
6.830/6.814 — Notes∗ for Lecture 6:
Access Methods

Carlo A. Curino

September 29, 2010

1 Announcements

•	 Problem Set 2 is out today... due in two weeks... be aware that is going
to overlap to LAB 2.

Projects ideas and rules are posted online.•

2 Readings

For this class the suggested readings are:

•	 In Database Management Systems, read:

–	 Pages 273-289. If you are using another book, this is the introduc
tion to the Section on Storage and Indexing which discusses different
access methods and their relative performance.

–	 Pages 344-358. This is an in-depth discussion of the B+Tree data
structure and its implementation. Most database books, as well as
any algorithms text (such as CLR or Knuth) will provide an equiva
lent discussion of B+Trees.

–	 (was not assigned, but is an important reading) Pages 370-378 on
Static Hashing and Extensible Hashing

”The R*-Tree: An Efficient and Robust Access Method for Points and •
Rectangles.” Beckmann et al, in The Red Book.

∗These notes are only meant to be a guide of the topics we touch in class. Future notes
are likely to be more terse and schematic, and you are required to read/study the papers and
book chapters we mention in class, do homeworks and Labs, etc.. etc..

1

3 Recap

We presented a broad overview of the DBMS internals.

We point out how important coming up with a good plan is.

I claimed disk I/O can be very important.

Remember I mentioned this last time:

CPU cost (# of instructions) 1Ghz == 1 billions instrs/sec 1 nsec / instr
RAM access 50ns
I/Ocost(#ofpagesread,#ofseeks) 100MB/sec 10nsec/byte
(RandomI/O=pageread+seek) 10msec/seek 100seeks/sec

1 seek = 10M instructions!!!

Moreover there is a big difference from sequential and random IO. Example:

•	 Read 10KB from a random location on disk: 10ms + 100µs = 10.1ms;

•	 Read 10KB+10KB from a random location on disk (two blocks are next
to each other): 10ms + 200µs = 10.2ms;

•	 Read 10KB+10KB from two random locations on disk: 10ms + 100µs +
10ms +100µs= 20.2ms;

WOW! So saving disk I/O, and in particular random ones is VERY impor
tant!! DB are usually well designed to: 1) avoid excessive disk I/O and try to be
sequential, and 2) have a LOT of drives available (TPC-H competing machines:
144 cores AND 1296 disks!!)

Today we study how to do a good job at reducing Disk I/O by organize stuff
intelligently on disk, next lecture we study what we should keep in RAM.

4 Access Methods

Today we get into more details on Access Methods, i.e., on the portion of the
DBMS in charge of managing the data on disk. We will show a bunch of
organization of data, and their performance in supporting typical accesses we
need to support queries. Next lecture we will study the Buffer Manager, which
tries to reduce the access to disk.

What are the functionalities we need to support:

scan•

•	 search (equality)

2

•	 search (range)

insert
•

delete•

Various access methods:

•	 heap file: unordered, typically implemented as a linked list of pages

•	 sorted file: ordered records, expensive to maintain

•	 index file: data + extra structures around to quickly access data

–	 might contain data (primary index)

–	 or point at the data, often stored in a heapfile or other index (sec
ondary index)

–	 if the data are sorted in the same order of the field is index, we say is
a clustered index (we will see this is good for scans since disk accesses
are sequential)

Type of indexes:

hash•

B+trees•

R*trees•

4.1 Data organization within file

file organization:

•	 pages

• records (record ids: page id, slot id)

page layout:

•	 fixed length records page of slots,

•	 free bit map ”slotted page” structure for var length records or slot direc
tory (slot offset, len)

What about big records? Hard to place, and might overflow on another
page.

tuple layout (similar story):

•	 fixed length (structure know by the system catalog, can predict where
fields start)

3

5

•	 variable length, field slots, two options: delimiters or directory with point
ers/offsets

What happen when the field size changes? Need to move stuff... so if we
have a mix of fixed/variable, the fixed fields are best to be stored first. Null
values? Good trick is using the pointers/offset.. if two have same value, it
means the field in between is null... this makes storing nulls 0 space overhead.

Cost model (enhanced one, from the book)

•	 Heap Files: Equality selection on key; exactly one match.

•	 Sorted Files: Files compacted after deletions.

Indexes:
•

–	 Alt (2), (3): data entry size = 10% size of record

–	 Hash: No overflow buckets. 80%pageoccupancy Filesize=1.25datasize→
–	 Tree: 67% occupancy (this is typical). File size = 1.5 data size →

We use:

•	 B: number of data pages

•	 R: number of record per page

•	 D: average time to read/write from disk

•	 C: average time to process a record (e.g., equality check)

Extensible hashing

Good read on the book: pages... 370-378

4

6

Image by MIT OpenCourseWare.

BD

BD

1.5BD

BD (R+0.15)

BD (R+0.125)

0.5BD

Dlog2B

DlogF1.5B

D (1 +
logF0.15B)

2D

BD

Dlog2B +
matches
DlogF1.5B +
matches
DlogF0.15B +
matches

BD

Search + D

Search + BD

Search + D

Search + 2D

Serach + 2D

2D

Search + BD

Search + D

D (3 +
logF0.15B)

4D

Heap

Sorted

Clustered

Unclustered
tree index
Unclustered
hash index

Scan Equality Range Insert Delete

7 B+trees

Hierarchical indices are the most common type used—e.g., B+-Trees indices
typically point from key values to records in the heap file. Shall we always have
indexes? What are the pros and cons? (keep the index up-to-date, extra space
required)

Figure 1: B+Tree graphical representation.

Special case, is a “clustered” index, i.e., when the order of the tuples on disk
correspond to the order in which they are stored in the index. What is it good
for? (range selections, scans).

5

Courtesy of Grundprinzip on Wikipedia.

32* 16*

1* 5* 21* 13*

10*

15* 7* 19*

4* 12* 20*

3

3

2

2

2

3

000
001
010
011
100
101
110
111

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
('split image'
of Bucket A)

Directory

Local Depth
Global Depth

Local Depth
Global Depth 32* 16*

1* 5* 21* 13*

10*

15* 7* 19*

4* 12* 20*
2

2

2

2

2

2
00
01
10
11

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
('split image'
of Bucket A)

Directory

Image by MIT OpenCourseWare.

http://en.wikipedia.org/wiki/File:Bplustree.png

MIT OpenCourseWare
http://ocw.mit.edu

6.830 / 6.814 Database Systems
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

