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Today’s candidate for the Halls of Fame and Shame is the Windows calculator.   

It looks and works just like a familiar desk calculator, a stable interface that many people are familiar with.  It’s 
a familiar metaphor, and trivial for calculator users to pick up and use.  It deviates from the metaphor in some 
small ways, largely because the buttons are limited to text labels.  The square root button is labeled “sqrt” 
rather than the root symbol. The multiplication operator is * instead of X. 

But this interface adheres to its metaphor so carefully that it passes up some tremendous opportunities to
improve on the desk calculator interface. Why only one line of display? A history, analogous to the paper tape 
printed by some desk calculators, would cost almost nothing. Why only one memory slot? Why display “M” 
instead of the actual number stored in memory? All these issues violate the visibility of system state. A more 
serious violation of the same heuristic: the interface actually has invisible modes. When I’m entering a 
number, pressing a digit appends it to the number.  But after I press an operator button, the next digit I press 
starts a new number.  There’s no visible feedback about what low-level mode I’m in.  Nor can I tell, once it’s 
time to push the = button, what computation will actually be made. 

Most of the buttons are cryptically worded (recognition, not recall). MC, MR, MS, and M+? What’s the 
difference between CE and C?  My first guess was that CE meant “Clear Error” (for divide-by-zero errors and 
the like); some people in class suggested that it means “Clear Everything”. In fact, it means “Clear Entry”, 
which just deletes the last number you entered without erasing the previous part of the computation. “C” 
actually clears everything. 

It turns out that this interface also lets you type numbers on the keyboard, but the interface doesn’t give a hint 
(affordance) about that possibility.  In fact, in a study of experienced GUI users who were given an onscreen 
calculator like this one to use, 13 of 24 never realized that they could use the keyboard instead of the mouse 
(Nielsen, Usability Engineering, p. 61-62). One possible solution to this problem would be to make the 
display look more like a text field, with a blinking cursor in it, implying “type here”. Text field appearance 
would also help the Edit menu, which offers Copy and Paste commands without any obvious selection 
(external consistency). 

Finally, we might also question the use of small blue text to label the buttons, which is hard to read, and the use 
of both red and blue labels in the same interface, since chromatic aberration forces red and blue to be focused 
differently.  Both decisions tend to cause eyestrain over periods of long use. 
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Today’s lecture is about error in user interfaces.  First we’ll look at some definitions and principles 

from cognitive science, which will help us understand why and how people make errors. Then we’ll 

talk about how to apply those principles to user interfaces to prevent errors, at least as much as 

possible. Finally, since not all errors can be prevented, we’ll discuss how to write good error 

messages. 
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Errors can be classified into slips and lapses and mistakes according to how they occur. 

Slips and lapses are found in skilled behavior – execution of procedures that the user has already 

learned. For example, pressing an onscreen button – moving the mouse pointer over it, pressing the 

mouse button, releasing the mouse button – is a skill-based procedure for virtually any computer 

user.  An error in executing this procedure, like clicking before the mouse pointer is over the button, 

is a slip. This is just a low-level example, of course. We have many higher-level, learned procedures 

too – attaching a file to an email, submitting a search to Google, drawing a rectangle in a paint 

program, etc. An error in execution of any learned procedure would be a slip. 

Slips are distinguished from lapses by the source of the failure. A slip is a failure of execution or 

control – for example, substituting one action for another one in the procedure. A lapse is a failure of 

memory – for example, forgetting the overall goal, or forgetting where you are in the procedure. 

A mistake, on the other hand, is an error made in planning or rule application. One framework for 

classifying cognitive behavior divides behavior into skill-based (learned procedures), rule-based 

(application of learned if-then rules), and knowledge-based (problem solving, logic, experimentation, 

etc.) Mistakes are errors in rule-based or knowlege-based behavior; e.g., applying a rule in a 

situation where it shouldn’t apply, or using faulty reasoning. 

Overall, slips and lapses are more common than mistakes, because we spend most of our actual time 

executing learned procedures. If we spent most of our time problem-solving, we'd never get much 

done, because problem solving is such a slow, cognitively intensive, serial process. I've seen 

statistics that suggest that 60% of all errors are slips or lapses, but that's highly dependent on context. 

