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Today’s hall of fame or shame candidate is the Domino’s Pizza build-your-own-pizza process.  

You can try it yourself by going to the Domino’s website and clicking Order to start an order 

(you’ll have to fill in an address to get to the part we care about, the pizza-building UI). 

Some aspects to think about: 

- learnability 

- visibility 

- user control & freedom 

- efficiency 
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Today’s lecture continues our look into the mechanics of implementing user interfaces, by 

considering output in more detail. 

One goal for these implementation lectures is not to teach any one particular GUI system or 

toolkit, but to give a survey of the issues involved in GUI programming and the range of 

solutions adopted by various systems. Although our examples will generally come from HTML/ 

CSS/Javascript/jQuery, these lectures should give you a sense for what’s common and what’s 

unusual in the toolkit you already know, and what you might expect to find when you pick up 

another GUI toolkit. 
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There are basically three ways to represent the output of a graphical user interface.  

Objects is the same as the view tree we discussed previously.  Parts of the display are  

represented by view objects arranged in a spatial hierarchy, with automatic redraw propagating  

down the hierarchy.  There have been many names for this idea over the years; the GUI  

community hasn’t managed to settle on a single preferred term.  

Strokes draws output by making procedure calls to high-level drawing primitives, like  

drawLine, drawRectangle, drawArc, and drawText.  

Pixels regards the screen as an array of pixels and deals with the pixels directly.  

All three output approaches appear in virtually every modern GUI application. The object  

approach always appears at the very top level, for windows, and often for graphical objects  

within the windows as well. At some point, we reach the leaves of the view hierarchy, and the  

leaf views draw themselves with stroke calls. A graphics package then converts those strokes  

into pixels displayed on the screen. For performance reasons, an object may short-circuit the  

stroke package and draw pixels on the screen directly. On Windows, for example, video players  

do this using the DirectX interface to have direct control over a particular screen rectangle.  

What approach do each of the following representations use? HTML (object); Postscript laser  

printer (stroke input, pixel output); plotter (stroke input and output); PDF (stroke); LCD panel  

(pixel).  

6 



Since virtually every GUI uses all three approaches, the design question becomes: at which 

points in your application do you want to step down into a lower-level kind of output?  Here’s an 

example. Suppose you want to build a view that displays a graph of nodes and edges. 

One way to do it would represent each node and each edge in the graph by a component (as in 

the tree on the right). Each node in turn might have two components, a circle and a text label. 

Eventually, you’ll get down to the primitive objects available in your GUI toolkit.  Most GUI 

toolkits provide a text label; most don’t provide a primitive circle.  (One notable exception is 

SVG, which has component equivalents for all the common drawing primitives.) This would be 

a pure object approach, at least from your application’s point of view – stroke output and pixel 

output would still happen, but inside primitive objects that you took from the library. 

Alternatively, the top-level window might have no subcomponents. Instead, it would draw the 

entire graph by a sequence of stroke calls: drawCircle for the node outlines, drawText for the 

labels, drawLine for the edges. This would be a pure stroke. 

Finally, your graph view might bypass stroke drawing and set pixels in the window directly.  The 

text labels might be assembled by copying character images to the screen. This pure pixel 

approach is rarely used nowadays, because it’s the most work for the programmer, but it used to 

be the only way to program graphics. 

Hybrid approaches for the graph view are certainly possible, in which some parts of the output 

use one approach, and others use another approach. The graph view might use objects for nodes, 

but draw the edges itself as strokes. It might draw all the lines itself, but use label objects for the 

text. 
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Layout: Objects remember where they were put, and draw themselves there. They also support 

automatic layout. With strokes or pixls, you have to figure out (at drawing time) where each 

piece goes, and put it there. 

Input: Objects participate in event dispatch and propagation, and the system automatically does 

hit-testing (determining whether the mouse is over the component when an event occurs) for 

objects, but not for strokes. If a graph node is an object, then it can receive its own click and 

drag events. If you stroked the node instead, then you have to write code to determine which 

node was clicked or dragged. 

