
C H A P T E R 9 

Dynamic Programming 

In chapter 2, we spent some time thinking about the phase portrait of the simple 
pendulum, and concluded with a challenge: can we design a nonlinear controller to re
shape the phase portrait, with a very modest amount of actuation, so that the upright fixed 
point becomes globally stable? With unbounded torque, feedback linearization solutions 
(e.g., invert gravity) can work well, but can also require an unecessarily large amount of 
control effort. The energy-based swing-up control solutions presented in section 3.6.2 are 
considerably more appealing, but required some cleverness and might not scale to more 
complicated systems. Here we investigate another approach to the problem, using compu
tational optimal control to synthesize a feedback controller directly. 

9.1 INTRODUCTION TO OPTIMAL CONTROL 

In this chapter, we will introduce optimal control - a control design process using opti
mization theory. This approach is powerful for a number of reasons. First and foremost, 
it is very general - allowing us to specify the goal of control equally well for fully- or 
under-actuated, linear or nonlinear, deterministic or stochastic, and continuous or discrete 
systems. Second of all, this control formulation permits numerical solutions - we can 
harness the power of computational optimization theory to solve analytically intractable 
control problems. [13] is a fantastic reference on this material, and the source of a number 
of the examples worked out here. 

The fundamental idea in optimal control is to formulate the goal of control as the 
long-term optimization of a scalar cost function. Optimal control has a long history in 
robotics. For instance, there has been a great deal of work on the minimum-time prob
lem for pick-and-place robotic manipulators, and the linear quadratic regulator (LQR) and 
linear quadratic regulator with Gaussian noise (LQG) have become essential tools for any 
practicing controls engineer. 

In this chapter, we will formulate the deterministic optimal feedback control prob
lem, considering a system described by the equations: 

ẋ(t) = f(x(t), u(t), t). 

This structure certainly emcompasses the robots that are the focus of this book (and many 
other dynamical systems), but also doesn’t take advantage of the structure of the manipu
lator equations (that topic will be discussed in chapter ?). In the general formulation, our 
goal is to design a feedback policy, π, where 

u(t) = π(x, t). 

We will define π∗, the optimal feedback policy, as the policy which minimizes the scalar 
cost function. 

66 c� Russ Tedrake, 2009 



Section 9.2 Finite Horizon Problems 67 

9.2 FINITE HORIZON PROBLEMS 

Some control problems have a natural duration. For example, perhaps it is 1pm and your 
robot needs to get to the bank before it closes at 5pm. Or imagine your robot is working on 
an assembly room floor, and is allocated a fixed amount of time to complete each assembly 
(or pick-and-place) task. As we will see later in the chapter, other problems are more 
naturally described independent of the time interval, or over an infinite horizon, and we will 
see that the infinite horizon derivations follow naturally from the finite horizon derivations 
in this section. 

In finite horizon problems, we define a finite time interval, t ∈ [0, T ], where T 
is called the horizon time. In general, T can be given, or left as a free-variable to be 
optimized. If we run the system from an initial condition, x0, executing policy π then the 
system will move through a trajectory [x(t), u(t)]. Using x̄ and ū to denote the entire 
continuous system trajectory over [0, T ], or 

x̄ = {x(0), ..., x(T )}, ū = {u(0), ..., u(T )}, 

then we can score the policy π by defining a cost function: 

Jπ(x0) = g(x̄, ū), x(0) = x0, u(t) = π(x(t), t). 

For general cost functions of this form, finding the optimal policy π for all x0 reduces to 
solving a (potentially very complex) nonlinear programming problem. 

9.2.1 Additive Cost 

It turns out that the optimization problem often becomes a lot more tractable (both analyt
ically and computationally) if we are willing to design our cost functions with an additive 
form. In particular, let us restrict our costs to take the form: � T 

Jπ(x0) = h(x(T )) + g(x(t), u(t), t)dt, x(0) = x0. 
0 

This form is actually quite general. Before we get into the mechanics of solving for the 
optimal policies, let’s get a little intuition by considering some example problem formula
tions, and intuition about their solutions. 

EXAMPLE 9.1 Minimum-time problems 

Recall the simple pendulum... 

EXAMPLE 9.2 Quadratic regulators 

More examples here... 

