
 

6.837 Computer Graphics Fall 2012 
Programming Assignment 0: OpenGL Mesh Viewer 

1 Getting Started 

Let’s start off by looking at main.cpp. It contains a fully functional appli
cation that displays a teapot. Other than that, it’s not very interesting. To 
compile this application, type make on an Athena Linux station. This should 
produce an executable called a0. If there are error messages, contact the 
TAs. 

Once you’ve successfully built the executable, run it by typing ”./a0” at 
the terminal. It should display a teapot. Yes, that’s all it does. It’s now your 
job to make this application a bit more interesting by modifying the code. 

2 Requirements 

2.1 Color Changes 

Add the ability to change the color of the displayed model. Right now, the 
color is set to [0.5, 0.5,0.9] (RGB), which is a boring light blue. Your task is 
to wire the c key to toggle through several other colors (feel free to choose 
which colors you want). How do you handle keyboard events? Notice that, 
when you press keys while the application is running, the console says some
thing like this: 

Unhandled key press h. 
Unhandled key press e. 
Unhandled key press l. 
Unhandled key press l. 
Unhandled key press o. 

The code that prints these messages is in the keyboardFunc function. Mod
ify the code to handle the c key appropriately. A reasonable way to do 
this might be to have the c key increment some sort of global counter vari
able and then use that variable to select a color in the drawScene function. 
Note that GLUT will not immediately redraw the scene after it has called 

1
 



keyboardFunc. The end of the function contains a call, glutPostRedisplay() 
that updates the display. 

2.2 Light Position Changes 

Add the ability to change the position of the light. In the code, the light is 
placed at [1.0,1.0,5.0]. Wire the arrow keys to change the position of the light. 
More specifically, the left/right arrow keys should decrement/increment the 
first value of the position by 0.5, and the up/down arrow keys should do the 
same for the second value. This can be done quite similarly to the suggested 
method for the previous requirement. 

2.3 Mesh Loading and Display 

Once you have completed the above requirements, we can move on to the 
tough part: loading new objects. In the sample code, we have provided sev
eral 3D meshes in OBJ format. It is your job to write teh code to load and 
display these files. OBJ files are a fairly standard format that can describe 
all sorts of shapes, and you’ll be handling a subset of their functionality. 

Let’s look at sphere.obj. It’s a big file, but it can be summarized as follows: 

#This file uses ... 
... 

v 0.148778 -0.987688 -0.048341 
v 0.126558 -0.987688 -0.091950 
... 

vn 0.252280 -0.951063 -0.178420 
vn 0.295068 -0.951063 -0.091728 
... 
f 22/23/1 21/22/2 2/2/3 
f 1/1/4 2/2/3 21/22/2 
... 

Each line of this file starts with a token followed by some arguments. 
The lines that start with v define vertices, the lines that start with vn define 
normals, and the lines that start with f define faces. There are other types 
of lines, and your code should ignore these. 

2
 



Your first task is to read in all of the vertices (”v”) into an array (vecv) 
(or any other data structure that allows you to quickly reference the ith ele
ment). Then, do the same for the normals (”vn), loading them into another 
array (vecn). 

Understanding the faces (”f”) is a little more difficult. Each face is de
fined using nine numbers in the following format: a/b/c d/e/f g/h/i. This 
defines a face with three vertices with indices a,d, g and respective normals 
c, f , and i (you can ignore b, e, and h for this assignment). The general OBJ 
format allows faces with an arbitrary number of vertices; you’ll just have to 
handle triangles. 

So let’s say you have the vertices and normals stored in vecv and vecn. 
Then you’d draw the aforementioned triangle using the following code: 

glBegin(GL_TRIANGLES);
 
glNormal3d(vecn[c-1][0], vecn[c-1][1], vecn[c-1][2]);
 
glVertex3d(vecv[a-1][0], vecv[a-1][1], vecv[a-1][2]);
 
glNormal3d(vecn[f-1][0], vecn[f-1][1], vecn[f-1][2]);
 
glVertex3d(vecv[d-1][0], vecv[d-1][1], vecv[d-1][2]);
 
glNormal3d(vecn[i-1][0], vecn[i-1][1], vecn[i-1][2]);
 
glVertex3d(vecv[g-1][0], vecv[g-1][1], vecv[g-1][2]);
 
glEnd();
 

You may be wondering why there are all those minus-ones. It’s because 
the faces index vertices and normals from 1, and C/C++ indexes from 0. If 
you have this implemented, the rest is fairly straightforward: you just have 
to loop over all teh faces to draw the complete mesh. 

