
1 

6.896 Quantum Complexity Theory October 9th, 2008 

Lecture 11 
Lecturer: Scott Aaronson 

In this class, we’ll finish the proof for D(f) = O(Q(f)6) for all total Boolean functions f . 

Block Sensitivity 

We already saw the first step in the proof: D(f) ≤ C(f)2 for all f , where C(f) is the certificate 
complexity. We will now do the second step, which involves block sensitivity. 

Definition 1 Given input x ∈ {0, 1}n and a subset S ⊆ {1, ..., n} of bits, let X(S) denote X with 
the bits in S flipped. We call S a sensitive block on input X if f(X) =� f(X(S)). 

bsx(f), the block sensitivity of f on input X, is the maximum number of disjoint sensitive blocks 
that can be found on input X. 

We define the block sensitivity of f to be bs(f) = maxx bsx(f). 

Claim 1 bs(f) ≤ C(f) for all f . 

This is because to prove the value of f(X), a certificate must intersect each sensitive block. 
Otherwise, flipping the bits in a sensitive block would change f(X) without affecting the certificate’s 
value. 

Lemma 2 (Nisan) C(f) ≤ bs(f)2 for all f . 

Proof: Given an input X, consider a maximal set of k = bsx(f) disjoint sensitive blocks S1, ..., Sk 

for X. Note that k ≤ bs(f). Assume without loss of generality that each Si is minimal (i.e., no 
sub-block of Si is also sensitive). If Si was not minimal, we could always use a sensitive sub-block 
of Si instead, without affecting the maximality of the set S1, ..., Sk. � � 
Claim 3 The union of bits Si ... Sk is a certificate, proving the value of f(X). 

To show this, suppose we wanted to flip some bits in X to change the value of f(X). The 
bits we flipped would have to comprise a sensitive block Sk+1. But if Sk+1 didn’t intersect any of 
S1, ..., Sk, it would contradict the assumption that S1, ..., Sk was a maximal set of disjoint sensitive 
blocks. � � � � 

So the bits must intersect Si ... Sk. If we monitor Si ... Sk as a certificate, then we are 
forcing the value of f(X), since it cannot be changed without the certificate also changing. � � 

Now we put an upper-bound on the size of Si ... Sk. As stated before, k ≤ bs(f). Now we 
will show that each Si has at most bs(f) bits, making 

 

 

|Si ... Sk| ≤ bs(f)2 (1) 

Consider X(Si). We know that f(X(Si)) =� f(X). By the assumption that Si is minimal, 
flipping any bit in Si changes the value of f(X(Si)) back to f(X); otherwise, there’d be a smaller 
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sensitive block for X. So each bit in Si is itself a sensitive block for X(Si). Hence, |Si ≤ bs(f). So 
Si ... . � �|

� 

Since 

� 

S
S

i

k| ≤ 
...

bs(
S
f

k 

)2 

is a certificate, we can conclude that C(f) ≤ bs(f)2 for all f . 

| 

2 Block Sensitivity and Approximate Degree 

The third and final step is to relate bs(f) to the approximate degree �deg(f). We’ve already proven 
that � ) = Ω(

√
n). We will now claim a generalization of that result. deg(ORn

Lemma 4 � bs(f)) for all Boolean functions f .deg(f) = Ω( 

Proof: Consider an input X of f with k = bs(f) disjoint sensitive blocks S1, ..., Sk. Assume 
without loss of generality that f(X) = 0. Now define a new Boolean function with k inputs: 
f �(y1, ..., yk) equals f(X with Si flipped iff yi = 1). Suppose there were a polynomial p that 
approximated f . Let p�(y1, ..., yk) equal p(X with Si flipped iff yi = 1). Symmetrize p� to get a 
univariate polynomial 

q(k) = EX|Y |=k[p
�(Y )]. (2) 

0 ≤ q(0) ≤ 1 and 2 ≤ q(1) ≤ 1. We don’t know what q(2), ..., q(k) are, but we know that 3 3 
as averages of 0’s and 1’s, they must be bounded between 0 and 1. By Markov’s inequality, 
deg(q) = Ω(

√
k), which means that deg�(f) = Ω( 

� 
bs(f)). � 

3 Putting It All Together 

Thus, we can conclude that 

D(f) ≤ C(f)2 ≤ bs(f)4 deg(f)8) = O(Q(f)8)= O(� (3) 

Note that we had claimed that D(f) = O(Q(f)6). Earlier, we proved that D(f) ≤ C(f)2, but it 
turns out that this bound can be tightened to D(f) ≤ C(f)bs(f). 
Proof: To show that this is true, recall the algorithm that repeatedly picks a 1-certificate con­
sistent with everything queried so far, and then queries all the bits in it. We proved that this 
algorithm cannot run for more than C(f) steps, but actually, it cannot run for more than bs(f)+1 
steps. 

