Solutions to In-Class Problems — Week 2, Mon

Problem 1. Two Boolean formulas $F_{1}\left(x_{1}, \ldots, x_{n}\right)$ and $F_{2}\left(x_{1}, \ldots, x_{n}\right)$ are equivalent iff they yield the same truth value for all truth assignments to the variables x_{1}, \ldots, x_{n}.
(a) Describe an infinite set of equivalent Boolean formulas.

Solution. Define the formulas F_{i} as $F_{0}::=x_{0}$ and $F_{i+1}::=\left(F_{i} \wedge x_{0}\right)$ for all $i \geq 0$. These formulas are all equivalent, since for any truth assignment they all have the same truth value as x_{0}.
(b) How many equivalence classes are there of formulas with (at most) variables x_{1}, \ldots, x_{n} ?

Solution. Formulas are equivalent iff their truth tables agree, so there are as many equivalence classes as there are truth tables. Given n variables, there are $2^{2^{n}}$ possible truth tables. To see this, think of a truth table as having a row for each possible truth assignment. A truth assignment consists of a True or False value for each variable, so there are $|\{\mathbf{T}, \mathbf{F}\}|^{n}=2^{n}$ possible truth assignments. Then, a truth table consists of an assignment of True or False to each truth assignment, so with 2^{n} truth assignments there are $2^{2^{n}}$ possible truth tables, giving $2^{2^{n}}$ equivalence classes of formulas.

Problem 2. A Scheme expression satisfies the "Variable Convention" if no variable identifier is bound more than once, and no identifier has both bound and unbound occurrences. For example, the expression

```
(let ((x 2) (y 5))
    (+ ((lambda (x) (+ x 1)) 3) ((lambda (z) (+ x y z 11)) 99) z)).
```

violates the Variable Convention because x is bound twice-once by let and once by lambda, and also because z has both a bound and an unbound occurrence.

[^0]Any expression can be slightly modified to satisfy the Convention solely by adding integer suffixes to some of the bound identifiers-in a way that preserves all the binding structure and all the computational behavior of the original expression.
For example, by adding suffix 0 to the x's and z's bound by the lambda's, we obtain an equivalent expression which satisfies the Variable Convention:

```
(let ((x 2) (y 5))
    (+ ((lambda (x0) (+ x0 1)) 3) ((lambda (z0) (+ x y z0 11)) 99) z)).
```

Show how to add such suffixes to the identifiers in

```
(a b c d e
    (let ((a e) (b c))
        (a b c d e
            (letrec ((a c) (c b))
                (a b c d e)))))
```

to obtain an equivalent expression satisfying the Variable Convention. (See the Scheme reference manual to find out the scoping rules for letrec.)

SOLUTION:

```
(a b c d e
    (let ((a0 e) (b0 c))
        (a0 b0 c d e
            (letrec ((a1 c0) (c0 b0))
                (a1 b0 c0 d e)))))
```

Problem 3. (a) Define a Scheme procedure self-compose which, given a one-parameter procedure argument, f, returns a procedure that computes $(f \circ f)$, that is, the composition of f with itself. For example, the Scheme expressions

```
(define (self-compose f) <your definition>)
(define (s n) (* n n))
((self-compose s) 3)
```

would return the integer 81 .

SOLUTION:
(define (self-compose f) (lambda (x) (f (f x))))

```
(define (s n) (* n n))
((self-compose s) 3)
;Value: 81
```

(b) What should (((self-compose self-compose) s) 3) return? Explain. SOLUTION:
Reasoning using an informal Substitution Model:

```
    ( ((self-compose self-compose) s) 3)
= ((((lambda (x) (self-compose (self-compose x)))) s) 3)
= ( (self-compose (self-compose s)) 3)
= ( (self-compose fourth-power) 3)
= (fourth-power (fourth-power 3))
= (16th-power 3)
= 43046721
```

Problem 4. Define a Scheme procedure abc-strings which applied to any positive integer argument, n, will print out all the strings of length n over the alphabet $\{a, b, c\}$ in alphabetical order. SOLUTION: There are many nice ways to do this. Here's one:

```
(define (print-abc n)
    (let ((putsuffix
                (lambda (pre)
                        (lambda (post)
                            (string-append pre post)))))
        (letrec ((abc-list (lambda (n)
                                    (if (zero? n)
                                    (list "")
                            (let ((n-1-list (abc-list (- n 1))))
            (append
(map (putsuffix "a") n-1-list)
(map (putsuffix "b") n-1-list)
(map (putsuffix "c") n-1-list)))))))
    (for-each (lambda (str) (begin (display str) (display " ")))
                            (abc-list n)))))
(print-abc 3)
aaa aab aac aba abb abc aca acb acc baa bab bac bba bbb
bbc bca bcb bcc caa cab cac cba cbb cbc cca ccb ccc
;Value: #[unspecified-return-value]
```


[^0]: Copyright © 2003, Prof. Albert Meyer.