Relative to their task, however, slips and lapses are less common than mistakes. That is, the chance 

that you'll err executing any given step of a learned procedure is small -- typically 1-5%, although 

that's context dependent as well. The chance that you'll err in any given step of rule-based or 

problem-solving behavior is much higher.  

We won’t have much to say about mistakes in this lecture, but much research in human error is 

concerned with this level – e.g., suboptimal or even irrational heuristics that people use for decision 

making and planning. A great reference about this is James Reason, Human Error, Cambridge 

University Press, 1990. 
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Here are some examples of common slips. A capture slip occurs when a person starts executing one 

sequence of actions, but then veers off into another (usually more familiar) sequence that happened 

to start the same way.  A good mental picture for this is that you’ve developed a mental groove from 

executing the same sequence of actions repeatedly, and this groove tends to capture other sequences 

that start the same way.  In the text editor vi, it’s common to quit the program by issuing the 

command “:wq”, which saves the file (w) and quits (q). If a user intends just to save the file (:w) but 

accidentally quits as well (:wq), then they’ve committed a capture error.  Microsoft Excel has a 

curious (and very useful!) class of formulas called array formulas, but in order to get Excel to treat 

your formula as an array formula, you have to press Ctrl-Shift-Enter after you type it – every time 
you edit it. Why is this prone to capture slips? Because virtually every other edit you do is 

terminated by Enter, so you’re very likely to fall into that pattern automatically when you edit an 

array formula. 

A description slip occurs when two actions are very similar.  The user intends to do one action, but 

accidentally substitutes the other.  A classic example of a description error is reaching into the 

refrigerator for a carton of milk, but instead picking up a carton of orange juice and pouring it into 

your cereal. The actions for pouring milk in cereal and pouring juice in a glass are nearly identical – 

open fridge, pick up half-gallon carton, open it, pour– but the user’s mental description of the action 

to execute has substituted the orange juice for the milk. 
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Lapses are due to failures of memory, particularly the short-term memory that is managing the  

execution of a procedure. A loss of intention lapse happens when you start executing a procedure  

and forget your goal in the interim.  For example, when you walk to another room to fetch  

something, and by the time you get there, you no longer remember what you wanted.  

Lapses can also happen because of interruptions, which disrupt short-term memory and make you  

lose track of your place in the interrupted procedure.  

Another common lapse happens when your goal is actually satisfied in the middle of the procedure.  

The remaining steps are cleanup or shutdown subtasks, which you may forget because you’ve  

already discharged your original intention.  For example, if an ATM machine gives you the cash first,  

you may walk away from it without taking your card, because your original goal was getting cash.  

This is a clear example of an error that good user interface design can prevent.  
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Another kind of error, clearly due to user interface, is a mode error. Modes are states in which the same action has different 

meanings. For example, when Caps Lock mode is enabled on a keyboard, the letter keys produce uppercase letters. The 

text editor vi is famous for its modes: in insert mode, letter keys are inserted into your text file, while in command mode 
(the default), the letter keys invoke editing commands. In the first lecture, we talked about a mode error in Gimp: 

accidentally changing a menu shortcut because your mouse is hovering over it. 

Mode errors occur when the user tries to invoke an action that doesn’t have the desired effect in the current mode.  For 

example, if the user means to type lowercase letters but doesn’t notice that Caps Lock is enabled, then a mode error occurs. 

Mode errors are generally slips, an error in the execution of a learned procedure, caused by failing to correctly evaluate the 

state of the interface. 
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The slips and lapses we’ve discussed have a few features in common. First, the root cause of these 

errors is often inattention. Since slips and lapses occur in skilled behavior, execution of already 

well-learned procedures, they are generally associated with insufficient attention to the execution of 

the procedure, or omission or distraction of attention at a key moment. 

Second, the particular erroneous behavior chosen is often selected because of its high similarity to 

the correct behavior (as in capture and description slips), or of its high frequency relative to the 

correct behavior (as in capture slips). Very common, or very similar, patterns are strongly available 

for retrieval from human memory.  So errors are often strong-but-wrong behavior. 
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Let’s discuss how to prevent errors of these sorts. In a computer interface, you can deal with  

capture errors by avoiding very common action sequences that have identical prefixes.  