For the purposes of contradition, suppose it did; suppose we’ve picked and queried more than 
bs(f) + 1 certificates. Because the algorithm hasn’t stopped yet, there must still be both a 0-input 
and a 1-input compatible with our queries. Let X be such a 0-input. For this X, we can find more 
than bs(f) disjoint sensitive blocks, a contradiction. This is because in each iteration, we queried 
a potential 1-certificate, meaning that had a subset of those bits been flipped, f would have been 
forced to be 1. That subset is a sensitive block. Since there are bs(f) + 1 certificates and they’re 
disjoint, we have more than bs(f) disjoint sensitive blocks. � 

Thus, 
D(f) ≤ C(f)bs(f) ≤ bs(f)3 deg(f)6) = O(Q(f)6) (4)= O(�

This is still the best relation known. Another open problem is whether or not there is a similar 
polynomial relation between D(f) and Q(f) for almost-total Boolean functions, where the function 
is defined for only (1 − �) fraction of the inputs. 
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4 Interesting Examples of Boolean Functions 

This is a discussion of particular Boolean functions that people are interested in and have done 
research on. 

Recall the previously discussed OR/AND tree problem, a.k.a. “Is there an all-ones row?” The 
classical query complexity for this problem is n.


An upper-bound for the quantum query complexity is O(n

3 
4 ), which comes from applying


Grover’s algorithm separately to each AND subtree. 
Applying Grover’s algorithm recursively, we can get O(

√
n log n). (The log n comes from the 

need to use amplification to reduce the error.) A more careful recursive application of Grover’s 
algorithm can even reduce that to O(

√
n). 

The OR/AND tree problem can also be thought of as a game, where Player 1 picks a subtree 
and Player 2 picks a leaf within that subtree. Player 1 wins if a 1 is reached, Player 2 wins if a 0 
is reached, and the question is who wins? 

To find a lower-bound on the quantum query complexity, we can apply the BBBV lower-bound 
to a single subtree and get a bound of Ω(n1/4). Raising that lower-bound to Ω(

√
n) had been an 

open problem for several years. The difficulty comes from the OP/AND tree not being a symmetric 

1
Boolean function, so symmetrization doesn’t yield anything. Proving that the approximate degree 
is Ω(

√
n) remains an open problem, but we can prove it is Ω(n 3 ).


4.1 Ambainis’s Quantum Adversary Method 

Andris Ambainis introduced a completely new quantum lower bound method that has since had 
an enormous influence on the field. We’re not going to go into the details of the proof, but we’ll 
show what the theorem is and how it’s applied. 

Theorem 5 (Ambainis) Let f : {0, 1}n → {0, 1} be a Boolean function, X be some set of 0­
inputs, and Y be some set of 1-inputs. Let R ⊂ X × Y be a relation such that 

1. For every x ∈ X, there are at least m y ∈ Y such that (x, y) ∈ R. 
2. For every y ∈ Y , there are at least m� x ∈ X such that (x, y) ∈ R. 
3. For every x ∈ X and i ∈ [n], there are at most s y ∈ Y such that (x, y) ∈ R and xi =� yi. 
4. For every y ∈ Y and i ∈ [n], there are at most s� x ∈ X such that (x, y) ∈ R and xi =� yi. 

Then any quantum algorithm to compute f needs Ω( mm� ) queries.ss� 

The basic proof idea is to consider a superposition of inputs. If the algorithm succeeds at 
distinguishing 0-inputs from 1-inputs, then by the end, this pure state must evolve into a mixed 
state; certain off-diagonal entries in the density matrix must be 0. The theorem bounds how long 
this takes to happen. 

The conditions for the theorem basically state that every 0-input has many 1-inputs as neigh­
bors, but not too many 1-inputs as neighbors that differ from it at any specific bit. The same goes 
for 1-inputs with 0-inputs as neighbors. 

4.2 Application of the Quantum Adversary Method 

Let’s apply the theorem to the OR problem. The set of 0-inputs X contains only the all-0 input. 
The set of 1-inputs Y will consist of all inputs with Hamming weight 1. In general, we want the 
1-inputs to be close to the 0-inputs to maximize the lower bound generated by the theorem. 
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Every 0-input has m = n neighbors. Every 1-input has m� = 1 neighbor. Every 0-input has 
s = 1 neighbor that differs from it at a specific bit. Every 1-input has s� = 1 neighbor that differs 
from it at a specific bit. Plugging these values in, we get Ω(

√
n), confirming Grover’s algorithm’s 

tightness. 
Now let’s apply the theorem to the OR/AND tree problem, modeled as a 

√
n ×

√
n matrix 

where we need to determine if there’s a row of all 1’s. A useful trick is often to use inputs that are 
right at the threshold between being 0-inputs or 1-inputs. 

Let’s say that each row in a matrix has either zero or one 0 in it; that is to say, each row is 
either all 1’s or almost all 1’s. A 1-input would have a single row of all 1’s and all other rows have 
1’s for all but one bit. A 0-input would have each row have one zero. If a 0-input matrix x and a 
1-input matrix y differ at just a single bit, we’ll make them neighbors, i.e. (x, y) ∈ R. 

Every 0-input has m = 
√

n neighbors, by changing one of the 
√

n 0 bits into a 1 bit. Every 
1-input has m� = 

√
n neighbors, by changing one of the 

√
n 1 bits in the all 1’s row into a 0 bit. 

Every 0-input has at most s = 1 neighbor that differs from it at a specific bit. Every 1-input has 
at most s� = 1 neighbor that differs from it at a specific bit. Plugging those values in, we get that 
an algorithm that solves the OR/AND problem must have quantum query complexity Ω(

√
n). 

Next time, we’ll talk about the collision problem. 
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