Redraw: An automatic redraw algorithm means that components redraw themselves 

automatically when they have to. Furthermore, the redraw algorithm is efficient: it only redraws 

components whose extents intersect the damaged region. The stroke or pixel model would have 

to do this test by hand. In practice, most stroked objects don’t bother, simply redrawing 

everything whenever some part of the view needs to be redrawn. 

Drawing order: It’s easy for a parent to draw before (underneath) or after (on top of) all of its 

children. But it’s not easy to interleave parent drawing with child drawing.  So if you’re using a 

hybrid model, with some parts of your view represented as components and others as strokes, 

then the components and strokes generally fall in two separate layers, and you can’t have any 

complicated layering relationships between strokes and components. 

Heavyweight objects: Objects may be big -- even an object with no fields costs about 20 bytes 

in Java. As we’ve seen, the view treeis overloaded not just with drawing functions but also with 

event dispatch, automatic redraw, and automatic layout, so the properties and state used by those 

processes further bulks up the class. Views derived from large amounts of data – say, a 100,000-

node graph – generally can’t use an object for every individual data item.  The “flyweight” 

pattern can help, by storing redundant information in the object’s context (i.e., its parent) rather 

than in each component, but few toolkits support flyweight objects. (See 

Glyphs: Flyweight Objects for User Interfaces by Paul R. Calder and Mark A. Linton.  UIST 
'90.) 

Device dependence: The stroke approach is largely device independent.  In fact, it’s useful not 

just for displaying to screens, but also to printers, which have dramatically different resolution.  

The pixel approach, on the other hand, is extremely device dependent. A directly-mapped pixel 

image won’t look the same on a screen with a different resolution. 
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As we said earlier, almost every GUI program uses all three approaches.  At the highest level, a  

typical program presents itself in a window, which is an object.  At the lowest level, the window  

appears on the screen as a rectangle of pixels. So a series of steps has to occur that translates  

that window object (and all its descendents in the view tree) into pixels.  

The step from objects down to strokes is usually called drawing. We’ll look at that first.  

The step from strokes down to pixels is called rasterization (or scan conversion). The specific  

algorithms that rasterize various shapes are beyond the scope of this course (see 6.837 Computer  

Graphics instead). But we’ll talk about some of the effects of rasterization, and what you need  

to know as a UI programmer to control those effects.  
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Here’s how drawing works in the object approach.  Drawing is a top-down process: starting from 

the root of the view tree, each object draws itself, then draws each of its children recursively.  

The process is optimized by passing a clipping region to each object, indicating the area of the 

screen that needs to be drawn. Children that do not intersect the clipping region are simply 

skipped, not drawn. In the example above, nodes B and C would not need to be drawn. When an 

object partially intersects the clipping region, it must be drawn – but any strokes or pixels it 

draws when the clipping region is in effect will be masked against the clip region, so that only 

pixels falling inside the region actually make it onto the screen. 

For the root, the clipping region might be the entire screen. As drawing descends the tree, 

however, the clipping region is intersected with each object’s bounding box.  So the clipping 

region for an object deep in the tree is the intersection of the bounding boxes of its ancestors. 

For high performance, the clipping region is normally rectangular, using bounding boxes rather 

than the graphical object’s actual shape.  But it doesn’t have to be that way.  A clipping region 

can be an arbitrary shape on the screen. This can be very useful for visual effects: e.g., setting a 

string of text as your clipping region, and then painting an image through it like a stencil. 

Postscript was the first stroke model to allow this kind of nonrectangular clip region. Now many 

graphics toolkits support nonrectangular clip regions. For example, on Microsoft Windows and 

X Windows, you can create nonrectangular windows, which clip their children into a 

nonrectangular region. 

10 



Here’s an example of the redraw algorithm running on the graph window (starting with the  
clipping region shown on the last slide).  

1.First the clip region is intersect with the whole window’s bounding box, and the window is  
told to draw itself within that intersection. The window draws its titlebar and its gray  
background. The window background effectively erases the previous contents of the window.  

2.The window’s clip region is now intersected with its first child’s bounding box (Node A), and  
Node A is told to draw itself within that.  In this particular example (where nodes are represented  
by circle and label components), Node A doesn’t do any of its own drawing; all the drawing will  
be handled by its children.  