Description errors can be fought off by applying the converse of the Consistency heuristic: different  

things should look and act different, so that it will be harder to make description errors between  

them. Avoid actions with very similar descriptions, like long rows of identical buttons.  

You can also reduce description errors by making sure that dangerous functions (hard to recover  

from if invoked accidentally) are well-separated from frequently-used commands. Outlook 2003  

makes this mistake: when you right-click on an email attachment, you get a menu that mixes  

common commands (Open, Save As) with less common and less recoverable ones – if you print that  

big file by mistake, you can’t get the paper back.  And if you Remove the attachment, it’s even worse  

– undo won’t bring it back!  (Thanks to Amir Karger for this example.) 
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There are many ways to avoid or mitigate mode errors. Eliminating the modes entirely is best, 

although not always possible. Modes do have some uses – they make command sets smaller, for 

example. When modes are necessary, it’s essential to make the mode visible.  But visibility is a 

much harder problem for mode status than it is for affordances. When mode errors occur, the user 

isn’t actively looking for the mode, like they might actively look for a control.  As a result, mode 

status indicators must be visible in the user’s locus of attention.  That’s why the Caps Lock light, 

which displays the status of the Caps Lock mode on a keyboard, doesn’t really work. 

Other solutions are spring-loaded or temporary modes. With a spring-loaded mode, the user has to do 

something active to stay in the alternate mode, essentially eliminating the chance that they’ll forget 

what mode they’re in. The Shift key is a spring-loaded version of the uppercase mode. Drag-and-

drop is another spring-loaded mode; you’re only dragging as long as you hold down the mouse 

button. Temporary modes are similarly short-term.  For example, in many graphics programs, when 

you select a drawing object like a rectangle or line from the palette, that drawing mode is active only 

for one mouse gesture. Once you’ve drawn one rectangle, the mode automatically reverts to 

ordinary pointer selection. 

Finally, you can also mitigate the effects of mode errors by designing action sets so that no two 

modes share any actions. Mode errors may still occur, when the user invokes an action in the wrong 

mode, but the action can simply be ignored rather than triggering any undesired effect. 
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One way to avoid lapses in procedure execution is to keep procedures short, so that users have fewer  

steps to potentially forget.  (Striving for simplicity often does this as a side-effect.)  It’s also helpful  

to put more obvious structure on the procedure, a technique called dialog closure (Shneiderman,  

Designing the User Interface). Action sequences should be designed with a beginning, a middle, and  

an end. For example, think about drag and drop:  

At the beginning, you press the mouse button and see the object picked up with your cursor.  

In the middle, you move the object across the screen towards your target, getting feedback that it’s  

coming along.  

At the end, you release the mouse button, and see the effects of the drop.  

The key feature of closure is the feedback you get at the end of the operation. This assurance that  

the operation completed provides the user with a sense of accomplishment, some relief, and an  

opportunity to clear their working memory of the details of the task in preparation for another.  

Some lapses can be addressed by designing forcing functions into the interface. A forcing function  

is a feature that forces one step to be performed before another step. For example, many cash  

machines require you to take your card back before they dispense any cash to you. Forcing functions  

should be used sparingly, since they reduce user control and freedom, but when the forced step  

would be a costly lapse (like leaving your ATM card behind), then a forcing function may be worth  

it.  
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Here are some other ways to prevent errors.  

If a command is illegal in the current state of the interface – e.g., Copy is impossible if nothing is  

selected – then the command should be disabled (“grayed out”) so that it simply can’t be selected in  

the first place.  

One way to prevent errors is to allow users to select rather type. Misspellings then become  

impossible. This attitude can be taken to an extreme, however, as shown in this example.  

One reason why selection is better is that it reduces the user’s memory load. Command languages  

demand lots of knowledge in the head, while menus rely on knowledge in the world.  

Any information needed by a task should be visible or otherwise accessible in the interface for that  

task. The interface shouldn’t depend on users to remember the email address they want to send mail 

to, or the product code for the product they want to buy.  Relying too heavily on the user’s short-term 

memory will lead to errors. 

