
6.830/6.814 — Notes∗ for Lecture 4:
Database Internals Overview

Carlo A. Curino

September 22, 2010

1 Announcements

•	 Problem Set 1 is due today! (For next time please submit some open
non-esoteric format .txt .rtf .pdf)

•	 Lab 1 is out today... start it right away, is due in 8 days! Do not copy...
we perform automatic checking of plagiarism... it is not a good gamble!

Projects ideas and rules are posted online.•

2 Readings

For this class the suggested readings are:

•	 Joseph Hellerstein, Michael Stonebraker and James Hamilton. Architec
ture of a Database System. Online at: http://db.cs.berkeley.edu/
papers/fntdb07-architecture.pdf

It is a rather long paper (don’t be too scared by the 119 pages, the page
format makes it look much longer than it is) that is in general worth reading,
however we only require you too read sections: 1, 2 (skim through it), 3, 4 (up
to subsection 4.5 included), 5. You can also skim through section 6 that we will
discuss later on. Probably doesn’t all make sense right now – you should look
at this paper again to this paper through the semester for context.

3 A bit of history

Complementing Mike’s historical overview...Projects ideas and rules are posted online.
∗These notes are only meant to be a guide of the topics we touch in class. Future notes

are likely to be more terse and schematic, and you are required to read/study the papers and
book chapters we mention in class, do homeworks and Labs, etc.. etc..

1

http://db.cs.berkeley.edu/ papers/fntdb07-architecture.pdf
http://db.cs.berkeley.edu/ papers/fntdb07-architecture.pdf

1970’s : Several camps of proponents argue about merits of these competing
systems while the theory of databases leads to mainstream research projects.
Two main prototypes for relational systems were developed during 1974-77.

•	 Ingres: Developed at UCB by (including guess who? Stonebraker and
Wong). This ultimately led to Ingres Corp., Sybase, MS SQL Server,
Britton-Lee, Wang’s PACE. This system used QUEL as query language.

•	 System R: Developed at IBM San Jose (now Almaden) and led to IBM’s
SQL/DS & DB2, Oracle, HP’s Allbase, Tandem’s Non-Stop SQL. This
system used SEQUEL as query language (later SQL). Lots of Berkeley
folks on the System R team, including Gray (1st CS PhD @ Berkeley),
Bruce Lindsay, Irv Traiger, Paul McJones, Mike Blasgen, Mario Schkol
nick, Bob Selinger , Bob Yost.

Early 80’s : commercialization of relational systems

•	 Ellison’s Oracle beats IBM to market by reading white papers.

•	 IBM releases multiple RDBMSs, settles down to DB2. Gray (System
R), Jerry Held (Ingres) and others join Tandem (Non-Stop SQL), Kapali
Eswaran starts EsVal, which begets HP Allbase and Cullinet

•	 Relational Technology Inc (Ingres Corp), Britton-Lee/Sybase, Wang PACE
grow out of Ingres group

•	 CA releases CA-Universe, a commercialization of Ingres

•	 Informix started by Cal alum Roger Sippl (no pedigree to research).

•	 Teradata started by some Cal Tech alums, based on proprietary network
ing technology (no pedigree to software research)

Mid 80’s :

•	 SQL becomes ”intergalactic standard”.

•	 DB2 becomes IBM’s flagship product.

1990’s:

•	 Postgres project at UC Berkeley turned into successful open source project
by a large community, mostly driven by a group in russia

Illustra (from Postgres) Informix IBM•	 → →

•	 MySQL

2

4

2000’s:

Postgres Netezza, Vertica, Greenplum, EnterpriseDB... • →

MySQL Infobright • →

Ingres DATAllegro • →

System R is generally considered the more influential of the two – you can
see how many of the things they proposed are still in a database system today.
However, Ingres probably had more ”impact” by virtue of training a bunch of
grad students who went on to fund companies + build products (e.g., Berke
leyDB, Postgres, etc.)

Introduction

Figure 1 shows the general architecture of a database.

Figure 1: Architecture of a DBMS

Today we will mainly look at the big picture, and go through the relational
query rewriting and execution, the following lessons will focus on each of the
pieces in more details.

Show flow of a query

3

Local Client
Protocols

Remote Client
Protocols

Catalog
Manager

Memory
Manager

Administration,
Monitoring &

Utilities

Replication and
Loading
Services

Batch Utilities

Query Parsing and Authorization

Query Rewrite

Query Optimizer

Plan Executor

DDL and Utility
Processing

Client Communications Manager

Relational Query Processor

Access Methods

Lock Manager

Buffer Manager

Log Manager

Transactional Storage Manager

Admission
Control

Dispatch
and

Scheduling

Process
Manager

Shared Components
and Utilities

Image by MIT OpenCourseWare.

