
C H A P T E R 12 

Trajectory Optimization 

So far, we have discussed a number of ways to solve optimal control problems via 
state space search (e.g., Dijkstra’s and Dynamic Programming/Value Iteration). These 
methods have the drawback that they force you to discretize, typically both the state and 
action spaces. The resulting policy is optimal for the discretized system, but is only an 
approximation to the optimal solution for the continuous system. Today we’re going to 
introduce a different type of algorithm which searches in the space of control policies, in­
stead of in state space. These methods typically have the advantage that they scale (much) 
better to higher dimensional systems, and do not require any discretizations of state or 
action spaces. The disadvantage of this class of algorithms is that we must sacrifice guar­
antees of global optimality - they only guarantee local optimality, and can be subject to 
local minima. 

12.1 THE POLICY SPACE 

The fundamental idea is policy search methods is that, instead of discretizing an searching 
directly for the optimal policy, we define a class of policies by describing some parame­
terized control law. Then we search direcly for a setting of these parameters that (locally) 
optimize the cost function. 

Notationally, we collect all of the parameters into a single vector, α, and write the 
controller (in general form) as πα(x, t). Here are some examples: 

• linear feedback law: ⎤⎡ 

u = Kx = ⎢⎣ 

α1 α2 α3 α4 

α5 α6
⎥⎦x. 

. . . 

• open loop controller
 

u = αn, where n = floor(t/dt).
 

Or α could be spline or fourier coefficients of the trajectory u(t). 

• Neural networks and general function approximators. 

12.2 NONLINEAR OPTIMIZATION 

Having defined the policy space, our task is to search over α for the best policy. If the 
number of parameters is small, then brute force search may work. More generally, we 
must employ tools from nonlinear optimization. 

c 85� Russ Tedrake, 2009 



86 Chapter 12 Trajectory Optimization 

12.2.1 Gradient Descent 

First-order methods in general. Pros/cons of gradient descent. Suffer from: 

• local minima 

• have to chose a step-size (problems with anisotropy, or the golf-course problem) 

• can require many iterations to converge 

12.2.2 Sequential Quadratic Programming 

Newton’s method, etc. Intro chapter from Betts is a great guide. Powerful software pack­
ages (e.g., SNOPT). 

12.3 SHOOTING METHODS 

Perhaps the most obvious method for evaluating and optimizing the cost function from a 
single initial condition is by defining α as the decision variables and by evaluating Jα(x0) 
via forward simulation. Typically, the only way that these shooting methods take advan­
tage of the additive cost structure of the optimal control problem is through efficient cal­

(x0)culations of the policy gradient - ∂Jα

. Computing this gradient explicitly (rather than ∂α 
through numerical differentiation) greatly improves the performance of the optimization 
algorithms. We present two methods for computing this gradient here. 

12.3.1 Computing the gradient with Backpropagation through time (BPTT) 

Known for a long time in optimal control, but the name backprop-through-time came from 
the neural networks [66] community. 

• Given the long-term cost function � T 

J(x0) = g(x(t), u(t))dt, x(0) = x0. 
0 

• Starting from the initial condition x(0), integrate the equations of motion 

ẋ = f(x, πα(x, t)) (12.1) 

forward in time to t = T . Keep track of x(t). 

•	 Starting from the initial condition y(T ) = 0, integrate the adjoint equations 

− ẏ = FT y − GT (12.2)x x 

backward in time until t = 0, where 

∂f ∂f ∂πα ∂g ∂g ∂παFx(t) = + ,	 Gx(t) = + ,
∂x(t) ∂u(t) ∂x(t) ∂x(t) ∂u(t) ∂x(t) 

evaluated at x(t), u(t). 
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Section 12.3 Shooting Methods 87 

• Finally, our gradients are given by � T∂J(x0) � � 
= dt GT

α y ,α − FT (12.3)
∂α 0 

where 

∂f ∂πα ∂g ∂παFα(t) = , Gα(t) = ,
∂u(t) ∂α ∂u(t) ∂α 

evaluated at x(t), u(t). 

Derivation w/ Lagrange Multipliers. 
This algorithm minimizes the cost function � T 

Jα(x0) = g(x, πα(x, t))dt 
0 

subject to the constraint 
ẋ = f(x, πα(x, t)). 

We will prove this using Lagrange multipliers and the calculus of variations, but it can also 
be shown using a finite-difference approximation of the unfolded network. 

