First-order Theory of Concatenation

Problem 1. Let C be a 2-CM with n instructions and let Σ_{n} be the alphabet used in the Notes on The Semigroup Word Problem for configuration words of C. Namely,

$$
\Sigma_{n}::=\{\mathrm{a}, \mathrm{~b}, 0,1, \ldots, n\} .
$$

(a) Explain how to write a logical formula, $F_{C}(x)$, for the model $\left(\Sigma_{n}^{*}, \cdot\right)$ which means that x is a configuration word for C.
(b) Explain how to write a logical formula, $S_{C}(x, y)$, which means that x is a configuration word for C and y is the configuration word after one step of C.
(c) Explain how to write a logical formula, $H_{C}(z)$, which means that z is a string representing part of a computation history of C. Namely,

$$
z=z_{0} z_{1} \ldots z_{k}
$$

where the z_{i} 's are configuration words for k successive steps of C starting at the configuration represented by z_{0}.
(d) Explain how to write a logical formula, $L_{C}(x)$, which means that C halts when started in the configuration represented by x.
(e) Conclude that there is an n such that $\overline{\text { Halts }} \leq_{\mathrm{m}} \operatorname{Th}\left(\left(\Sigma_{n}^{*}, \cdot\right)\right)$, the set of true sentences about $\left(\Sigma_{n}^{*}, \cdot\right)$. In particular, this set of sentences is not even half-decidable.

Problem 2. Show that $\operatorname{Th}\left(\left(\Sigma_{n}^{*}, \cdot\right)\right) \leq_{\mathrm{m}} \operatorname{Th}\left(\left(\{1,2\}^{*}, \cdot\right)\right)$.

Problem 3. The mapping taking any nonnegative integer, $n \in \mathbb{N}$ to its binary representation is not a bijection onto the set of binary words because words with leading zeros are unused. To get a bijection, we use binary notation but with digits 1 and 2. For example, the integer 4 would be represented as the word 12,5 as 21,6 as 22,7 as 111,8 as $112, \ldots$. Let the empty string, λ, represent 0 . In this way we do get a bijection, rep : $\mathbb{N} \rightarrow\{1,2\}^{*}$, mapping a nonnegative integer to its unique binary representation using digits 1 and 2 .
(a) Explain how to construct a formula $C(x, y, z)$ with free variables x, y, z such that for all $i, j, k \in$ \mathbb{N},

$$
C(i, j, k) \in \operatorname{Th}((\mathbb{N},+, \times)) \quad \text { iff } \quad \operatorname{rep}(i) \cdot \operatorname{rep}(j)=\operatorname{rep}(k)
$$

Hint: $C(x, y, z) \quad$ iff $\quad x 2^{\operatorname{length}(r e p(y))}+y=z$.

Solution.

$$
\begin{aligned}
& 2^{\text {length }(\text { rep }(j))}=\max \{n \mid \operatorname{pow} 2(n) \text { and } n \leq j+1\} . \\
& \operatorname{pow} 2(n) \\
& \text { iff } \quad \forall y \cdot y \mid n \longrightarrow(y=1 \text { or } 2 \mid y) \\
& n \leq m \text { iff } \quad \exists y \cdot n+y=m .
\end{aligned}
$$

(b) Conclude that $\operatorname{Th}\left(\left(\{1,2\}^{*}, \cdot\right)\right) \leq_{\mathrm{m}} \operatorname{Th}((\mathbb{N},+, \times))$.

