
1

6.896 Quantum Complexity Theory October 9th, 2008

Lecture 11
Lecturer: Scott Aaronson

In this class, we’ll finish the proof for D(f) = O(Q(f)6) for all total Boolean functions f .

Block Sensitivity

We already saw the first step in the proof: D(f) ≤ C(f)2 for all f , where C(f) is the certificate
complexity. We will now do the second step, which involves block sensitivity.

Definition 1 Given input x ∈ {0, 1}n and a subset S ⊆ {1, ..., n} of bits, let X(S) denote X with
the bits in S flipped. We call S a sensitive block on input X if f(X) =� f(X(S)).

bsx(f), the block sensitivity of f on input X, is the maximum number of disjoint sensitive blocks
that can be found on input X.

We define the block sensitivity of f to be bs(f) = maxx bsx(f).

Claim 1 bs(f) ≤ C(f) for all f .

This is because to prove the value of f(X), a certificate must intersect each sensitive block.
Otherwise, flipping the bits in a sensitive block would change f(X) without affecting the certificate’s
value.

Lemma 2 (Nisan) C(f) ≤ bs(f)2 for all f .

Proof: Given an input X, consider a maximal set of k = bsx(f) disjoint sensitive blocks S1, ..., Sk

for X. Note that k ≤ bs(f). Assume without loss of generality that each Si is minimal (i.e., no
sub-block of Si is also sensitive). If Si was not minimal, we could always use a sensitive sub-block
of Si instead, without affecting the maximality of the set S1, ..., Sk. � �
Claim 3 The union of bits Si ... Sk is a certificate, proving the value of f(X).

To show this, suppose we wanted to flip some bits in X to change the value of f(X). The
bits we flipped would have to comprise a sensitive block Sk+1. But if Sk+1 didn’t intersect any of
S1, ..., Sk, it would contradict the assumption that S1, ..., Sk was a maximal set of disjoint sensitive
blocks. � � � �

So the bits must intersect Si ... Sk. If we monitor Si ... Sk as a certificate, then we are
forcing the value of f(X), since it cannot be changed without the certificate also changing. � �

Now we put an upper-bound on the size of Si ... Sk. As stated before, k ≤ bs(f). Now we
will show that each Si has at most bs(f) bits, making

|Si ... Sk| ≤ bs(f)2 (1)

Consider X(Si). We know that f(X(Si)) =� f(X). By the assumption that Si is minimal,
flipping any bit in Si changes the value of f(X(Si)) back to f(X); otherwise, there’d be a smaller

11-1

�

�

sensitive block for X. So each bit in Si is itself a sensitive block for X(Si). Hence, |Si ≤ bs(f). So
Si � �|

�

Since

�

S
S

i

k| ≤
...

bs(
S
f

k

)2

is a certificate, we can conclude that C(f) ≤ bs(f)2 for all f .

|

2 Block Sensitivity and Approximate Degree

The third and final step is to relate bs(f) to the approximate degree �deg(f). We’ve already proven
that �) = Ω(

√
n). We will now claim a generalization of that result. deg(ORn

Lemma 4 � bs(f)) for all Boolean functions f .deg(f) = Ω(

Proof: Consider an input X of f with k = bs(f) disjoint sensitive blocks S1, ..., Sk. Assume
without loss of generality that f(X) = 0. Now define a new Boolean function with k inputs:
f �(y1, ..., yk) equals f(X with Si flipped iff yi = 1). Suppose there were a polynomial p that
approximated f . Let p�(y1, ..., yk) equal p(X with Si flipped iff yi = 1). Symmetrize p� to get a
univariate polynomial

q(k) = EX|Y |=k[p
�(Y)]. (2)

0 ≤ q(0) ≤ 1 and 2 ≤ q(1) ≤ 1. We don’t know what q(2), ..., q(k) are, but we know that 3 3
as averages of 0’s and 1’s, they must be bounded between 0 and 1. By Markov’s inequality,
deg(q) = Ω(

√
k), which means that deg�(f) = Ω(

�
bs(f)). �

3 Putting It All Together

Thus, we can conclude that

D(f) ≤ C(f)2 ≤ bs(f)4 deg(f)8) = O(Q(f)8)= O(� (3)

Note that we had claimed that D(f) = O(Q(f)6). Earlier, we proved that D(f) ≤ C(f)2, but it
turns out that this bound can be tightened to D(f) ≤ C(f)bs(f).
Proof: To show that this is true, recall the algorithm that repeatedly picks a 1-certificate con­
sistent with everything queried so far, and then queries all the bits in it. We proved that this
algorithm cannot run for more than C(f) steps, but actually, it cannot run for more than bs(f)+1
steps.

For the purposes of contradition, suppose it did; suppose we’ve picked and queried more than
bs(f) + 1 certificates. Because the algorithm hasn’t stopped yet, there must still be both a 0-input
and a 1-input compatible with our queries. Let X be such a 0-input. For this X, we can find more
than bs(f) disjoint sensitive blocks, a contradiction. This is because in each iteration, we queried
a potential 1-certificate, meaning that had a subset of those bits been flipped, f would have been
forced to be 1. That subset is a sensitive block. Since there are bs(f) + 1 certificates and they’re
disjoint, we have more than bs(f) disjoint sensitive blocks. �

Thus,
D(f) ≤ C(f)bs(f) ≤ bs(f)3 deg(f)6) = O(Q(f)6) (4)= O(�

This is still the best relation known. Another open problem is whether or not there is a similar
polynomial relation between D(f) and Q(f) for almost-total Boolean functions, where the function
is defined for only (1 − �) fraction of the inputs.