Consider the functional (a function of functions) � T 

S[x(t), y(t)] = dt g(x, πα(x, t)) + yT [ẋ− f(x, πα(x, t))] . 
0 

If x(t) and y(t) are changed by small amounts δx(t) and δy(t), then the change in S is � T � � 
δS δS 

δS = dt δx(t) + δy(t) . 
δx(t) δy(t)0 

δS δS If = 0 and = 0 for all t, then δS = 0, and we say that S is at a stationary point δx(t) δy(t) 

with respect to variations in x and y. To ensure that δx(0) = 0, we will hold the initial 
conditions x(0) constant. 

Now compute the functional derivatives: 

δS 
= [ ẋ− f(x, πα(x, t))]T 

. 
δy(t) 

δS The forward dynamics of the algorithm gaurantee that this term is zero. To compute ,δx(t) 
we first need to integrate by parts to handle the ẋ term: � T � T 

T TyT ẋdt = y x|T − ẏ xdt.0 
0 0 

Rewrite S as � T 

S = dt g(x, πα(x, t)) − yT f(x, πα(x, t)) − ẏT x + y(T )T x(T ) − y(0)T x(0). 
0 
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88 Chapter 12 Trajectory Optimization 

Therefore, the function derivative is 

δS 
= Gx − yT Fx − ẏT + y(T )T δ(t − T ) − y(0)T δ(t). 

δx(t) 

By choosing y(T ) = 0, the backward dynamics guarantee that this term is zero (except 
for at t = 0, but δx(0) = 0). 

The forward and backward passes put us at a stationary point of S with respect 
to variations in x(t) and y(t), therefore the only dependence of S on w is the explicit 
dependence: 

∂S 
= 
� T 

dt Gα − yT Fα
∂α 0 

12.3.2 Computing the gradient w/ Real-Time Recurrent Learning (RTRL) 

Backpropagating through time requires that the network maintains a trace of it’s activity 
for the duration of the trajectory. This becomes very inefficient for long trajectories. Using 
Real-Time Recurrent Learning (RTRL), we solve the temporal credit assignment problem 
during the forward integration step by keeping a running estimate of the total effect that 
parameters α have on the state x. The algorithm is 

ẋ = f(x, πα(x, t), t) (12.4) 

Ṗ = FxP + Fα (12.5) 

d ∂Jα(x0) = GxP + Gα (12.6)
dt ∂α 

These equations are integrated forward in time with initial conditions x(0) = x0, P(0) = 
∂J 0, = 0.∂α 

This algorithm can be computationally expensive, because we have to store O(NM) 
variables in memory and process as many differential equations at every time step. On the 
other hand, we do not have to keep a trace of the trajectory, so the memory footprint does 
not depend on the duration of the trajectory. The major advantage, however, is that we do 
not have to execute the backward dynamics - the temporal credit assignment problem is 
solved during the forward pass. 

Derivation. 
Once again, we can show that this algorithm performs gradient descent on the cost 

function � T 

J(x0) = g(x, u, t)dt. 
0 

Define 
∂xi

Pij = . 
∂αj 
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Section 12.4 Direct Collocation 89 

The gradient calculations are straight-forward: � T � � 
∂J ∂g ∂x(t) ∂g ∂πα ∂g ∂π ∂x(t)

= dt + + 
∂α ∂x(t) ∂α ∂u(t) ∂α ∂u(t) ∂x(t) ∂α 0 � T 

= dt [GxP + Gα] 
0 

To calculate the dynamics of p and q, differentiate the equation 

ẋ = f(x, πα(x, t), t) 

to obtain 

d ∂x ∂f ∂f ∂πα ∂x ∂f ∂πα = + + 
dt ∂α ∂x ∂u ∂x ∂α ∂u ∂α 

Ṗ = FxP + Fα P(0) = 0 

By initializing P(0) = 0, we are simply assuming that the x(0) does not depend on α. 

12.3.3 BPTT vs. RTRL 

Both methods compute the gradient. So which should we prefer? The answer may be 
problem specific. The memory cost of the BPTT algorithm is that you must remember 
x(t) on the forward simulation, which is dim(x) × length(T ). The memory cost of RTRL 
is storing P which has size dim(x) × dim(α). Moreover, RTRL involves integrating 
dim(x) + dim(x) × dim(α) ODEs, where as BPTT only integrates 2 × dim(x) ODEs. 
For long trajectories and a small number of policy parameters, RTRL might more efficient 
that BPTT, and is probably easier to implement. For shorter trajectories with a lot of 
parameters, BPTT would probably be the choice. 