Protect users’ work is an important value judgment: errors that lose or destroy the user’s work are 

the worst kind. It’s worth substantial engineering to prevent this from happening – implementing 

automatic save, undo, file version histories, etc. 
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An unfortunately common strategy for error prevention is the confirmation dialog, or “Are you 

sure?” dialog. It’s not a good approach, and should be used only sparingly, for several reasons: 

•Confirmation dialogs can substantially reduce the efficiency of the interface.  In the example above, 

a confirmation dialog pops up whenever the user deletes something, forcing the user to make two 

button presses for every delete, instead of just one. Frequent commands should avoid confirmations. 

•If a confirmation dialog is frequently seen – for example, every time the Delete button is pressed – 

then the expert users will learn to expect it, and will start to include it in their habitual procedure. In 

other words, to delete something, the user will learn to push Delete and then OK, without reading or 

even thinking about the confirmation dialog! The dialog has then completely lost its effectiveness, 

serving only to slow down the interface without actually preventing any errors. 

In general, reversibility (i.e. undo) is a far better solution than confirmation. Even a web interface 

can provide at least single-level undo (undoing the last operation). Operations that are very hard to 

reverse may deserve confirmation, however.  For example, quitting an application with unsaved 

work is hard to undo – but a well-designed application could make even this undoable, using 

automatic save or keeping unsaved drafts in a special directory. 
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Finally, let’s talk about how to write error messages.  But before you try to write an error message, 

stop and ask yourself whether it’s really necessary.  An error message is evidence of a limitation or 

lack of flexibility on the part of the system – a failure to prevent an error or absorb it without 

complaint. So try to eliminate the error first. 

Some errors simply aren’t worth a message.  For example, suppose the user types “abc” into the font 

size combo box. Don’t pop up a message complaining about an “invalid entry”.  Just ignore it and 

immediately replace it with the current font size. (Why is this enough feedback, for a font size 

combo box?) Similarly, if the user drags a scrollbar thumb too far, the scrollbar doesn’t pop up an 

error message (“Too far!  Too far!”).  It simply stops. If the effect of the erroneous action is easily 

visible, as in these cases, then you don’t have to beat the user over the head with a superfluous error 

message. 

The figure shows an example of an error message that simply shouldn’t happen.  Forbidding dashes 

and spaces in a number that the user must type, like an account number or credit card number, is 

poisonous to usability.  (Why are dashes and spaces helpful for human perception and memory?) 

There’s a great collection of error messages like this at the No Dashes or Spaces Hall of Shame 

(http://www.unixwiz.net/ndos-shame.html). 
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Assuming you can’t design the error message out of the system, here are some guidelines for writing  

good ones.  

First, be precise. Don’t lump together multiple error conditions into a single all-purpose message.   

Find out what’s really wrong, and display a targeted message.  If the error is due to limitations of  

your system, like sizes or allowed characters, then be specific about what the limitations are, so that  

the user can adapt. (Then ask yourself why you have those limitations!)  

It often helps to restate the user’s input, so that they can relate what they did to the error message,  

and perhaps even detect the problem immediately (“oh, I didn’t mean paper.doc...”)  

In error messages, it’s particularly important to speak the user’s language, and avoid letting  

technical terms or details like exceptions and stack traces leak through.  
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Next, your message should be constructive, not just reporting the error but helping the user correct 

it. Suggest possible reasons for the error and offer ways to correct them – ideally in the error 

message dialog itself. Here’s a good example from Adobe Acrobat. 
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Finally, be polite.  The message should be worded to take as much blame as possible away from the 

user and heap the blame instead on the system. Save the user’s face; don’t worry about the 

computer’s.  The computer doesn’t feel it, and in many cases it is the interface’s fault anyway for not 

finding a way to prevent the error in the first place. It’s interesting to contrast what the original 1984 

Mac said when it crashed (an apology!). 

Many words that are unfortunately common in technical error messages have emotionally-charged 

meanings in ordinary language; examples include “fatal”, “illegal”, “abort”, etc. Avoid them.  Use 

neutral language. Windows and DOS have historically been littered with messages like these. 