11-2

�

4 Interesting Examples of Boolean Functions

This is a discussion of particular Boolean functions that people are interested in and have done
research on.

Recall the previously discussed OR/AND tree problem, a.k.a. “Is there an all-ones row?” The
classical query complexity for this problem is n.

An upper-bound for the quantum query complexity is O(n

3
4), which comes from applying

Grover’s algorithm separately to each AND subtree.
Applying Grover’s algorithm recursively, we can get O(

√
n log n). (The log n comes from the

need to use amplification to reduce the error.) A more careful recursive application of Grover’s
algorithm can even reduce that to O(

√
n).

The OR/AND tree problem can also be thought of as a game, where Player 1 picks a subtree
and Player 2 picks a leaf within that subtree. Player 1 wins if a 1 is reached, Player 2 wins if a 0
is reached, and the question is who wins?

To find a lower-bound on the quantum query complexity, we can apply the BBBV lower-bound
to a single subtree and get a bound of Ω(n1/4). Raising that lower-bound to Ω(

√
n) had been an

open problem for several years. The difficulty comes from the OP/AND tree not being a symmetric

1
Boolean function, so symmetrization doesn’t yield anything. Proving that the approximate degree
is Ω(

√
n) remains an open problem, but we can prove it is Ω(n 3).

4.1 Ambainis’s Quantum Adversary Method

Andris Ambainis introduced a completely new quantum lower bound method that has since had
an enormous influence on the field. We’re not going to go into the details of the proof, but we’ll
show what the theorem is and how it’s applied.

Theorem 5 (Ambainis) Let f : {0, 1}n → {0, 1} be a Boolean function, X be some set of 0­
inputs, and Y be some set of 1-inputs. Let R ⊂ X × Y be a relation such that

1. For every x ∈ X, there are at least m y ∈ Y such that (x, y) ∈ R.
2. For every y ∈ Y , there are at least m� x ∈ X such that (x, y) ∈ R.
3. For every x ∈ X and i ∈ [n], there are at most s y ∈ Y such that (x, y) ∈ R and xi =� yi.
4. For every y ∈ Y and i ∈ [n], there are at most s� x ∈ X such that (x, y) ∈ R and xi =� yi.

Then any quantum algorithm to compute f needs Ω(mm�) queries.ss�

The basic proof idea is to consider a superposition of inputs. If the algorithm succeeds at
distinguishing 0-inputs from 1-inputs, then by the end, this pure state must evolve into a mixed
state; certain off-diagonal entries in the density matrix must be 0. The theorem bounds how long
this takes to happen.

The conditions for the theorem basically state that every 0-input has many 1-inputs as neigh­
bors, but not too many 1-inputs as neighbors that differ from it at any specific bit. The same goes
for 1-inputs with 0-inputs as neighbors.

4.2 Application of the Quantum Adversary Method

Let’s apply the theorem to the OR problem. The set of 0-inputs X contains only the all-0 input.
The set of 1-inputs Y will consist of all inputs with Hamming weight 1. In general, we want the
1-inputs to be close to the 0-inputs to maximize the lower bound generated by the theorem.

11-3

Every 0-input has m = n neighbors. Every 1-input has m� = 1 neighbor. Every 0-input has
s = 1 neighbor that differs from it at a specific bit. Every 1-input has s� = 1 neighbor that differs
from it at a specific bit. Plugging these values in, we get Ω(

√
n), confirming Grover’s algorithm’s

tightness.
Now let’s apply the theorem to the OR/AND tree problem, modeled as a

√
n ×

√
n matrix

where we need to determine if there’s a row of all 1’s. A useful trick is often to use inputs that are
right at the threshold between being 0-inputs or 1-inputs.

Let’s say that each row in a matrix has either zero or one 0 in it; that is to say, each row is
either all 1’s or almost all 1’s. A 1-input would have a single row of all 1’s and all other rows have
1’s for all but one bit. A 0-input would have each row have one zero. If a 0-input matrix x and a
1-input matrix y differ at just a single bit, we’ll make them neighbors, i.e. (x, y) ∈ R.

Every 0-input has m =
√

n neighbors, by changing one of the
√

n 0 bits into a 1 bit. Every
1-input has m� =

√
n neighbors, by changing one of the

√
n 1 bits in the all 1’s row into a 0 bit.

Every 0-input has at most s = 1 neighbor that differs from it at a specific bit. Every 1-input has
at most s� = 1 neighbor that differs from it at a specific bit. Plugging those values in, we get that
an algorithm that solves the OR/AND problem must have quantum query complexity Ω(

√
n).

Next time, we’ll talk about the collision problem.

11-4

MIT OpenCourseWare
http://ocw.mit.edu

6.845 Quantum Complexity Theory
Fall 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