9.3 DYNAMIC PROGRAMMING IN DISCRETE TIME 

Now we will begin to develop the machinery for finding and/or verifying an optimal policy. 
This machinery can be developed more easily in discrete-time, so let’s temporarily consider 

c� Russ Tedrake, 2009 



� 

� 

68 Chapter 9 Dynamic Programming 

optimal control problems of the form: 

x[n + 1] = f(x[n], u[n], n) (9.1) 
N−1

Jπ(x0) = h(x[N ]) + g(x[n], u[n], n), x[0] = x0, u[n] = π(x[n], n). (9.2) 
n=0 

Thanks to the additive form of this long-term cost, we can now start systematically solving 
for an optimal policy. Let’s consider a subproblem, in which we start from xm and time m 
and then continue on until N . Let us define the “cost-to-go” given that we are following 
policy π as Jπ(xm, m); it is given by 

N−1

Jπ(xm, m) = h(x[N ]) + g(x[n], u[n]), x[m] = xm, u[n] = π(x, n). 
n=m 

Our original Jπ(x0) is simply the cost-to-go Jπ(x0, 0). For this reason, Jπ is known 
as the cost-to-go function or the value function. The cost-to-go function can be written 
recursively: 

Jπ(x, N) =h(x) 
Jπ(x, N − 1) =g(x[N − 1], u[N − 1], N − 1) + h(x[N ]) 

. . . 
Jπ(x, n) =g(x, u, n) + Jπ(x[n + 1], n + 1) 

Even more important, the optimal cost-to-go function, J∗ (simply defined as Jπ for π∗), 
has almost the same recursive structure: 

J ∗(x, N) =h(x) 
J ∗(x, N − 1) =min [g(x[N − 1], u, N − 1) + h(x[N ])] 

u 

. . . 
J ∗(x, n) =min [g(x, u, n) + J ∗(x[n + 1], n + 1)] . 

u 

Furthermore, the optimal policy is given by: 

π ∗(x, n) = argmin [g(x, u, n) + J ∗(x[n + 1], n + 1)] . 
u 

This recursion, which starts at the terminal time and works backwards towards time 0, is 
known as dynamic programming. It is based on the key observation that for systems with a 
scalar additive cost, the cost-to-go function represents everything that the system needs to 
know about the future. The optimal action is simply the action which minimizes the sum 
of the one-step cost and the future optimal cost-to-go. 

9.3.1 Discrete-State, Discrete-Action 

For systems with continuous states and continuous actions, dynamic programming is a 
mathematical recipe for deriving the optimal policy and cost-to-go. For systems with a 

c� Russ Tedrake, 2009 



� 

Section 9.4 Infinite Horizon Problems 69 

Algorithm 1: The Dynamic Programming Algorithm. 
Input: states S, actions A, horizon time N , dynamics s = f(s, a, n), instantaneous 

cost g(s, a, n), and terminal cost h(s) 
Output: optimal policy π∗(s, n) and optimal cost-to-go J∗(s, n) 

foreach state s ∈ S do 
J∗(s, N) ← h(s) ; 

end 
for n ← N − 1 to 0 do 

foreach state s do
 
J∗(s, n) ← mina∈A [g(s, a, n) + J∗(f(s, a, n), n + 1)] ;
 
π∗(s, n) ← argmin [g(s, a, n) + J∗(f(s, a, n), n + 1)] ;
a∈A 

end 
end 

finite, discrete set of states and a finite, discrete set of actions, dynamic programming 
also represents a very efficient algorithm which can compute optimal policies (see Algo
rithm 1). This algorithm uses the states {s1, s2, ...} ∈ S, where S is the finite state space, 
and actions as {a1, a2, ...} ∈ A, where A is the finite action space. 

Let’s experiment with dynamic programming in a discrete-state, discrete-action, 
discrete-time problem to further improve our intuition. 

EXAMPLE 9.3 Grid World 

Robot living in a grid (finite state) world. Wants to get to the goal location. Possibly has 
to negotiate cells with obstacles. Actions are to move up, down, left, right, or do nothing. 
[84]. 

STILL NEED TO FILL IN THIS EXAMPLE WITH PLOTS, ETC. 

Dynamic programming and value iteration. Pseudo-code? (or matlab code). Con
vergence results. Scalability. 

9.3.2 Continuous-State, Discrete-Action 

Barycentric interpolation. Examples on pendulum, acrobot, cart-pole, ... 

9.3.3 Continuous-State, Continous-Actions 

For some cost functions, we can solve for minu analytically, and build that into our algo
rithm. 

9.4 INFINITE HORIZON PROBLEMS 

9.5 VALUE ITERATION 

9.6 VALUE ITERATION W/ FUNCTION APPROXIMATION 

Point-based VI 

c� Russ Tedrake, 2009 



� � � � 

� � 

� 

70 Chapter 9 Dynamic Programming 

9.6.1 

9.7 

9.7.1 

Insert diagram of the brick with control force here. 

FIGURE 9.1 The brick on ice - a mechanical double integrator. 

Special case: Barycentric interpolation 

see also stochastic optimal control. 

DETAILED EXAMPLE: THE DOUBLE INTEGRATOR 

Let’s apply our dynamic progrmming algorithms to get some intuition about optimal con
trol of the simplest possible second-order dynamical system: 

q̈ = u. 

This system is most commonly referred to as the double integrator. If you would like a 
mechanical analog of the system (I always do), then you can think about this as a unit mass 
brick moving along the x-axis on ice (no friction), with a control input which provides a 
horizontal force, u. The task is to design a control system, u = π(x, t), x = [q, q̇]T to 
regulate this brick to x = [0, 0]T . 