The tooltip shown at the bottom isn’t strictly an error message, but it actually appeared in a 

production version of AutoCad!  As the story goes, it was inserted by a programmer as a joke, but 

somehow never removed before release. Even as a joke, it demonstrates a lack of respect for the 

intelligence of the human being on the other side of the screen. That attitude is exactly wrong for 

user interface design. 

19 



Good interfaces are explorable. One way users learn is by exploring: poking around an interface, 

trying things out. An interface should encourage this kind of exploration, not only by making things 

more visible, but also by making the consequences of errors less severe. For example, users 

navigating around a 3D world or a complex web site can easily get lost; give them an easy, obvious 

way to get back to some “home”, or default view.  Users should be able to explore the interface 

without fear of being trapped in a corner. 

User control and freedom (a term coined by Jakob Nielsen) is the idea that in the give and take 

between the user and the system, the user should have ultimate control. 
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The simplest kind of user control is a veto – the ability to cancel an operation, even if it was 

something they asked for. Users should not be trapped by the interface.  Long operations should not 

only have a progress bar, but a Cancel button too.  Likewise, every dialog box should have a Cancel 

button. Where is it in this CuteFTP dialog box on the bottom?  As a user of this dialog, would you 

feel like you’re in control? 
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Let’s look a little further at who controls the dialog between the user and the system. (Here, dialog 
means the general pattern of back-and-forth communication between the user and the interface, as if 

the user and the system are having a conversation. A dialog box is a specific kind of window, a 

design pattern used in a dialog. We often say dialog  as a shorthand for dialog box, but hopefully the 

distinction will be obvious from context.) 

We’ll contrast two patterns.  The wizard design pattern is a familiar pattern for improving the 

learnability of a complex interaction, by structuring it as a step-by-step process, with each step in a 

dialog. Wizards are the conventional pattern for software installation.  In a wizard, the system 

controls the dialog – it dictates the steps, the ordering of the steps, and what it asks for at each step. 

Imagine a travel agent who’s asking you a series of questions, and refuses to listen to what you say if 

it’s not relevant to the question they asked.  That’s a wizard. 

Contrast that with the center stage pattern, which lays out data objects in the main section of the 

window, and gives the user a set of tools for operating on the objects.  In this case, the user controls 

the dialog, deciding which objects to select and which tools to pick up. 

Wizards clearly restrict the user’s freedom, but for complex, infrequently-done tasks (like 

installation), the tradeoff is often worth it.  Note, however, that a good wizard has two key features: a 

Back button (for backing out of errors) and a Cancel button (for vetoing the operation entirely). So 

even though the wizard pattern puts the system in control of the details, the user still has 

supervisory control. 
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One of the main reasons we build software in the first place is to automate a process, taking some 
burden off the human users.  But we can’t take away control entirely.  Users should be able to 
manually override automation. 

The familiar Find & Replace command is a simple example of this. If Find & Replace were 
perfectly automatable, then all we’d need is Replace All.  But the world isn’t that simple, and our 
documents are full of exceptions or incompletely-specified patterns, and there are plenty of cases 
where the user needs manual control over replacement – hence the Find Next and Replace buttons. 

Google Maps offers an example of a different kind of control – starting with the output of an 
automatic algorithm (the shortest route between two points) and manually tweaking it (dragging the 
route around). Systems that solve big or complex optimization problems should offer the user the 
opportunity to make these tweaks, since often there are constraints or preferences that are difficult to 
specify in advance, but can easily be seen when a solution is presented. 

Some HCI researchers (prominently, Austin Henderson) argue that computer science in general, and 
corporate system developers in particular, have gone too far in trying to regularize the world, 
building systems that demand coherence from their users and their environment, expecting input that 
fits into expected categories and rejecting all others. For example, stating that every person has a 
first name and a last name, or assuming that every city belongs to only one country, or demanding a 
single shipping address for an order, are claims about the coherence of the world.  But the real world 
is fuzzy, full of exceptions and oddities, and we should build pliant systems that can survive the 
exceptions. A great example of how paper-based systems are pliant is the marginal comment. 
Here’s a card from an old-fashioned card catalog.  You can easily distinguish the coherent 
typewritten data, which might fit neatly into a database system nowadays, from the marginalia.  
Margins on paper forms are often used by experienced workers to get their jobs done when the form 
is inadequate. We have a few design patterns for pliant user interfaces – such as comment fields 
(though they appear very rarely!), and tagging instead of rigid hierarchies – but we don’t really know 
how to build systems that are coherent enough for automation yet still pliant enough for the real 
world. (Jon Udell, “Scribbling in the Margins”, Infoworld, http://www.infoworld.com/article/ 
04/04/09/15OPstrategic_1.html) 
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Here’s an interesting problem related to who’s in control of the dialog.  Many interfaces interrupt 