Another factor which might impact the decision is the constraints. Gradients of 
constraint functions can be computed with either method, but if one seeks to constrain 
x(t) for all t, then RTRL might have an advantage since it explicitly stores ∂x(t) .∂α 

12.4 DIRECT COLLOCATION 

The shooting methods require forward simulation of the dynamics to compute the cost 
function (and its gradients), and therefore can be fairly expensive to evaluation. Addition­
ally, they do not make very effective use of the capabilities of modern nonlinear optimiza­
tion routines (like SNOPT) to enforce, and even take advantage of, constraints. 

In the direct collocation approach, we formulate the decision parameters as both α, 
which in the open-loop case reduces to u[n], and additionally x[n]. By over-parameterizing 
the system with both x and u are explicit decision variables, the cost function and its gra­
dients can be evaluated without explicit simulation of the dynamics. Instead, the dynamics 
are imposed as constraints on the decision variables. The resulting formuation is: 

N

min J = g(x[n], u[n]), s.t. x[n + 1] = f(x[n], u[n]). 
∀n,x[n],u[n] 

n=1 

These methods are very popular today. The updates are fast, and it is very easy to 
implement constraints. The most commonly stated limitation of these methods is their 
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90 Chapter 12 Trajectory Optimization 

accuracy, since they use a fixed step-size integration (rather than a variable step solver). 
However, methods like BPTT or RTRL can also be used to implement the state-action 
constraints if accuracy is a premium. 

A less obvious attribute of these methods is that they may be easier to initialize with 
trajectories (eg, specifying x0(t) directly) that are in the vicinity of the desired minima. 

12.5 LQR TRAJECTORY STABILIZATION 

When the policy parameterization is explicitly the open-loop trajectory (utape), then tra­
jectory optimization by shooting methods and/or direct collocation both have the property 
that the solution upon convergence satisfies the Pontryagin minimum principle. When the 
policy is parameterized with feedback, the story is a little more complicated (but similar). 
But there is no reason to believe that the system is stable along these trajectories - execut­
ing the locally optimal open-loop trajectories on the system with small changes in initial 
conditions, small disturbances or modeling errors, or even with a different integration step 
can cause the simulated trajectories to diverge from the planned trajectory. 

In this section we will develop one set of tools for trajectory stabilization. There 
are many candidates for trajectory stabilization in fully-actuated sytems (many based on 
feedback linearization), but trajectory stabilization for underactuated systems can be eas­
ily implemented using a version of the Linear Quadratic Regulator (LQR) results from 
chapter 10. 

12.5.1 Linearizing along trajectories 

In order to apply the linear quadratic regulator, we must first linearize the dynamics. So far 
we have linearized around fixed points of the dynamics... linearizing around a non-fixed 
point is just slightly more subtle. Considering the system 

ẋ = f(x, u), 

if we perform a Taylor expansion around a random point (x0, u0), the result is 

∂f ∂f 
ẋ ≈ f(x0, u0) + (x − x0) + (u − u0) = c + A(x − x0) + B(u − u0). 

∂x ∂u 

In other words, the resulting dynamics are not linear (but affine) in the coordinates of x. 
The simple trick is to change coordinates to 

x̄(t) = x(t) − x0(t), ū(t) = u(t) − u0(t), 

where [x0(t), u0(t)] is a solution to the dynamics - a feasible trajectory. Then we have 

ẋ̄(t) = ẋ(t) − ẋ0(t) = ẋ(t) − f(x0(t), u0(t)), 

and therefore 

∂f(x0(t), u0(t)) ∂f(x0(t), u0(t))ẋ̄(t) = (x(t) − x0(t)) + (u − u0(t))
∂x ∂u 

=A(t)x̄(t) + B(t)ū(t). 

In other words, if we are willing to change to a coordinate system that moves along a 
feasible trajectory, than the Taylor expansion of the dynamics results in a time-varying 
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linear system. Linear time-varying (LTV) systems are a very rich class of systems which 
are still amenable to many of the linear systems analysis[21]. 

The big idea here is that we are using a particular solution trajectory to reparam­
eterize the path through state-space as purely a function of time. [Add cartoon images 
here]. 