3.Now Node A’s circle child is told to draw itself.  In this case, the circle has the same bounding  
box as Node A itself, so it receives the same clip region that Node A did.  It draws a white circle.  

4.Now Node A’s label child is told to draw itself, again using the same clip region because it has  
the same bounding box. It draws text on top of the circle just drawn.  

5.Popping back up the tree, the next child of the window, Edge A-B, is told to draw itself, using  
the clip region that intersects its own bounding box with the window’s clip region.  Only part of  
the edge falls in this clip region, so the edge only draws part of itself.  

6.The next child of the window, Node B, doesn’t intersect the window’s clip region at all, so it  
isn’t told to draw itself.  

7.The algorithm continues through the rest of the tree, either drawing children or skipping them  
depending on whether they intersect the clip region. (Would Edge A-C be drawn?  Would Node  
C be drawn?)  

Note that the initial clip region passed to the redraw algorithm will be different every time the  
algorithm is invoked. Clip regions generally come from damage rectangles, which will be  
explained in a moment.  
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When the bounding boxes of two objects overlap, like the circle and label components in the 

previous example, the redraw algorithm induces an ordering on the objects that makes them 

appear layered, one on top of the other.  For this reason, 2D graphical user interfaces are 

sometimes called 2½D. They aren’t fully 3D,  in which objects have x, y, and z coordinates; 

instead the z dimension is merely an ordering, called z order. 

Z order is a side-effect of the order that the objects are drawn when the redraw algorithm passes 

over the tree. Since drawing happens top-down, parents are generally drawn underneath 

children (although parents get control back after their children finish drawing, so a parent can 

draw some more on top of all its children if it wants). Older siblings (with lower indexes in their 

parent’s array of children) are generally drawn underneath younger ones.  Java Swing is a 

curious exception to this – its redraw algorithm draws the highest-index child first, so the 

youngest sibling ends up on the bottom of the z order. 

Z order can be affected by rearranging the tree, e.g. moving children to a different index position 

within their parent, or promoting them up the tree if necessary.  This is often important for 

operations like drag-and-drop, since we generally want the object being dragged to appear on 

top of other objects. 
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When a graphical object needs to change its appearance, it doesn’t repaint itself directly.  It  

can’t, because the drawing process has to occur top-down through the view tree: the object’s  

ancestors and older siblings need to have a chance to paint themselves underneath it. (So, in  

Java, even though a graphical object can call its own paint() method directly, you generally  

shouldn’t do it!)  

Instead, the object asks the graphics system to repaint it at some time in the future. This request  

includes a damaged region, which is the part of the screen that needs to be repainted. Often,  

this is just the entire bounding box of the object; but complex objects might figure out which  

part of the screen corresponds to the part of the model that changed, so that only that part is  

damaged.  

The repaint request is then queued for later.  Multiple pending repaint requests from different  

objects are consolidated into a single damaged region, which is often represented just as a  

rectangle – the bounding box of all the damaged regions requested by individual objects. That  

means that undamaged screen area is being considered damaged, but there’s a tradeoff between  

the complexity of the damaged region representation and the cost of repainting.  

Eventually – usually after the system has handled all the input events (mouse and keyboard)  

waiting on the queue -- the repaint request is finally satisfied, by setting the clipping region to  

the damaged region and redrawing the view tree from the root.  
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There’s an unfortunate side-effect of the automatic damage/redraw algorithm. If we draw a view 

tree directly to the screen, then moving an object can make the screen appear to flash – objects 

flickering while they move, and nearby objects flickering as well. 

When an object moves, it needs to be erased from its original position and drawn in its new 

position. The erasure is done by redrawing all the objects in the view hierarchy that intersect 

this damaged region; typically the drawing of the window background is what does the actual 

erasure. If the drawing is done directly on the screen, this means that all the objects in the 

damaged region temporarily disappear, before being redrawn. Depending on how screen 

refreshes are timed with respect to the drawing, and how long it takes to draw a complicated 

object or multiple layers of the hierarchy, these partial redraws may be briefly visible on the 

monitor, causing a perceptible flicker. 