users with questions, like the dialog boxes shown here. If the answer is always the same, it’s clearly 

inefficient (and annoying) to keep asking the same question repeatedly – so many of these dialogs 

offer the option Never ask me again. 

Good idea, and superficially seems to improve user control, because it’s like a veto over all future 

questions of the same type. But suppose later the user wants to change their decision? Because the 

system initiated this dialog, not the user, the user has no idea how to return to the question. And the 

system has promised never to ask it again! It’s a Catch-22. 

One patch to this problem can be seen in the Firefox window on the right – a help message that tells 

the user where to look to undo the decision. But remember that just because the user has seen a 

message doesn’t mean they’ve learned what it had to say.  It’s not clear that this really fixes the 

problem, but I haven’t seen any better solutions. 
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So we’ve discussed user control over the dialog. Let’s now consider user control over the data itself.  

Editing is important. If the user is asked to provide any kind of data – whether it’s the name of an  

object, a list of email attachments, or the position of a rectangle – the interface should provide a way  

to go back and change what the user originally entered – rename the object, add or remove  

attachments, move around that rectangle some more. Data that is initialized by the user but can  

never again be touched will frustrate user control and freedom.  

Keep CRUD in mind – if you can Create an object or data field, you should be able to Read, Update,  

and Delete it, too.  

Providing user control and freedom can have strong effects on your backend model.  You’ll have to  

make sure data are mutable. If you built your backend assuming that a user-provided piece of data  

would never change once it had been created, then you may have trouble building a good UI. One  

way that can happen is if you try to use user-provided data as a unique identifier in a database, like  

the user’s name, or their email address, or their phone number, or the title of a document.  That’s  

generally not a good practice, because if any other object stores a reference to the identifier, then the  

user won’t be able to edit the identifier without breaking that reference.  
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If an interface allows users to name things, then users should be free to choose long, descriptive 

names, with any characters or punctuation they want. Artificial limits on length or content should be 

avoided. DOS used to have a strong limit on filenames, an 8 character name and a 3 character 

extension, and a variety of punctuation characters are forbidden from filenames. Echoes of these 

limits persist in Windows even today. 

Here’s a bizarre requirement from Facebook (source: Error'd - The Daily WTF).  No doubt the 

programmer’s intention was to reject randomly-generated or nonsensical names which would reduce 

Facebook’s appearance of professionalism, but the rule clearly doesn’t work. 
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If Cancel is the most common answer for user control over dialog, then Undo is the most common 

answer to user control over data. Undo has been around in desktop applications since the dark ages 

of the first Macintosh, if not before. The first Mac applications supported only single-level undo – 

that is, you could undo the last command, but no farther. This was largely due to memory constraints, 

and modern desktop applications allow unlimited undo (or so much that it makes no difference given 

the current interface for Undo – nobody is going to press Ctrl-Z 1000 times, after all). 

Undo is also gradually appearing in web applications, like GMail. GMail’s interface (shown here) 

only supports single undo. But other web applications support much longer undo histories, 

particularly apps designed for collaboration, like wikis. In these apps, undo typically takes the form 

of a revision history, rather than an undo command. 
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You may think it’s obvious what the Undo command does: it reverses the effect of the user’s last 

action. But it’s not as simple as that. Undo’s behavior can be mysterious.  Undo is an example of a 

case where the system model is not well communicated by the user interface. The actions managed 

by Undo are not visible; there’s no persistent, visual representation showing the next action to be 

undone. (Not quite true: in well-designed interfaces, the Undo menu command’s label gives a hint, 

like “Undo Typing” or “Undo Bold”.  But it’s not prominent, so it doesn’t particularly help a user 

form their mental model from ordinary use.) If you ask users to predict what effect Undo will have 

in some particular case, they may have no idea. 