5 Process Models

Parallelism is a key to performance, in particular when I/O waits might stall
computation. To maximize throughput you need to have enough stuff going on
in parallel to avoid waiting/stalling.

Process models:

•	 Back in the days there was no good OS thread support, DB pioneered this
ground (also due to the need of supporting many OSs)

•	 Process per DBMS worker (need for shared memory [ASK: is it clear why
we need to share across multiple workers?], context switch is expensive,
easy to port, limited scalability)

•	 Thread per DBMS worker (great if good OS thread support, or using
DBMS separate implementation of threads... pro: portability, cons: du
plicate functionalities)

•	 Process/Thread pool, and scheduling/allocation of DBMS workers to pro
cesses or threads.

6 Parallel Architecture

•	 Shared Memory: typically inside one machine, for large installation high
costs. All process models are applicable. Great for OLTP, many imple
mentation form almost every vendor.

•	 Shared Nothing: typically as a cluster of nodes. Require good partitioning,
which is easier for OLAP workloads (Teradata, Greenplum, DB2 Parallel
Edition,...).

•	 Shared Disk: cluster of nodes with a SAN. Simple model, because ev
ery node can access all the data, but requires cache-coherence protocols.
Oracle RAC, DB2 SYSPLEX.

•	 NUMA: not that common, we will not discuss. (Often DBMS treat it as
either shared nothing or shared memory, depending how non-uniform it
is).

Different failure modes... Partial failure is good to have when possible.
We will go back to parallel architectures later on, and dis

7 Query Processing

Query parsing (correctness check)

Query admission control / authorization

4

7.1 Query Rewrite:

View Rewrite

Remember the other day schema:

shifezzatony 789

lungo 456mike

baffocarlo 123

name nickname phone

person operation

.. laundromat

irish pub

irish pub

chocolate

snowflake

coverup

caffe

$10M

econ_valtitle descr.

... $2M

... $5M

chocolatemike chief

snowflake soldtony

carlo snowflake chief

pers_name oper_name rols

involved

Figure 2: Simple Schema for a portion of our Mafia database.

What are views? A “named-query”, or a “virtual-table” (sometimes mate
rialized).

CREATE VIEW nick-cover AS
SELECT nickname, coverup_name
FROM operation o, involved i, person p
WHERE p.name = i.person AND

i.oper_name = o.name AND

o.econ_val <= 5M;

schifezza laundromat

lungo irish pub

baffo laundromat

nickname coverup
nick-cover

Figure 3: Simple External Schema for a portion of our Mafia database.

SELECT nickname
FROM nick-cover nc
WHERE nc.coverup_name="laundromat";

After view rewriting:

SELECT nickname
FROM (
SELECT nickname, coverup_name
FROM operation o, involved i, person p
WHERE p.name = i.person AND

i.oper_name = o.name AND

5

o.econ_val <= 5M
) as n

WHERE n.coverup_name="laundromat"

7.1.1 Contraint Elimination / Logical Predicates manipulation

Another important step of query rewriting consists of Constant Elimination and
Logical Predicates manipulation

WHERE (a > 50+57 OR a =107) AND b > 105 and a=b AND b < 108

becomes (after constant elimination, and logical predicate manipulations):

WHERE a = 107 and a = b and b = 107

7.1.2 Subquery Flattening

As Mike mentioned the last class another key step is Subquery flattening (Not
every optimizer will successfully do this, so you should always try to think of a
non nested query if you can find one):

SELECT nickname
FROM operation o, involved i, person p
WHERE p.name = i.person AND

i.oper_name = o.name AND

o.econ_val <= 5M AND

o.coverup_name="laundromat";

7.1.3 Semantic Optimization (Integrity Constraints)

Sometimes, knowledge of integrity constraints, in particular, foreign keys, can
be leveraged to avoid performing joins. As an example consider the following
query:

SELECT nickname
FROM operation o, involved i, person p
WHERE p.name = i.person AND

i.oper_name = o.name AND

If we know from the foreign keys that every person that appear in the involved
tuple is involved in some operation, we can skip the join with operations.

6

MIT OpenCourseWare
http://ocw.mit.edu

6.830 / 6.814 Database Systems
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