14 



Double-buffering solves this flickering problem. An identical copy of the screen contents is 

kept in a memory buffer.  (In practice, this may be only the part of the screen belonging to some 

subtree of the view hierarchy that cares about double-buffering.)  This memory buffer is used as 

the drawing surface for the automatic damage/redraw algorithm. After drawing is complete, the 

damaged region is just copied to screen as a block of pixels. Double-buffering reduces 

flickering for two reasons: first, because the pixel copy is generally faster than redrawing the 

view hierarchy, so there’s less chance that a screen refresh will catch it half-done; and second, 

because unmoving objects that happen to be caught, as innocent victims, in the damaged region 

are never erased from the screen, only from the memory buffer. 

It’s a waste for every individual view to double-buffer itself.  If any of your ancestors is double-

buffered, then you’ll derive the benefit of it. So double-buffering is usually applied to top-level 

windows. 

Why is it called double-buffering?  Because it used to be implemented by two interchangeable 

buffers in video memory.  While one buffer was showing, you’d draw the next frame of 

animation into the other buffer.  Then you’d just tell the video hardware to switch which buffer it 

was showing, a very fast operation that required no copying and was done during the CRT’s 

vertical refresh interval so it produced no flicker at all. 
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In our description of the redraw algorithm, we said a graphical object “draws itself,” meaning that it produces strokes  
to show itself on the screen. How that is actually done depends on the GUI toolkit you’re using.  

In Java Swing (and many other desktop GUI toolkits, like Win32 and Cocoa), every object has a drawing method. In  
Swing, this method is paint(). The redraw algorithm operates by recursively calling paint() down the view hierarchy.   
Objects can override the paint() method to change how they draw themselves. In fact, Swing breaks the paint()  
method down into several overridable template methods, like paintComponent() and paintChildren(), to make it easier  
to affect different parts of the redraw process.  More about Swing’s painting process can be found in “Painting in  
AWT and Swing” by Amy Fowler (http://java.sun.com/products/jfc/tsc/articles/painting/).  

In Adobe Flex, there’s no drawing method available to override – the redraw algorithm is hidden from the  
programmer, much like the event loop is hidden by these toolkits.  Instead, you make a sequence of stroke calls into  
the object, and the object records this sequence of calls. Subsequently, whenever the object needs to redraw itself, it  
just plays back the recorded sequence of stroke calls. This approach is sometimes called retained graphics.  

A key difference between these approaches is when stroke calls can be made. With the drawing method approach,  
drawing should only be done while the drawing method is active. Drawing done at a different time (like during an  
event handler) will not interact correctly with the redraw algorithm; it won’t respect z order, and it will be ephemeral,  
overwritten and destroyed the next time the redraw algorithm touches that object. With the retained graphics  
approach, however, the stroke calls can be recorded at any time, and the toolkit automatically handles playing them  
back at the right point in the redraw.  The retained graphics approach tends to be less error prone for a programmer;  
drawing at the wrong time is a common mistake for beginning Swing programmers.  

A potential downside of the retained graphics approach is performance.  The recorded strokes must be stored in  
memory.  Although this recording is not as heavyweight as a view tree (since it doesn’t have to handle input or layout,  
or even necessarily be represented as objects), you probably wouldn’t want to do it with millions of stroke calls.  So if  
you had an enormous view (like a map) being displayed inside a scrolling pane (so that only a small part of it was  
visible on screen), you wouldn’t want to stroke the entire map.  The drawing method approach gives more control  
over this; since you have access to the clip region in the drawing method, you can choose not to render strokes that  
would be clipped. To do the equivalent thing with retained graphics would put more burden on the programmer to  
determine the visible rectangle and rerecord the stroke calls every time this rectangle changed.  
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Now let’s look at the drawing capabilities provided by the stroke model.  

Every toolkit’s stroke model has some notion of a drawing surface. The screen is only one  

possible place where drawing might go. Another common drawing surface is a memory buffer,  

which is an array of pixels just like the screen. Unlike the screen, however, a memory buffer can  

have arbitrary dimensions. The ability to draw to a memory buffer is essential for double- 

buffering.  Another target is a printer driver, which forwards the drawing instructions on to a  

printer.  Although most printers have a pixel model internally (when the ink actually hits the  

paper), the driver often uses a stroke model to communicate with the printer, for compact  

transmission. Postscript, for example, is a stroke model.  