Let’s look at some of the questions we should ask when we’re designing an undo mechanism. 

28 



Undo reverses the last action made by the user, but it’s not necessarily the last one in the global  

stream. There is no global Undo in current GUI environments.  Each application, sometimes even  

each widget, offers its own Undo command. A particular Undo command will only affect the action  

stream of the application or widget that it controls – so it will undo the last action in that application  

or widget’s stream, which isn’t necessarily the last command the user issued to the system as a  

whole.  

Some applications use a separate action stream for each window.  Microsoft Office works this way,  

for example. If you type something into Word document A, then type something else into Word  

document B, then switch back to A and invoke Undo, then A’s insert will be undone – even though  

B’s insert is the last one you actually performed.  

Other applications treat each text widget as a separate action stream. Web browsers behave this way.  

Try visiting a form in a web browser, and type something into two different fields.  You’ll find that  

Undo only affects the field with the current keyboard focus, ignoring actions you made on any other  

fields. Changes made in other kinds of form widgets – drop-down menus or listboxes, for example –  

aren’t added to any action stream.  

Applications with multiple simultaneous users – such as a shared network whiteboard, where  

anybody can scribble on it – face the question of whether Undo should affect only your own actions,  

or everybody’s actions.  Usually, the best answer to this question is only your own actions, unless  

you have some kind of floor control mechanism that prevents people from working simultaneously  

[Abowd & Dix, “Giving undo attention,” Interacting with Computers, v4 n3, 1992].  
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Once you’ve decided which stream of actions to undo, the next question is, how is the stream 

divided into units? This is important because Undo reverses the last unit action of the stream. 

Dividing at the lexical level means low-level input events, so Undo might reverse the very last 

keyboard or mouse change. For example, if you just did a drag-and-drop, invoking Undo might 

undo your mouse button release, putting you back into drag-and-drop mode and allowing you to 

drop somewhere else. No user interface (that I know of) implements lexical Undo in a systematic 

way; it’s not clear how to get it right (since you’re not holding the button down anymore!), and it’s 

probably not what users want. 

At the syntactic level, you would undo commands or onscreen button presses. For menu items and 

toolbar buttons, this is the right thing. But if you just finished a dialog – say, using the Font dialog, 

or selecting a Color – then this would undo the OK button press, returning you into the dialog box. 

Most applications don’t do it at this level either. 

The semantic level is what most designers choose, where Undo reverses the most recent change to 

the backend model – whether it was caused by a simple command, like Boldface, or a complicated 

dialog, like Page Layout. That’s great for one kind of user control and freedom, since it makes 

complex changes just as easy to back out of as simple changes. But what if you just completed a 

long wizard dialog, only to discover that it didn’t do what you wanted, and Undo only reverses the 

effect of the entire dialog, instead of getting you back into the wizard and letting you Back up? 

There are tradeoffs in the decision to undo only at the semantic level, but it’s the most common. 

For undoing text, individual typed characters should be aggregated somehow – otherwise, Undo 

won’t be any faster than pressing Backspace.  One natural way to do this might be word boundaries; 

but most text editors use edit commands and newlines as boundaries. 

In general, the action stream should be divided into chunks from the user’s perspective.  For 

example, a user-defined macro is a chunk, so Undo should treat the entire macro as a unit action. 
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Many actions that affect visible program state may be completely ignored by Undo.  Typically these 

actions affect the view, but don’t actually change the backend model.  Examples include selection, 

keyboard focus, scrolling and zooming, window management, and user interface customizations. 

Since easy reversibility can be just as helpful for view changes, some applications define new 

commands for them, so they can reserve Undo for reversing model changes. Web browsers are a 

fine example: the Back button reverses a jump in view (whether caused by loading a new page or 

clicking on an internal hyperlink to jump to another place in the same page). Development 

environments like Eclipse have borrowed this idiom for navigation in code editors; you can press 

Back to undo window switching and scrolling. 
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Even if the Undo stream doesn’t include all the view changes you make, how much of the view state 

will be restored when it reverses a model change? When you undo a text edit, for example, will the 

selection highlight be restored as well? Will the text cursor be put back where it was before the edit? 

