance of TTL-based caching may have
been greatly exaggerated 
� NS-record caching is critical: reduces root & WAN load 
� Large TTLs for A-records aren’t critical to hit rates 

• 10-min TTLs don’t add extra root or WAN load 
• 0 TTL with client caching would only increase load by 2X 

•	 The importance of hierarchy may have been greatly
exaggerated 
� Most of the name space is flat; resolved within 2 referrals 

•	 What matters is partitioning of the distributed 
database 

•	 The DNS protocol would work better without all that
retransmit persistence 



Other issues


• How does reverse name lookup work? 
� Trie data structure of numeric IP addresses 

treated as part of the in-addr.arpa zone 
•	 Dynamic updates? 
� DNS update spec standard now, in BIND 9 

•	 Secure updates? 
� DNS updates need authentication (also std now) 

•	 Attacks on DNS? 
� PS 3 question! 