Most stroke models also include some kind of a graphics context, an object that bundles up  

drawing parameters like color, line properties (width, end cap, join style), fill properties  

(pattern), and font.  

The stroke model may also provide a current coordinate system, which can be translated,  

scaled, and rotated around the drawing surface. We’ve already discussed the clipping region,  

which acts like a stencil for the drawing. Finally, a stroke model must provide a set of drawing  

primitives, function calls that actually produce graphical output.  

Many systems combine all these responsibilities into a single object. Java’s Graphics object is a  

good example of this approach. In other toolkits, the drawing surface and graphics context are  

independent objects that are passed along with drawing calls.  

When state like graphics context, coordinate system, and clipping region are embedded in the  

drawing surface, the surface must provide some way to save and restore the context. A key  

reason for this is so that parent views can pass the drawing surface down to a child’s draw  

method without fear that the child will change the graphics context. In Java, for example, the  

context can be saved by Graphics.create(), which makes a copy of the Graphics object. Notice  

that this only duplicates the graphics context; it doesn’t duplicate the drawing surface, which is  

still the same.  
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As an example of a stroke library, HTML5 has an element called <canvas> that provides a 

stroke drawing context for Javascript programs. The way to think about a canvas is as a pixel 

image that you’re drawing stroke calls on. The canvas element takes width and height attributes 

that specify the size of this pixel image. When the canvas is laid out on screen, however, it 

might be given a different width and height by CSS layout – in which case it will be stretched or 

shrunk appropriately. 

The canvas element provides a graphics context object that you can interact with from 

Javascript. (The “2d” graphics context is shown here; future canvas implementations may offer 

3D rendering contexts.) The interface for this object has all the pieces of a stroke library that we 

talked about on the previous slide. 
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It’s beyond the scope of this lecture to talk about algorithms for converting a stroke into pixels.  

But you should be aware of some important techniques for making strokes look good. 

One of these techniques is antialiasing, which is a way to make an edge look smoother.  Instead 

of making a binary decision between whether to color a pixel black or white, antialiasing uses a 

shade of gray whose value varies depending on how much of the pixel is covered by the edge. 

In practice, the edge is between two arbitrary colors, not just black and white, so antialiasing 

chooses a point on the gradient between those two colors. The overall effect is a fuzzier but 

smoother edge. 

Subpixel rendering takes this a step further.  Every pixel on an LCD screen consists of three 

discrete pixels side-by-side: red, green, and blue. So we can get a horizontal resolution which is 

three times the nominal pixel resolution of the screen, simply by choosing the colors of the 

pixels along the edge so that the appropriate subpixels are light or dark. It only works on LCD 

screens, not CRTs, because CRT pixels are often arranged in triangles, and because CRTs are 

analog, so the blue in a single “pixel” usually consists of a bunch of blue phosphor dots 

interspersed with green and red phosphor dots. You also have to be careful to smooth out the 

edge to avoid color fringing effects on perfectly vertical edges.  And it works best for high-

contrast edges, like this edge between black and white. Subpixel rendering is ideal for text 

rendering, since text is usually small, high-contrast, and benefits the most from a boost in 

horizontal resolution. Windows XP includes ClearType, an implementation of subpixel 

rendering for Windows fonts.  (For more about subpixel rendering, see Steve Gibson, “Sub-Pixel 

Font Rendering Technology”, http://grc.com/cleartype.htm) 
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Finally, let’s talk in more detail about what a pixel  image looks like.  

Put simply, it’s a rectangular array of pixels – but pixels themselves are not always so simple.  A  

pixel itself has a depth, so this model is really three dimensional. Depth is often expressed in  

bits per pixel (bpp). The simplest kind of pixel model has 1 bit per pixel; this is suitable for  

representing black and white images. It’s also used for bitmasks, where the single-bit pixels are  

interpreted as boolean values (pixel present or pixel missing). Bitmasks are useful for clipping –  

you can think of a bitmask as a stencil.  

