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Lecture 20 
Lecturer: Scott Aaronson 

1 Last Time 

In the previous lecture, we saw the result of Aaronson and Watrous that showed that in the presence 
of closed timelike curves (a model due to David Deutsch of ‘non-paradox-inducing’ time travel), 
classical and quantum computation are polynomially equivalent, as are polynomial time and space: 
PCTC = BQPCTC = PSPACECTC = BQPSPACECTC . 

In the process of proving these results we also discussed superoperators, the most general form 
of operation on quantum systems, and described how fixed-points of these mappings are guaranteed 
to exist and can be found in polynomial space. 

2 The Information Content of Quantum Systems 

Complexity Theory does itself a disservice by inventing boring names for its cool ideas. Today’s 
lecture is about P/poly and BQP/poly, but it’s ‘really’ about understanding the nature of quantum 
mechanics (QM). 

There are three major ‘interpretations’ of the theory of QM: Many-Worlds, Bohmian, and 
Copenhagen/Bayesian. Empirically they make the same predictions, but they make different de­
scriptions of the underlying state of the universe. In particular, they can be seen as having different 
estimations of the ‘information content’ of quantum systems. 

A quantum state on n qubits is describable by a 2n-dimensional complex unit vector. Is there 
‘really’ an exponential amount of information in such a system? The Copenhagen interpretation 
suggests that this is so only to the extent that we consider a probability distribution on n-bit strings 
to contain exponential information: it takes that much to describe it fully, but we only learn n bits 
in our observation or measurement. This contrasts with the Many-Worlds perspective, in which 
all complex amplitudes of the quantum state vector are really ‘present’ as simultaneously existing 
alternative states of affairs. 

Complexity theory can in effect stage ‘battles’ between these interpretations, raising questions 
about the extent to which we can extract and use information in quantum states. One such issue 
to explore is the extent to which quantum ‘advice’ helps us solve computational problems. To 
understand how this works, we need first to understand the classical theory of computing with 
advice. 

2.1 Classical Advice 

What does it mean to ‘compute with advice’? Suppose there is a trustworthy and all-knowing 
Advisor, who wants to help a Student solve problems. If the Advisor could see which computational 
problem the student was working on, s/he could simply state the answer. However, things get more 
interesting when we suppose that the Advisor is a busy and somewhat hard-to-reach person, who 
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tends to give out the same advice to all students. Let’s say the Advisor gives out advice to a 
student trying to solve a decision problem ‘x ∈ L?’ that only depends on L and the length |x|... 
what kind of complexity class does this notion give rise to? 

Definition 1 (P/k(n)) Define P/k(n), ‘P with k(n) bits of advice’, as the class of languages 
L ⊆ {0, 1}∗ such that there exists a polynomial time Turing machine M(x, y), and a collection 
{an}n∈N of binary ‘advice’ strings, with |an| = k(n), such that for all x, M(x, a|x|) = 1 iff x ∈ L. 

Now if k(n) = 2n and we’re allowed random-access to the advice strings, we can encode any 
decision problem directly into the advice: P/2n = ALL. Thus it’s natural to restrict ourselves to 
polynomial advice: 

Definition 2 (P/poly) Define P/poly, ‘P with polynomial advice’, as the class of languages L ⊆ 
{0, 1}∗ such that there exists a polynomial time Turing machine M(x, y), and a collection {an}n∈N 

of binary ‘advice’ strings, with |an| = O(poly(n)), such that for all x, M(x, a|x|) = 1 iff x ∈ L. 

This class can readily be seen to coincide with the class of languages which have polynomial-
sized circuits, whose designs may vary in arbitrary ways according to the input length. This 
arbitrary variation leads us to refer to this class and ones like it as ‘nonuniform’. We could also 
think of these models as exploring the power of ‘precomputing’, where an exponential amount of 
computation goes into deriving which algorithm to use for a given length n. (Strictly speaking, 
though, P/poly contains languages not computable using any uniform precomputing procedure.) 

It is easy to see that P/poly is a bigger class than P ; indeed, even P/1 is uncountable, hence 
is not even contained in the class of recursive languages! Nevertheless, we do know of some limits 
on the power of P/poly. For one thing, a simple counting argument shows that P/poly does not 
contain the class of all languages, ALL. In fact we know P/poly does not contain ESPACE, the 
class of problems computable in space 2O(n) (and we can say things a bit stronger than this). 

We also suspect other limits on P/poly. For instance, in the early ‘80s Karp and Lipton proved 
that if NP ⊂ P/poly then the Polynomial Hierarchy collapses to its second level, i.e. PH = NP NP . 
This is considered unlikely. 

2.2 Quantum Advice 

Now it’s time to add Q’s to everything... by analogy with P/poly, we make the following definition: 

Definition 3 (BQP/poly). Define BQP/poly, ‘BQP with polynomial advice’, as the class of 
languages L ⊆ {0, 1}∗ such that there exists a uniform family of polynomial sized quantum circuits 
Cn(|x�, |ψ�), and a collection {an}n∈N of binary ‘advice’ strings, with an = O(poly(n)), such that 
for every n and all x of length n, Cn(|x�, |an�) = 1 iff x ∈ L. 

| | 

Similarly to before, we have BQP/poly =� BQP . But the fun really starts when we allow our 
quantum algorithms to receive quantum advice: 

Definition 4 (BQP/qpoly) Define BQP/qpoly, ‘BQP with polynomial quantum advice’, as the 
class of languages L ⊆ {0, 1}∗ such that there exists a uniform family of polynomial sized quantum 
circuits Cn(|x�, |ψ�), and a collection {|ψn�}n∈N of quantum ‘advice’ states on O(poly(n)) qubits, 
such that for every n and all binary strings x of length n, Cn(|x�, |ψn�) = 1 with probability ≥ 2/3 
if x ∈ L while Cn(|x�, |ψn�) = 0 with probability ≥ 2/3 if x /∈ L. 
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So how big is BQP/qpoly? ‘High-information content’ interpretations of QM should at least 
suggest that it ought to be quite big, maybe even ALL. Notice that there are way more quantum 
states on n qubits than strings of length n, so the counting arguments that show obvious limits on 
P/poly (and BQP/poly) no longer work here. 

