Term Models & Equational Completeness

We can generalize the theory of Arithmetic Expressions developed in Notes 2 to other algebraic structures.

1 First-order Terms

A *signature*, Σ , specifies the names of operations and the number of arguments (*arity*) of each operation. For example, the signature of arithmetic expressions is the set of names $\{0, 1, +, *, -\}$ with + and * each of arity two, and – of arity one. The constants 0 and 1 by convention are considered to be operations of arity zero.

As a running example, we will consider a signature, Σ_0 , with three names: F of arity two, G of arity one, and a constant, c.

The *First-order Terms over* Σ are defined in essentially the same way as arithmetic expressions. We'll omit the adjective "first-order" in the rest of these notes.

Definition 1.1. The set, T_{Σ} , of *Terms* over Σ are defined inductively as follows:

- Any variable, x, is in \mathcal{T}_{Σ} .¹
- Any constant, $c \in \Sigma$, is in \mathcal{T}_{Σ} .
- If $f \in \Sigma$ has arity n > 0, and $M_1, \ldots, M_n \in \mathcal{T}_{\Sigma}$, then

$$f(M_1,\ldots,M_n) \in \mathcal{T}_{\Sigma}.$$

For example,

c, x,
$$F(c,x)$$
, $G(G(F(y,G(c))))$

are examples of terms over Σ_0 .

Copyright © 2003, Prof. Albert Meyer.

¹We needn't specify exactly what variables are. All that matters is that variables are distinct from other kinds of terms and from operation names in the signature.

2 Substitution

A *substitution* over signature, Σ , is a mapping, σ , from the set of variables to T_{Σ} . The notation

$$[x_1,\ldots,x_n:=M_1,\ldots,M_n]$$

describes the substitution that maps variables x_1, \ldots, x_n respectively to M_1, \ldots, M_n , and maps all other variables to themselves.

Definition 2.1. Every substitution, σ , defines a mapping, $[\sigma]$, from \mathcal{T}_{Σ} to \mathcal{T}_{Σ} defined inductively as follows:

$$\begin{aligned} x[\sigma] &::= \sigma(x) & \text{for each variable, } x. \\ c[\sigma] &::= c & \text{for each constant, } c. \\ f(M_1, \ldots, M_n)[\sigma] &::= f(M_1[\sigma], \ldots, M_n[\sigma]) & \text{for each } f \in \Sigma \text{ of arity } n > 0. \end{aligned}$$

For example

$$F(G(x), y)[x, y] = F(c, y), G(x)]$$
is the term $F(G(F(c, y)), G(x)).$

3 Models

A model assigns meaning to terms by specifying the space of values that terms can have and the meaning of the operations named in a signature. Models are also called "first-order structures" or "algebras."

Definition 3.1. A *model*, \mathcal{M} , for signature, Σ , consists a nonempty set, $\mathcal{A}_{\mathcal{M}}$, called the *carrier* of \mathcal{M} , and a mapping $[\![\cdot]\!]_0$ that assigns an *n*-ary operation on the carrier to each symbol of arity *n* in Σ . That is, for each $f \in \Sigma$ of arity n > 0,

$$\llbracket f \rrbracket_0 : \mathcal{A}_{\mathcal{M}}^n \to \mathcal{A}_{\mathcal{M}},$$

and for each $c \in \Sigma$ of arity 0,

 $\llbracket c \rrbracket_0 \in \mathcal{A}_{\mathcal{M}}.$

For example, a model for Σ_0 might have carrier equal to the set of binary strings, with F meaning the concatenation operation, G meaning reversal, and c meaning the symbol 1.

Definition 3.2. An *M*-valuation, *V*, is a mapping from variables into the carrier, A_M .

Once we have a model and valuation, we can define a value from the carrier for any term, M. The meaning, $[\![M]\!]_{\mathcal{M}}$, of the term itself is defined to be the function from valuations to the term's value under a valuation. We'll usually omit the subscript when it's clear which model, \mathcal{M} , is being referenced.