12.5.2 Linear Time-Varying (LTV) LQR 

Given a linear time-varying approximation of the model dynamics along the trajectory, 

ẋ̄ = A(t)x̄ + B(t)ū, 

we can formulate a trajectory stabilization as minimizing the cost function � T 

J(x0, 0) = x̄(tf )T Qf x̄(tf ) + dt x̄(t)T Qx̄(t) + ū(t)T Rū(t) . 
0 

This cost function penalizes the system (quadratically) at time t for being away from x0(t). 
Even with the time-varying components of the dynamics and the cost function, it is still 
quite simple to use the finite-horizon LQR solution from 2. If, as before, we guess 

J(x̄, t) = x̄T S(t)x̄, 

we can satisfy the HJB with: 

−Ṡ(t) = Q − S(t)B(t)R−1BT S(t) + S(t)A(t) + AT (t)S(t), S(T ) = Qf . 

u ∗(t) = u0(t) − R−1BT (t)S(t)x̄(t) 

In general, it is also trivial to make Q and R functions of time. It is also nice to observe 
that if one aims to stabilize an infinite-horizon trajectory, for which ∀t ≥ tf , x0(t) = 
x0(tf ), u0(t) = u0(tf ), and f(x0(tf ), u0(tf ) = 0, then we can use the boundary con­
ditions S(T ) = S∞, where S∞ is the steady-state solution of the LTI LQR at the fixed 
point. 

[Add simulation results from the pendulum, with and without feedback, and cart-
pole, using both dircol and shooting?] 

[Add image of value function estimates on top of pendulum trajectory] 
Notice that, like the LTI LQR, this control derivation should scale quite nicely to high 

dimensional systems (simply involves integrating a n × n matrix backwards). Although 
dynamic programming, or some other nonlinear feedback design tool, could be used to 
design trajectory stabilizers for low-dimensional systems, for systems where open-loop 
trajectory optimization is the tool of choice, the LTV LQR stabilizers are a nice match. 

12.6 ITERATIVE LQR 

The LTV LQR solutions used to stabilize trajectories in the last section can also be modified 
to create an algorithm for unconstrained optimization of open-loop trajectories. Iterative 
LQR (iLQR), also known as Sequential LQR (SLQ)[74], and closely related to Differential 
Dynamic Programming (DDP)[42], can be thought of as almost a drop-in replacement for 
a shooting or direct collocation method. 
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92 Chapter 12 Trajectory Optimization 

The instantaneous cost function for trajectory stabilization took the form: x̄T Qx̄, 
with the result being that states off the desired trajectory are regulated back to the desired 
trajectory. But what happens if we use the LQR derivation to optimize a more arbitrary 
cost function? Given an instantaneous cost function, g(x, u), we can form a quadratic 
approximation of this cost function with a Taylor expansion about x0(t), uo(t): 

∂g ∂g 1 T ∂
2g ∂2g 1 ∂2g 

g(x, u) ≈ g(x0, u0) + x̄ + ū + x̄ x̄ + x̄ ū + ūT ū. 
∂x ∂u 2 ∂x2 ∂x∂u 2 ∂u2 

By inserting this (time-varying) cost function into the LQR solution, with the time-
varying linearization around a nominal trajectory, we can once again derive an optimal 
control policy by integrating a Riccati equation backwards (almost identical to the deriva­
tion in example 3). [ insert official derivation here ] 

Given an initial trajectory x0(t), u0(t) (generated, for instance, by choosing u0(t) to 
be some random initial trajectory, then simulating to get x0(t)), the cost function no longer 
rewards the system for stabilizing the desired trajectory, but rather for driving towards the 
minimum of the cost function (which has an interpretation as a different desired trajectory, 
xd(t) �= x0(t)). The LQR solution will use the linearization along x0(t) to try to stabilize 
the system on xd(t). Because the LTV model is only valid near x0(t), the resulting con­
troller may do a poor job of getting to xd(t), but will be better than the previous controller. 
The algorithm proceeds by replacing u0(t) with the control actions executed by the LQR 
feedback policy from the initial conditions, computes the corresponding new x0(t), and 
iterates. 

[insert implementation snapshots here for intuition.] 
Iterative LQR can be thought of as a second-order solution method (like SQP), which 

should converge on a trajectory which satisfies the Pontryagin minimum principle in a rel­
atively small number of interations. It will likely require fewer trajectories to be consid­
ered that using BPTT, RTRL, or DIRCOL, because the LQR solution directly computes a 
second-order update, whereas the other methods as presented compute only ∂J , and rely ∂α 
on SNOPT to approximate the Hessian. 

The very popular DDP method[42] is very similar to this solution, although it also 
uses a second-order expansion of the equations of motion. Many authors say that they are 
using DDP when they are actually using iLQR[1]. 

12.7 REAL-TIME PLANNING (AKA RECEDING HORIZON CONTROL) 

LQR trajectory stabilization is one approach to making the optimized open-loop trajecto­
ries robust to disturbances. But if you can plan fast enough (say for steering a ship), then 
computing a short-term finite-horizon open-loop policy at every dt using the current state 
as initial condtions can be another reasonable approach to creating what is effectively a 
feedback policy. The technique is known as receding-horizon control. 
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