First-order Theory of Concatenation

Problem 1. Let *C* be a 2-CM with *n* instructions and let Σ_n be the alphabet used in the Notes on The Semigroup Word Problem for configuration words of *C*. Namely,

$$\Sigma_n ::= \{ \texttt{a,b,0,1,\ldots,} n \}$$
 .

(a) Explain how to write a logical formula, $F_C(x)$, for the model (Σ_n^*, \cdot) which means that x is a configuration word for C.

(b) Explain how to write a logical formula, $S_C(x, y)$, which means that x is a configuration word for C and y is the configuration word after one step of C.

(c) Explain how to write a logical formula, $H_C(z)$, which means that z is a string representing part of a computation *h* istory of *C*. Namely,

$$z = z_0 z_1 \dots z_k$$

where the z_i 's are configuration words for k successive steps of C starting at the configuration represented by z_0 .

(d) Explain how to write a logical formula, $L_C(x)$, which means that *C* halts when started in the configuration represented by *x*.

(e) Conclude that there is an *n* such that $\overline{\text{Halts}} \leq_{\text{m}} \text{Th}((\Sigma_n^*, \cdot))$, the set of true sentences about (Σ_n^*, \cdot) . In particular, this set of sentences is not even half-decidable.

Problem 2. Show that $\operatorname{Th}((\Sigma_n^*, \cdot)) \leq_m \operatorname{Th}((\{1, 2\}^*, \cdot)).$

Problem 3. The mapping taking any nonnegative integer, $n \in \mathbb{N}$ to its binary representation is not a bijection onto the set of binary words because words with leading zeros are unused. To get a bijection, we use binary notation but with digits 1 and 2. For example, the integer 4 would be represented as the word 12, 5 as 21, 6 as 22, 7 as 111, 8 as 112, Let the empty string, λ , represent 0. In this way we do get a bijection, rep : $\mathbb{N} \to \{1, 2\}^*$, mapping a nonnegative integer to its unique binary representation using digits 1 and 2.

Copyright © 2003, Prof. Albert Meyer.

(a) Explain how to construct a formula C(x, y, z) with free variables x, y, z such that for all $i, j, k \in \mathbb{N}$,

$$C(i, j, k) \in \text{Th}((\mathbb{N}, +, \times))$$
 iff $\operatorname{rep}(i) \cdot \operatorname{rep}(j) = \operatorname{rep}(k)$.

 $\textit{Hint: } C(x,y,z) \quad \text{iff} \quad x2^{\text{length}(\text{rep}(y))} + y = z.$

Solution.

$$2^{\text{length}(\text{rep}(j))} = \max \{n \mid \text{pow2}(n) \text{ and } n \le j+1\}.$$

pow2(n) iff $\forall y. y \mid n \longrightarrow (y = 1 \text{ or } 2 \mid y)$
 $n \le m$ iff $\exists y. n + y = m.$

(b) Conclude that $Th((\{1,2\}^*,\cdot)) \leq_m Th((\mathbb{N},+,\times)).$