Definition 3.3. The meaning, $[M]_{\mathcal{M}}$, of a term, M, in a model, \mathcal{M} , is defined by structural induction on the definition of M:

$$\begin{split} \llbracket x \rrbracket V &::= V(x) & \text{for each variable, } x. \\ \llbracket c \rrbracket V &::= \llbracket c \rrbracket_0 & \text{for each constant, } c \in \Sigma. \\ \llbracket f (M_1, \dots, M_n) \rrbracket V &::= \llbracket f \rrbracket_0(\llbracket M_1 \rrbracket V, \dots, \llbracket M_n \rrbracket V) & \text{for each } f \in \Sigma \text{ of arity } n > 0. \end{split}$$

Definition 3.4. For any function, *F*, and elements *a*, *b*, we define the *patch of F at a with b*, in symbols, $F[a \leftarrow b]$, to be the function, *G*, such that

$$G(x) = \begin{cases} b & \text{if } x = a. \\ F(x) & \text{otherwise.} \end{cases}$$

The fundamental relationship between substitution and meaning is given by

Lemma 3.5 (Substitution).

$$\llbracket M[x:=N] \rrbracket V = \llbracket M \rrbracket (V[x \leftarrow \llbracket N \rrbracket V]),$$

Lemma 3.5. follows by structural induction on *M* as in Notes 3.

Definition 3.6. An *equation* is an expression of the form (M = N) where M, N are terms. The equation is *valid* in \mathcal{M} , written

$$\mathcal{M} \models (M = N),$$

iff $\llbracket M \rrbracket = \llbracket N \rrbracket$. If \mathcal{E} is a set of equations, then \mathcal{E} is valid in \mathcal{M} , written

$$\mathcal{M} \models \mathcal{E},$$

iff $\mathcal{M} \models (M = N)$ for each equation $(M = N) \in \mathcal{E}$.

Finally, \mathcal{E} logically implies another set, \mathcal{E}' , of equations, written

$$\mathcal{E} \models \mathcal{E}',$$

when \mathcal{E}' is valid for any model in which \mathcal{E} is valid. That is, for every model, \mathcal{M}

$$\mathcal{M} \models \mathcal{E}$$
 implies $\mathcal{M} \models \mathcal{E}'$.

4 **Proving Equations**

There are some standard rules for proving equations over a given signature from any set, \mathcal{E} , of equations. The equations in \mathcal{E} are called the *axioms*. We write $\mathcal{E} \vdash E$ to indicate that equation E is provable from the axioms. The proof rules are given in Table 1.

Note that a more general (congruence) rule follows from the rules above. Namely, let σ_1 and σ_2 be substitutions and define

$$\mathcal{E} \vdash (\sigma_1 = \sigma_2)$$

to mean that $\mathcal{E} \vdash (\sigma_1(x) = \sigma_2(x))$ for all variables, *x*.

Table 1: Standard Equational Inference Rules.

$$\begin{array}{rcl} & \Longrightarrow & E & \text{for } E \in \mathcal{E}. & (\text{axiom}) \\ & \implies & (M = M). & (\text{reflexivity}) \\ & (M = N) \implies & (N = M). & (\text{symmetry}) \\ & (L = M), (M = N) \implies & (L = N). & (\text{transitivity}) \\ & (M_1 = N_1), \dots, (M_n = N_n) \implies & (f(M_1, \dots, M_n) = f(N_1, \dots, N_n)) & (\text{congruence}) \\ & & \text{for each } f \in \Sigma \text{ of arity } n > 0. \\ & (M = N) \implies & (M[x := L] = N[x := L]). & (\text{substitution}) \end{array}$$

Lemma 4.1. If $\mathcal{E} \vdash (\sigma_1 = \sigma_2)$, then

$$\mathcal{E} \vdash (M[\sigma_1] = M[\sigma_2]).$$
 (general congruence)

There is also a more general (substitution) rule:

Lemma 4.2. If $\mathcal{E} \vdash (M = N)$, then for any substitution, σ , $\mathcal{E} \vdash (M[\sigma] = N[\sigma])$. (general substitution)

Problem 1. Prove that the (general congruence) rule implies (congruence).

Problem 2. (a) Prove the (general congruence) rule of Lemma 4.1.

(b) Prove the (general substitution) rule of Lemma 4.2. *Hint:* Prove that any substitution into a term *M* can be obtained by a series of one-variable substitutions, namely,

$$M[\sigma] = M[x_1 := N_1][x_2 := N_2] \dots [x_n := N_n]$$

for some variables x_1, x_2, \ldots, x_n and terms N_1, N_2, \ldots, N_n . There is slightly more to the proof than might be expected.

Theorem 4.3 (Soundness). *If* $\mathcal{E} \vdash (M = N)$ *, then* $\mathcal{E} \models (M = N)$ *.*

Proof. The Theorem follows by induction on the structure of the formal proof that (M = N). The only nontrivial case is when (M = N) is a consequence of the (substitution) rule. We show that this case follows from the Substitution Lemma 3.5.

Namely, suppose M is (M'[x := L]) and N is (N'[x := L]) where $\mathcal{E} \vdash (M' = N')$. Then by induction,

$$\mathcal{E} \models (M' = N'). \tag{1}$$

So if \mathcal{M} is any model such that $\mathcal{M} \models \mathcal{E}$, we have by definition from (1) that

$$[\![M']\!] = [\![N']\!]. \tag{2}$$

Now,

$$\begin{split} \llbracket M \rrbracket V &= \llbracket M'[x := L] \rrbracket V & \text{(by def of } M') \\ &= \llbracket M' \rrbracket (V[x \leftarrow \llbracket L \rrbracket V]) & \text{(by Subst. Lemma 3.5)} \\ &= \llbracket N' \rrbracket (V[x \leftarrow \llbracket L \rrbracket V]) & \text{(by Subst. Lemma 3.5)} \\ &= \llbracket N'[x := L] \rrbracket V & \text{(by def of } N'), \\ &= \llbracket N \rrbracket V & \text{(by def of } N'), \end{split}$$

which shows that $\llbracket M \rrbracket = \llbracket N \rrbracket$, and hence $\mathcal{E} \models (M = N)$, as required.

5 Completeness

We are now ready to prove

Theorem 5.1 (Completeness). If $\mathcal{E} \models (M = N)$, then $\mathcal{E} \vdash (M = N)$.

We prove Theorem 5.1 by constructing a model, $M_{\mathcal{E}}$, in which provable equality and semantical equality coincide. Namely, we will show that

Lemma 5.2.

$$\mathcal{E} \vdash (M = N) \quad iff \quad \mathcal{M}_{\mathcal{E}} \models (M = N).$$

Completeness follows directly from Lemma 5.2. In particular, since $\mathcal{E} \vdash E$ by the (axiom) rule for any equation, $E \in \mathcal{E}$, Lemma 5.2 immediately implies that

 $\mathcal{M}_{\mathcal{E}} \models \mathcal{E}.$

Moreover, if $\mathcal{E} \not\models (M = N)$, then $\mathcal{M}_{\mathcal{E}} \not\models (M = N)$, and so $\mathcal{E} \not\models (M = N)$.

It remains to define the model, $M_{\mathcal{E}}$, and to prove Lemma 5.2. The model $M_{\mathcal{E}}$ will be a term model depending only on the axioms \mathcal{E} , not on the particular terms M or N.

The proof rules of (reflexivity), (symmetry) and (transitivity) imply that for any fixed \mathcal{E} , provable equality between terms M and N is an equivalence relation. We let $[M]_{\mathcal{E}}$ be the equivalence class of M under provable equality, that is,

$$[M]_{\mathcal{E}} ::= \{ N \mid \mathcal{E} \vdash (M = N) \}.$$

So we have by definition

$$\mathcal{E} \vdash (M = N) \quad \text{iff} \quad [M]_{\mathcal{E}} = [N]_{\mathcal{E}}.$$
 (3)

The carrier of $\mathcal{M}_{\mathcal{E}}$ will be defined to be the set of $[M]_{\mathcal{E}}$ for $M \in \mathcal{T}_{\Sigma}$. The meaning of constants, $c \in \Sigma$, will be

$$\llbracket c \rrbracket_0 ::= [c]_{\mathcal{E}}.$$

The meaning of operations $f \in \Sigma$ of arity n > 0 will be

$$[\![f]\!]_0([M_1]_{\mathcal{E}},\ldots,[M_n]_{\mathcal{E}}) ::= [f(M_1,\ldots,M_n)]_{\mathcal{E}}.$$

Notice that $[\![f]\!]_0$ applied to the equivalence classes $[M_1]_{\mathcal{E}}, \ldots, [M_n]_{\mathcal{E}}$ is defined in terms of the designated terms M_1, \ldots, M_n in these classes. To be sure that $[\![f]\!]_0$ is well-defined, we must check that the value of $[\![f]\!]_0$ would not change if we chose other designated terms in these classes. That is, we must verify that

if
$$[M_1]_{\mathcal{E}} = [N_1]_{\mathcal{E}}, \dots, [M_n]_{\mathcal{E}} = [N_n]_{\mathcal{E}}$$
, then $[f(M_1, \dots, M_n)]_{\mathcal{E}} = [f(N_1, \dots, N_n)]_{\mathcal{E}}$.

But this is an immediate consequence of the (congruence) rule.

For any substitution, σ , let V_{σ} be the \mathcal{M} -valuation given by

$$V_{\sigma}(x) ::= [\sigma(x)]_{\mathcal{E}}$$

for all variables, x. The following key property of the term model follows by structural induction on terms, M.

Lemma 5.3.

$$\llbracket M \rrbracket V_{\sigma} = [M[\sigma]]_{\mathcal{E}}.$$

Problem 3. Prove Lemma 5.3.

Now let ι be the identity substitution $\iota(x) ::= x$ for all variables, x. For any term, M, the substitution instance $M[\iota]$ is simply identical to M, so Lemma 5.3 immediately implies

$$\llbracket M \rrbracket V_{\iota} = [M]_{\mathcal{E}}.$$

In particular, if [M] = [N], then $[M]_{\mathcal{E}} = [N]_{\mathcal{E}}$, so from equation (3), we conclude Lemma 5.2 in the right-to-left direction:

Corollary 5.4. If $\llbracket M \rrbracket_{\mathcal{M}_{\mathcal{E}}} = \llbracket N \rrbracket_{\mathcal{M}_{\mathcal{E}}}$, then $\mathcal{E} \vdash (M = N)$.

Finally, for the left-to-right direction of Lemma 5.2, we prove

Corollary 5.5. If $\mathcal{E} \vdash (M = N)$, then $[M]_{\mathcal{M}_{\mathcal{E}}} = [N]_{\mathcal{M}_{\mathcal{E}}}$.

Proof. If $\mathcal{E} \vdash (M = N)$, then by (general substitution) $\mathcal{E} \vdash (M[\sigma] = N[\sigma])$ for any substitution, σ . So

$$[M[\sigma]]_{\mathcal{E}} = [N[\sigma]]_{\mathcal{E}} \tag{4}$$

by (3). Now let *V* be any *M*-valuation, and let σ be any substitution such that $\sigma(x) \in V(x)$ for all variables, *x*. This ensures that

$$V = V_{\sigma},\tag{5}$$

and we have

$$\llbracket M \rrbracket V = [M[\sigma]]_{\mathcal{E}}$$
 (by (5) & Lemma 5.3)
= [N[\sigma]]_{\mathcal{E}} (by (4))
= $\llbracket N \rrbracket V$ (by (5) & Lemma 5.3).

Since *V* was an arbitrary valuation, we conclude that $\llbracket M \rrbracket = \llbracket N \rrbracket$, as required.