Pole placement 

There are many ways to investigate and control this simple system. The state space repre
sentation of this system is 

0 1 0 
ẋ = Ax + Bu = x + u.0 0 1 

If we consider simple linear feedback policies of the form 

u = −Kx = − k1 k2 x = −k1q − k2q, ˙

then we have � � 
0 1 

ẋ = (A + BK)x = x.−k1 −k2 

The closed-loop eigenvalues, λ1 and λ2, and eigenvectors, v1 and v2 of this system are � � � � � 
k2−k2 ± − 4k1 1 12λ1,2 = , v1 = , v2 = .

2 λ1 λ2 

The system is exponentially stable when both eigenvalues are strictly negative, e.g., 0 < 
k2 − 4k1 < k2. This implies that k1 > 0. The eigenvalues are real when k2 ≥ 4k12 2 

(when k2 = 4k1, the system is critically damped, when k2
2 < 4k1 it is under-damped, and 2 

when k2 > 4k1 it is over-damped). As control designers, if we are to design k1 and k2,2 √ 
we could choose k1 arbitrarily high, then choose k2 = 2 k1 to obtain an arbitrarily fast, 
critically damped, convergence. 

An alternative way to say this same thing is to take the Laplace transform of the 
closed-loop system, q̈ = −k1q − k2q̇ + u�, with the transfer function 

1 1 
H(s) = = 

s2 + k2s + k1 (s + λ1)(s + λ2) 
. 

c� Russ Tedrake, 2009 



Section 9.7 Detailed Example: the double integrator 71 

2
2kBy the same argument as above, we can easily select k1 = to keep the poles on the 4 

real-axis, H(s) = 1 , and drive those poles arbitrarily far into the left-half plane k

by choosing a large k2. Or, with a more traditional root-locus analysis, we could amplify 
the gains k1 and k2 by the same linear multiplier k and see that for low k the system is 
underdamped (complex poles), and increasing k causes the poles to meet at the real axis 
and move off in opposite directions. 

2
2 )2(s+ 

FIGURE 9.2 Phase plot of a double integrator with linear feedback, k1 = 1, k2 = 4. 

9.7.2 The optimal control approach 

Simple tuning of linear feedback gains can cause an arbitrarily fast convergence to the 
goal, but it may have many undesirable qualities. Perhaps the most obvious problem is that 
arbitrarily large feedback gains require arbitrarily large forces to implement. In some cases, 
we may have hard limits on the amount of force/torque that our actuators can produce. In 
other cases, since setting the gains to infinite is not a reasonable solution, we may like 
a more principled approach to balancing the cost of exerting large forces with the rate at 
which the system gets to the goal. In the remainder of this chapter we will consider to 
alternative formulations of optimal control problems for the double integrator to handle 
these two cases. 

Thanks to the simplicity of the dynamics of this plant, each of the examples worked 
out here, will be computed analytically in the next chapters. 

9.7.3 The minimum-time problem 

Let’s consider the problem of trying to get to the goal as fast as possible in the face of hard 
limits on the amount of force we can produce: 

q̈ = u, u ∈ [−1, 1]. 

c� Russ Tedrake, 2009 



� 

72 Chapter 9 Dynamic Programming 

Informal derivation. 
Before we do the real derivation, let’s use our intuition to think through what the 

optimal control solution for this problem might look like. 
We believe that the policy which optimizes this control problem is bang-bang; the 

control system should acclerate maximally towards the goal until a critical point at which 
it should hit the brakes in order to come perfectly to rest at the origin. Here we’ll prove 
that this hypothesis is indeed correct. 

First, we must define the bang-bang policy. We can do this by trying to figure out 
the manifold of states which, when the brakes are fully applied, bring the system to rest 
precisely at the origin. Integrating the equations, we have 

q̇(t) = ut + q̇(0) 
1 

q(t) = ut2 + q̇(0)t + q(0).
2 

If we require that q(t) = q̇(t) = 0, then these equations define a manifold of initial 
conditions (q(0), q̇(0)) which come to rest at the origin: 

1 2 q̇(0) = −ut, q(0) = ut .
2 

Cancelling t and using the “braking” policy on this manifold, u = sgn(q), we have 

q̇ = − sgn(q) 2 sgn(q)q. 

For all q̇ greater than this switching surface, we apply u = −1, and less than, we apply 
u = 1. This policy is cartooned in Figure 9.3. Trajectories of the system executing this 
policy are also included - the fundamental characteristic is that the system is accelerated 
as quickly as possible toward the switching surface, then rides the switching surfance in to 
the origin. 

 

 

q

q̇ u=−1
u=1

FIGURE 9.3 Candidate optimal (bang-bang) policy for the minimum-time double integrator 
problem. 

Performance. 
compare phase plots with linear control. 

� Russ Tedrake, 2009 c



MIT OpenCourseWare
http://ocw.mit.edu 

6.832 Underactuated Robotics 
Spring 2009 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms



