
Massachusetts Institute of Technology
6.844, Spring ’03: Computability Theory of and with Scheme February 11
Prof. Albert Meyer revised February 11, 2003, 904 minutes

Solutions to InClass Problems — Week 2, Mon

Problem 1. Two Boolean formulas F1(x1, . . . , xn) and F2(x1, . . . , xn) are equivalent iff they yield
the same truth value for all truth assignments to the variables x1, . . . , xn.

(a) Describe an infinite set of equivalent Boolean formulas.

Solution. Define the formulas Fi as F0 ::= x0 and Fi+1 ::= (Fi ∧ x0) for all i ≥ 0. These formulas
are all equivalent, since for any truth assignment they all have the same truth value as x0. �

(b) How many equivalence classes are there of formulas with (at most) variables x1, . . . , xn?

Solution. Formulas are equivalent iff their truth tables agree, so there are as many equivalence
classes as there are truth tables. Given n variables, there are 22n

possible truth tables. To see this,
think of a truth table as having a row for each possible truth assignment. A truth assignment

nconsists of a True or False value for each variable, so there are |{T,F}| = 2n possible truth as
signments. Then, a truth table consists of an assignment of True or False to each truth assignment,
so with 2n truth assignments there are 22n

possible truth tables, giving 22n
equivalence classes of

formulas. �

Problem 2. A Scheme expression satisfies the “Variable Convention” if no variable identifier is
bound more than once, and no identifier has both bound and unbound occurrences. For example,
the expression

(let ((x 2) (y 5))

(+ ((lambda (x) (+ x 1)) 3) ((lambda (z) (+ x y z 11)) 99) z)).

violates the Variable Convention because x is bound twice—once by let and once by lambda,
and also because z has both a bound and an unbound occurrence.

Copyright © 2003, Prof. Albert Meyer.

2 Solutions to InClass Problems — Week 2, Mon

Any expression can be slightly modified to satisfy the Convention solely by adding integer suffixes
to some of the bound identifiers—in a way that preserves all the binding structure and all the
computational behavior of the original expression.

For example, by adding suffix 0 to the x’s and z’s bound by the lambda’s, we obtain an equivalent
expression which satisfies the Variable Convention:

(let ((x 2) (y 5))

(+ ((lambda (x0) (+ x0 1)) 3) ((lambda (z0) (+ x y z0 11)) 99) z)).

Show how to add such suffixes to the identifiers in

(a b c d e

(let ((a e) (b c))

(a b c d e

(letrec ((a c)(c b))

(a b c d e)))))

to obtain an equivalent expression satisfying the Variable Convention. (See the Scheme reference
manual to find out the scoping rules for letrec.)

SOLUTION:

(a b c d e

(let ((a0 e) (b0 c))

(a0 b0 c d e

(letrec ((a1 c0)(c0 b0))

(a1 b0 c0 d e)))))

Problem 3. (a) Define a Scheme procedure selfcompose which, given a oneparameter pro
cedure argument, f , returns a procedure that computes (f f), that is, the composition of f with◦
itself. For example, the Scheme expressions

(define (selfcompose f) <your definition>)

(define (s n)(* n n))

((selfcompose s) 3)

would return the integer 81.

SOLUTION:

(define (selfcompose f) (lambda (x) (f (f x))))

3 Solutions to InClass Problems — Week 2, Mon

(define (s n) (* n n))

((selfcompose s) 3)

;Value: 81

(b) What should (((selfcompose selfcompose) s) 3) return? Explain.

SOLUTION:

Reasoning using an informal Substitution Model:

(((selfcompose selfcompose) s) 3)

= ((((lambda (x) (selfcompose (selfcompose x)))) s) 3)

= ((selfcompose (selfcompose s)) 3)

= ((selfcompose fourthpower) 3)

= (fourthpower (fourthpower 3))

= (16thpower 3)

= 43046721

Problem 4. Define a Scheme procedure abcstrings which applied to any positive integer ar
gument, n, will print out all the strings of length n over the alphabet {a, b, c} in alphabetical order.

SOLUTION: There are many nice ways to do this. Here’s one:

(define (printabc n)

(let ((putsuffix

(lambda (pre)

(lambda (post)

(stringappend pre post)))))

(letrec ((abclist (lambda (n)

(if (zero? n)

(list "")

(let ((n1list (abclist (n 1))))

(append

(map (putsuffix "a") n1list)

(map (putsuffix "b") n1list)

(map (putsuffix "c") n1list)))))))

(foreach (lambda (str) (begin (display str) (display " ")))

(abclist n)))))

(printabc 3)

aaa aab aac aba abb abc aca acb acc baa bab bac bba bbb

bbc bca bcb bcc caa cab cac cba cbb cbc cca ccb ccc

;Value: #[unspecifiedreturnvalue]

	Problem 1
	(a)
	(b)

	Problem 2
	Problem 3
	(a)
	(b)

	Problem 4

