# 6.837 Introduction to Computer Graphics <br> Quiz 1 

Tuesday, October 18, 2011 2:40-4pm
One hand-written sheet of notes ( 2 pages) allowed

## NAME:

| 1 | $/ 20$ |
| :---: | :---: |
| 2 | $/ 18$ |
| 3 | $/ 18$ |
| 4 | $/ 24$ |
| Total | $/ 80$ |

The answer are in blue and extra information that was not required is in green.

## 1 Coordinate systems

Given that basis $\overrightarrow{\mathbf{a}}^{t}$ can be expressed in basis $\overrightarrow{\mathbf{b}}^{t}$ as $\overrightarrow{\mathbf{a}}^{t}=\overrightarrow{\mathbf{b}}^{t} M$, what are the coordinates of the vector $\overrightarrow{\mathbf{b}}^{t} N \mathbf{c}$ with respect to the basis $\overrightarrow{\mathbf{a}}^{t}$, where $N$ and $M$ are matrices and $\mathbf{c}$ is a column vector of coordinates?
[ 2$]$
$M^{-1} N \mathbf{c}$

Let $\overrightarrow{0}$ be the zero vector. For any linear transformation $\mathcal{L}$, what is $\mathcal{L}(\overrightarrow{0})$ ?
$\mathcal{L}(\overrightarrow{0})=\overrightarrow{0}$

Let $\mathcal{T}(\vec{v})$ be the transformation that adds a specific non-zero constant vector $\vec{k}$ to $\vec{v}: \mathcal{T}(\vec{v})=\vec{v}+\vec{k}$. Is $\mathcal{T}$ a linear transformation?
(because $\mathcal{T}(\overrightarrow{0})$ is not $\overrightarrow{0}$ )

Suppose $\overrightarrow{\mathbf{f}}^{t}$ is a 2 D orthonormal frame, and we apply the transform $\overrightarrow{\mathbf{f}}^{t} \Rightarrow \overrightarrow{\mathbf{f}}^{t} S T$, where $S$ is a matrix that applies a uniform scale by a factor of 2 , and $T$ translates by 1 along the x axis.

Write these two $3 \times 3$ matrices.

$$
S=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right] \quad T=\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

How far does the frame's origin move, measured in the original units of $\overrightarrow{\mathbf{f}}^{t}$ ?

2

Given the two orthonormal frames $\overrightarrow{\mathbf{a}}^{t}$ and $\overrightarrow{\mathbf{b}}^{t}$ shown below:

with distances given by the positive quantities $d_{i}$. What are the matrices $R$ and $T$ such that $\overrightarrow{\mathbf{b}}^{t}=\overrightarrow{\mathbf{a}}^{t} T R$ ? Note: do this without using trigonometric terms in the matrix $T$. [

$$
T=\left[\begin{array}{ccc}
1 & 0 & d_{3} \\
0 & 1 & d_{4} \\
0 & 0 & 1
\end{array}\right] \quad R=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

## 2 Splines

Draw the DeCasteljau construction for the evaluation of the point $t=0.5$ of the Bézier spline defined by the 4 points below.
/6]


How can you choose the control points so that a cubic Bézier curve is a closed loop?
[
/4]
$P_{1}=P_{4}$

What is the order of continuity that you get, in general, with such closed-loop cubic Bézier spline?
$C^{0}$
but it has a $C^{1}$ discontinuity

What additional constraint on the control points is needed to get one more order of continuity (while keeping it a closed-loop cubic spline defined by four points), and what would the consequence be?
$P_{1} P_{2}$ and $P_{3} P_{4}$ should be aligned. Since $P_{1}=P 4$, would mean that all four points are aligned and the spline reduces to a segment.
$P_{1}=P_{4}$ should also be between $P_{2}$ and $P_{3}$. Furthermore, if we want $C^{1}$ continuity and not just $G^{1}$, we need the length of $P_{1} P_{2}$ to be the same as $P_{3} P_{4}$

## 3 Color

Imagine that humans were intelligently designed with simpler color bi-chromat vision where the two types of cones have the following spectral responses:


What would be the pair of cone responses LS for a stimulus of monochromatic light at 500 nm with total power 2.73 in our arbitrary units?
$/ 2]$

Give two spectra that are metamers under this set of cones.
/4]



In fact any spectrum that is symmetric with respect to 550 nm is a metamer of these two.

Another possible answer is to use parts of the spectrum that have zero response and add them. It's kind of correct but in my opinion it's a little bit cheating.

We seek to reproduce the CIE color matching experiment with primary wavelengths 500 nm and 600 nm . What is the required amount of these two primaries to match unit-power stimuli at the following wavelengths:

500 nm
(10)

550 nm

600 nm

Give an example that illustrates what happens if we seek to use the same spectra for analysis (e.g. the two color filters on a camera) and for synthesis (e.g. the two primaries of a video projector) with these 2-cone humans.
[

Suppose we use the cone spectra both for analysis and synthesis and seek to reproduce a monochromatic stimulus at 500 nm (left figure below). The response to our analysis is $(10)$. We then scale the two spectra by these numbers for synthesis, as shown on the right, leading to a new stimulus with the shape of a tent. Unfortunately, this stimulus has a non-zero response for the S cone and the color is not accurately reproduced.



## 4 Physically-based animation

We are given a single particle with 1D vertical position described by the scalar function $x(t)$ where the positive values of $x$ go up. It follows Newtonian mechanics and is affected by gravity described by the constant $g$ (in $m s^{-2}$ ) and a drag force $F=-d v$ where $v=\frac{d x}{d t}$ and $d$ is a constant. Initially, the particle is at $x_{0}$ and travels with velocity $v_{0}$. The particle has mass $m$.

Write the second-order ODE that describes this particle system.

$$
\frac{d^{2} x}{d t^{2}}=-g-\frac{1}{m} d v
$$

Transform this second-order ODE into a first order ODE system .
[

$$
\frac{d}{d t}\binom{x}{v}=\binom{v}{-g-\frac{1}{m} d v}
$$

Use the Euler method to estimate the state of the system after time step $h$. [

$$
\begin{gathered}
x(h)=x_{0}+v_{0} h \\
v(h)=v_{0}-g h-\frac{h}{m} d v_{0} \\
=v_{0}\left(1-\frac{h d}{m}\right)-g h
\end{gathered}
$$

Use the trapezoid method to estimate the value of $x$ after time step $h$. Note: we do not ask you to compute the velocity after this full step.

We perform a Euler step, read the right-hand side of the equation and use the average of the right-hand side at this location and at the original location.

$$
\begin{aligned}
x(h) & =x_{0}+\frac{h}{2}\left[v_{0}+v_{0}\left(1-\frac{h d}{m}\right)-g h\right] \\
& =x_{0}+h v_{0}\left(1-\frac{h d}{2 m}\right)-\frac{1}{2} g h^{2}
\end{aligned}
$$

MIT OpenCourseWare
http://ocw.mit.edu

### 6.837 Computer Graphics

) DOR010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