We could indeed try to encode an arbitrary boolean function fn at each length n, say by prepar­
1ing advice string 

2n/2 |x�|fn(x)�. The problem is how to extract this information. Measuring in x 
the standard basis just tells us (x, f(x)) for some random x, not the one we’re actually interested 
in! (If we ‘postselect’ on getting the x we were interested in, however, we can compute any function: 
that is, PostBQP/qpoly = ALL.) 

The Group Membership problem is in BQP/qpoly: if we consider a group Gn and subgroup 
Hn ≤ Gn as being fixed for each n, and we want to test if an input x ∈ Gn is in Hn, Watrous’ 
algorithm allows us to do this given advice state √

|
1 
Hn| y∈Hn 

|y�. (Note that this works for any 

efficiently computable group operation. If we were using permutation representations of group 
elements, the problem would actually be in P .) 

What other evidence do we have that quantum advice might be particularly useful for BQP 
machines? Aaronson has given a quantum oracle relative to which BQP/qpoly properly contains 
BQP/poly. It’s a start... 

Now let’s try to get a reasonable upper-bound on the power of quantum advice. Surely we can 
do better than ALL... 

Theorem 5 BQP/qpoly ⊆ PostBQP/poly. 

(And we know PostBQP/poly = PP/poly =� ALL by a counting argument.) 
Proof (Sketch): Say L ∈ BQP/qpoly, computed by a family Cn of quantum circuits on advice 
{|ψn�}. 

Our first step is to amplify the success probability of Cn from 2/3 to 1 − 1 . This can be done 2n 

by running the algorithm kn times, k = O(1). We need a fresh copy of the advice for each run, so 
redefine the advice for length n as |ϕ� = |ψn�⊗kn . 

In a full proof, we would now develop the ‘Almost as Good as New’ Lemma, which states: If 
the outcome of a computation’s final measurement is some value b with probability (1 − �) when 
using advice |ϕ�, then using |ϕ� in the computation leaves the advice in a new state |ϕ�� that is √
�-close to |ϕ� in trace distance. 

Now the proof takes a seemingly crazy turn. Let I, the ‘maximally mixed state’, be uniform 
over all p(n) bitstrings, where p(n) is the number of qubits in |ϕ�. We ask, does I work as advice 
in place of the |ϕ� we were previously using? Does it work on all inputs x of length n to help 
us compute L(x) with success probability 2/3? Probably not. Then, there exists an x1 such that 
Cn(|x1�, I) succeeds with probability less than 2/3. 

Let’s consider the state ρ1 that is the residual state of the advice register after we ran Cn on 
(x1, I), postselecting on the event that we succeeded in outputting L(x1). We ask again: is ρ1 good 
advice for Cn to use on every input? If not, some x2 exists such that Cn(|x2�, ρ1) succeeds with 
probability less than 2/3. Let ρ2 be the residual state of the advice register after we ran Cn on 
(x2, ρ1), postselecting on the event that we succeeded in outputting L(x2). And continue in this 
fashion for some t(n) stages, t a polynomial. (A technical note: it can be shown that, since we 
started from the maximally mixed state I for which ‘anything is possible’, the events we postselect 
upon at each stage have nonzero probability, so this process can in fact be continued.) 
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If at any stage we cannot find an xi to move forward, we must be holding a ρi−1 that works 
as advice for every input, and we can use it to run the quantum circuit Cn on the input x we’re 
actually interested in, succeeding with high probability. So, what we need to show is that the 
process must halt in polynomially many steps. 

The maximally mixed state has a key property we exploit: it is a uniform superposition over 
basis states, not just over the basis of binary strings {|x� : x ∈ {0, 1}p(n)}, but over any orthonormal 
basis (it is ‘rotationally invariant’). In particular, it’s uniform with respect to a basis that contains 
ϕ�, our ‘good’ advice state. Thus since advice ϕ� yields the right answer on each x with probability | |

1 )1 2nat least (1 − ), I yields the right answer with probability at least (1− . Similarly, since |ϕ� can2n 2p(n) 

be reused on each of x1, . . . xt(n) to give the right advice with probability 1 − o(1) (by the ‘Almost 
as Good as New’ Lemma), the probability that I succeeds on each of these inputs in turn is at least 
(1−o(1)) . 

2p(n) 

But we’ve designed this sequence of inputs so that the probability that I can be reused on 
each of them, succeeding at each stage, is less than (2

3 )
t(n). To avoid a contradiction, the process 

can only continue for t(n) ≤ O(p(n)) steps. Thus there exist x1, . . . xO(p(n)) such that, if ρ is the 
residual state after we start with I and postselect on succeeding on each xi in turn, ρ is a good 
advice string for every x ∈ {0, 1}n . 

So, we just give this sequence of (classical!) strings to our PostBQP algorithm, along with the 
correct outcomes b1, . . . bO(p(n)) for each of them. The algorithm prepares I (easily done), runs it 
on the advice input-sequence, and postselects on getting outcoms b1, . . . bO(p(n)). The leftover state 
ρ is necessarily has success probability 2/3 when used as advice in Cn to determine if x ∈ L, for 
any desired x ∈ {0, 1}n . This completes the proof sketch. 
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