Another kind of pixel representation uses each pixel value as an index into a palette, which is  

just a list of colors. In the 4-bpp model, for example, each of the 16 possible pixel values  

represents a different color.  This kind of representation, often called Indexed Color, was useful  

when memory was scarce; you still see it in the GIF file format, but otherwise it isn’t used much  

today.  

The most common pixel representation is often called “true color” or “direct color”; in this  

model, each pixel represents a color directly.  The color value is usually split up into multiple  

components: red, green, and blue. (Color components are also called channels or bands; the red  

channel of an image, for example, is a rectangular array of the red values of its pixels.)  

A pixel model can be arranged in memory (or a file) in various ways: packed tightly together to  

save memory, or spread out loosely for faster access; with color components interleaved or  

separated; and scanned from the top (so that the top-left pixel appears first) or the bottom (the  

bottom-left pixel appearing first).  
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Many pixel models have a fourth channel in addition to red, green, and blue: the pixel’s alpha 

value, which represents its degree of transparency.  We’ll talk more about alpha in a future 

lecture. 
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The primary operation in the pixel model is copying a block of pixels from one place to another  

– often called bitblt (pronounced “bit blit”). This is used for drawing pictures and icons on the  

screen, for example. It’s also used for double-buffering – after the offscreen buffer is updated,  

its contents are transferred to the screen by a bitblt.  

Bitblt is also used for screen-to-screen transfers. To do fast scrolling, for example, you can bitblt  

the part of the window that doesn’t change upwards or downwards, to save the cost of redrawing  

it. (For example, look at Swing’s JViewport.BLIT_SCROLL_MODE.)  

It’s also used for sophisticated drawing effects.  You can use bitblt to combine two images  

together, or to combine an image with a mask, in order to clip it or composite them together.  

Bitblt isn’t always just a simple array copy operation that replaces destination pixels with source  

pixels. There are various different rules for combining the destination pixels with the source  

pixels. These rules are called compositing (alpha compositing, when the images have an alpha  

channel), and we’ll talk about them in a later lecture.  
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Here are a few common image file formats. It’s important to understand when to use each 

format. For user interface graphics, like icons, JPG generally should not be used, because it’s 

lossy compression – it doesn’t reproduce the original image exactly.  When every pixel matters, 

as it does in an icon, you don’t want lossy compression.  JPG also can’t represent transparent 

pixels, so a JPG image always appears rectangular in your interface. 

For different reasons, GIF is increasingly unsuitable for interface graphics.  GIF isn’t lossy – you 

get the same image back from the GIF file that you put into it – but its color space is very 

limited. GIF images use 8-bit color, which means that there can be at most 256 different colors 

in the image. That’s fine for some low-color icons, but not for graphics with gradients or blurs.  

GIF has limited support for transparency – pixels can either be opaque (alpha 1) or transparent 

(alpha 0), but not translucent (alpha between 0 and 1). So you can’t have fuzzy edges in a GIF 

file, that blend smoothly into the background. GIF files can also represent simple animations. 

PNG is the best current format for interface graphics. It supports a variety of color depths, and 

can have a full alpha channel for transparency and translucency.  (Unfortunately Internet 

Explorer 6 doesn’t correctly display transparent PNG images, so GIF still rules web graphics.)   

If you want to take a screenshot, PNG is the best format to store it. 

23 



A final word about debugging the output of a graphical user interface, which can sometimes be  

tricky.  A common problem is that you try to draw something, but it never appears on the screen.  

Here are some possible reasons why.  

Wrong place: what’s the origin of the coordinate system? What’s the scale?  Where is the  

component located in its parent?  

Wrong size: if a component has zero width and zero height, it will be completely invisible no  

matter what it tries to draw– everything will be clipped. Zero width and zero height are the  

defaults for all components in Swing – you have to use automatic layout or manual setting to  

make it a more reasonable size. Check whether the component (and its ancestors) have nonzero  

sizes.  

Wrong color: is the drawing using the same color as the background?  Is it using 100% alpha, so  

that it’s completely transparent?  

Wrong z-order: is something else drawing on top?  
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