In main.cpp, vecv is defined as an STL vector of Vectof3fs. An STL vec
tor is simply a list of arbitrary objects. In this case, it is a list of Vector3f 
objects. 
vector<Vector3f> vecv; 

To add a new entry to this array, use push back: 
vecv.push back(Vector3f(0,0,0)); 

3
 



There are several ways to iterate over an STL vector. Here’s an example 
of using indices (if you’re interested in learning more about STL, check out 
the documentation at http://www.sgi.com/tech/stl/): 

for(unsigned int i=0; i < vecv.size(); i++) { 
Vec3d &v = vecv[i]; 
//do something with v[0], v[1], v[2] 

} 

Please also keep in mind that you’ll need another array to store the faces 
(perhaps vecf). It may be tempting to try to draw them as they are read 
from the OBJ, but OpenGL requires you to redraw the model whenever 
the window is obstructed or resized (and also when you change the color or 
lightning). 

Your final executable should take the OBJ files via standard input: 
./a0 < sphere.obj 

The ”<” operator will put the contents of sphere.obj into the ”standard 
input” stream. This stream can be accessed using the cin object. For exam
ple, to read a single line of data from the stream (all characters up to the 
next newline): 

char buffer[MAX_BUFFER_SIZE]; 
cin.getline(buffer, MAX_BUFFER_SIZE); 

cin.getline will return zero at the end of the file. You can use this fact to 
step through each line in the file. Once you get have an array of characters 
(the text from a single line of the file), you can parse it using a stringstream 
object. Create a stringstream object from an array of chacters (buffer) as 
follows: 
stringstream ss(buffer); 

Now that you have a stringstream object, you can read tokens (separated 
by spaces) from the buffer in order by using the ”>>” operator. For example, 
given the input string ”v 1.0 1.1 1.2”, in the following code: 

Vector3f v; 
string s; 

4
 

http://www.sgi.com/tech/stl/


ss >> s;
 
ss >> v[0] >> v[1] >> v[2];
 

will put the value ”v” into s, and load the values 1.0, 1.1, and 1.2 into 
v[0], v[1], and v[2]. Note that you can compare the string objects to constant 
strings using the regular ”==” operator. 

if (s== "v") { 
//do something 

} 

Make sure that you’re able to load and view the three provided files with
out crashing; these are the only three files we’ll test your program on. 

You may want to run the provided sample solution a0soln to get an idea of 
how your application should work (run .a0soln < garg.obj and read the 
console output for usage instructions). 

3 Extra Credit 

Here are some ideas (sorted roughly by increasing level of difficulty) that 
might spice up your project. The amount of extra credit given will depend 
on the difficultly of the task and the quality of your implementation. In 
addition, feel free to suggest your own extra credit ideas! Just because it’s 
not on this list doesn’t mean we won’t give you some extra points (although 
if it’s a big addition, make sure you run it by the course staff first just to 
make sure). 

Easy 

•	 The sample solution (a0soln) lets you hit r to spin the model. Imple
ment this functionality in your code (look up glutTimerFunc). 

•	 Display the model using OpenGL display lists or vertex buffer objects 
for higher performance rendering. 

•	 Modify the code so that the c key smoothly transitions between differ
ent colors (rather than just toggling it). 

5
 



This course makes use of Athena, MIT's UNIX-based computing environment. OCW does not provide access to this environment. 

Medium 

•	 Implement a mouse-based camera control to allow the user to rotate 
and zoom in on the object. Credit will vary depending on the quality 
of the implementation. 

Hard 

•	 Large meshes are quite difficult to draw and process. For interactive 
applications, such as video games, it’s often desirable to simplify meshes 
as much as possible without sacrificing too much quality. Implement 
a mesh simplification method, such as the one described in Surface 
Simplification Using Quadric Error Metrics (Garland and Heckbert, 
SIGGRAPH 97). 

4 Submission 

As a final step, write a README.txt that answers the following questions: 

•	 How do you compile and run your code? Provide instructions for 
Athena Linux. Don’t tell us to open up a project in Microsoft Visual 
Studio. 

•	 Did you collaborate with anyone in the class? If so, let us know who 
you talked to and what sort of help you gave or received. 

•	 Were there any references (books, papers, websites, etc.) that you 
found particularly helpful for completing your assignment? Please pro
vide a list. 

•	 Are there any known problems with your code? If so, please provide 
a list and, if possible, describe what you think the cause is and how 
you might fix them if you had more time or motivation. This is very 
important, as we’re much more likely to assign partial credit if you help 
us understand what’s going on. 

•	 Did you do any extra credit? If so, let us know how to use the additional 
features. If there was a substantial amount of work involved, describe 
what and how you did it. 

6
 



•	 Got any comments about this assignment that you’d like to share? Was 
it too long? Too hard? were the requirements unclear? Did you have 
fun, or did you hate it? Did you learn something, or was it a total 
waste of your time? Feel free to be brutally honest; we promise we 
won’t take it personally. 

Submit the following online 

•	 Your code (probably just main.cpp for this assignment). 

•	 A compiled executable built from your code name a0. 

•	 The aforementioned README.txt file. 

•	 Any additional files necessary to run your program. 

7
 



MIT OpenCourseWare
http://ocw.mit.edu

6.837 Computer Graphics
Fall 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

