Problem Set 1

Due: April 13

Problem 1. Prove Theorem 4.5.22 (term-model completeness for simply typed lambda calculus) in the Mitchell text.

Problem 2. Consider simple types defined starting from type constants b_{1}, b_{2}, \ldots A monotone model assigns to each type constant, b, a meaning $\llbracket b \rrbracket_{0}$ which is a pointed $c p o$ (cf., Mitchell §5.2.2). The meaning of function types is given by

$$
\llbracket \sigma \rightarrow \tau \rrbracket_{0}::=\llbracket \sigma \rrbracket_{0} \rightarrow_{m} \llbracket \tau \rrbracket
$$

where $P_{1} \rightarrow_{m} P_{2}$ denotes the monotonic total functions from a partial order, P_{1}, to a partial order, P_{2} (cf., Mitchell, §5.2.3).
(a) Prove that the monotone model is a model of the simply typed lambda-calculus (what Mitchell calls a Henkin Model in §4.5.3).

Let σ be a simple type and f be a function in $\llbracket \sigma \rightarrow \sigma \rrbracket_{0}$ in a monotone model. Define the set $F(f) \subseteq \llbracket \sigma \rrbracket_{0}$ inductively as follows

- $\perp_{\sigma} \in F(f)$,
- if $s \in F(f)$, then $f(s) \in F(f)$, and
- if S is a totally ordered subset of $F(f)$, then the least upper bound, $\bigvee S$, is in $F(f)$.
(b) Prove that $F(f)$ is totally ordered. Hint: Structural induction on the definition of $F(f)$.
(c) Let $a_{f}::=\bigvee(F(f))$. Show that a_{f} is a least fixed point of f (cf., Mitchell §5.2.4).
(d) Define $\mu_{\sigma}: \llbracket \sigma \rightarrow \sigma \rrbracket_{0} \rightarrow \llbracket \sigma \rrbracket_{0}$ by the rule $\mu(f)::=a_{f}$. Prove that $\mu_{\sigma} \in \llbracket(\sigma \rightarrow \sigma) \rightarrow \sigma \rrbracket_{0}$.

[^0]Problem 3. (Semigroup Word Problem). We reduced the question whether a length $n 2$ Counter Machine terminates to a semigroup word problem involving the $n+3$ symbol alphabet $\{\$,!, 0, \ldots, n\}$. Explain how to do it using an alphabet of only two symbols.

Problem 4. Consider the following the distributivity axioms as directed rewrite rules:

$$
\begin{aligned}
& (e *(f+g)) \longrightarrow((e * f)+(e * g)), \\
& ((f+g) * e) \longrightarrow((f * e)+(g * e)) .
\end{aligned}
$$

An expression is flattened when neither of these rules is applicable to it.
The directed distributivity rules are actually terminating: starting with h, no matter where the rules are successively applied, a flattened expression will be reached. This fact is not obvious because if e is a "large" subexpression, then the righthand side of the rule with two occurrences of e may be larger, have more redexes, etc. than the lefthand side with only one e.

There is an ingenious, simple way to verify this termination claim. Define the measure, $\mathrm{m}(\mathrm{h})$, of an arithmetic expression h, by induction:

- $m(h)=2$ if h is 0,1 , or a variable.
- $m((e+f))=m(e)+m(f)+1$.
- $m\left(\left(e^{*} f\right)\right)=m(e) \times m(f)$.
(a) Let h^{\prime} be the result of an applying one of the directed distributivity rules to some subexpression of h. Prove that $m\left(h^{\prime}\right)<m(h)$. Explain why termination follows immediately from this observation. Hint: If h is $e *(f+g)$ and h^{\prime} is $\left(e^{*} f\right)+\left(e^{*} g\right)$, then you should verify that $m\left(h^{\prime}\right)<m(h)$. But the general claim does not follow solely from this fact, since the expression that gets rewritten may be a proper subexpression of h, not the whole of h.
(b) We extend the directed distributivity rules to handle arithmetic expressions with the unary negation operator, -, as well:

$$
\begin{aligned}
-(-e) & \longrightarrow e \\
-(f+g) & \longrightarrow(-f)+(-g) \\
-(f * g) & \longrightarrow(-f) * g
\end{aligned}
$$

Verify that the rewrite system consisting of the directed distributivity rules and the three rules above is terminating on all arithmetic expressions.

[^0]: Copyright © 2003, Prof. Albert Meyer.