If the text scrolls, will it be scrolled back to the same place? 
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Finally, how far back will the undo history stream go?  Old Macintosh applications had only single 

undo – i.e., you could only undo the last action, and no farther.  Thankfully, cheap memory has made 

deep undo history feasible and commonplace. 

Even though memory no longer limits undo, the conventional model of undo still does. In most 

applications, Undo is a transient phenomenon, limited to a single application session. If you shut 

down the application, and then restart it, the undo history is erased. So you can’t undo past the start 

of the current session. 

Some applications even erase the undo history as soon as the user saves a document to disk. Older 

versions of Microsoft Office used to behave this way. 
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Try this in Outlook 2007 (or Outlook 2003, but doesn’t work in Outlook Express).  Create a sticky 

note (File/New/Note). Type some text into the note, and move the note to a different place on the 

screen. Then press Ctrl-Z to undo. It undoes not only what you typed, but also the position of the 

note – and the note animates through all the different positions you moved it to on the screen. 

Recall the important dimensions of an undo model: 

- what stream of actions is undone? Only the actions that affected this sticky note; other sticky 

notes, and other Outlook windows, aren’t affected. 

- how is the stream divided into units? It turns out that the entire stream of actions since the note was 

created is a single unit – everything gets undone when you press Ctrl-Z once. 

- what state is actually restored? everything about the note – its position, its size, even its color. 

- how far back can you undo? As far as the creation of the note – unless you switch to another 

window.  Switching away from the note clears the note’s undo history, so further undo is impossible. 

What else is wrong here? As the screenshot shows, the animation wasn’t even done properly – 

instead of animating using automatic redraw, Outlook paints the moving note directly on the screen, 

leaving a smear behind it. Notice that the smear is visible in some parts of the Outlook window, but 

not in others. Why do you think that is? 
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The upshot of all these questions is that it’s very hard for users to predict what Undo will do. Faced 

with this unpredictability, a common strategy is to press Undo until you see the effect you want to 

reverse actually go away, or until you realize it’s gone too far without solving the problem (i.e., it’s 

reversed an older, still-desired effect).  So visibility of Undo’s effects is a critical part of making it 

usable. Whenever Undo undoes a command, it should make sure that the effects of that have a 

visible change on the screen. If the user has changed the viewpoint (e.g. scrolling) since doing the 

command that is now being undone, the viewpoint should be changed back, so that it’s easy to see 

what was reversed. 

The unit actions should correspond to chunks of the user’s interaction: whole typed words (or 

strings), complete dialogs, user-defined macros. 

Undo itself should be reversible, so that if you overshoot, you can come back. That’s what the Redo 

command is for.  Another way to reverse an Undo is to manually issue the undone command again; a 

good undo mechanism should set up the conditions for this as well. For example, suppose you select 

a range of text and Delete it, and then Undo that deletion. The editor should not only restore the text, 

but also restore the selection highlight, so that you can immediately press Delete to delete the same 

text again. 

For consistency, reserve the Undo command for model changes.  You can use other commands for 

view changes. Keep in mind that you don’t necessarily need a command named “Undo” to support 

reversibility.  There are other commands that move through other action streams (Back), and 

physical manipulations (like scrollbar dragging) support direct reversibility.   

Users may not even think of reaching for Undo if the rest of your interface makes it easy to reverse 

undesired changes. Undo is a form of backward error recovery, which fixes errors by going back 

in time. A more natural way of thinking is forward error recovery – using other commands to 

reverse the change. For example, to undo a Bold command by forward error recovery, you select the 

text again and toggle Bold off.  If your interface supports forward error recovery as much as 

possible, then warts in the Undo model won’t hurt as much. 
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Next lecture’s candidate for the User Interface Hall of Fame is tabbed browsing, a feature found in 

almost all modern web browsers. With tabbed browsing, multiple browser windows are grouped into 

a single top-level window and accessed by a row of tabs. In fact, for some browsers, the tab row 

even replaces the browser’s titlebar, as shown here in Google Chrome (and also in Firefox 4). 

Why tabs? What usability advantages and disadvantages do tabs have? 
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