
MITOCW | watch?v=82t7g2itzm4

PROFESSOR: Today we're going to talk about protein folding and its relation to linkage folding.

We're going to look at a mechanical model of proteins. This is an example of a

protein from lecture one. There's a ton out there in this place called the protein data

bank, all freely available. It's really hard to get pictures like this. But you get some

idea that there's a linkage embedded in here. You see various little spheres and

edges. That's, of course, not reality. Those spheres are actually atoms and they're

kind of amorphous blobs. The edges are chemical bonds. And those are

connections. We don't know whether they're-- it's not really matter, but it's force.

This is a rather messy picture. This is what a protein folds into, some 3D shape.

Most proteins fold consistently into one shape. We don't really know how that

happens. We can't watch it happen. So the big challenge is to know how proteins

fold. Given a protein, what does it fold into? That's the protein folding problem.

Major unsolved problem in biology, biochemistry.

The protein design problem is I want to make a particular 3D shape so that it docks

into something, binds to a virus, whatever, what protein should I synthesize in order

for it to fold into that shape? That is potentially an easier question algorithmically

and it's the really useful one from a drug design standpoint. Some new virus comes

along, you design a drug to attack it and only it, you build it. Usually you would

manufacture some synthetic DNA, you feed it into the cell, DNA goes to the RNA,

goes to the mRNA, goes to the protein. You all remember biology 101, hopefully.

We don't need to know much about it.

If you look at what's called the backbone of the protein, a protein's basically a chain

and attached to the chain are various amino acids. Today I'm going to ignore the

amino acids, which is a little crazy, and just think about the backbone chain.

Backbone chain looks something like this. One of the challenges of video recording

a class is I can only use copyright free or Creative Commons images. This one, I

couldn't get one, so I had to draw it.

1



There's various measurements here in certain numbers of angstroms. Those are

the chemical bonds. Various atoms here-- nitrogen, carbon, and so on, hydrogen.

But basically, it's a chain that zigzags back and forth. You can also see the angles

here. They're not quite all the same, but they're very similar. All the lengths in the

angles are close. It zigzags-- this is really in three dimensions. I tried to draw the

spheres so you could see the three dimensionality, but it's a little tricky. And then

attached on the sides are the amino acids. I'm going to focus just on the backbone.

The way this thing is allowed to fold-- these lengths, as far as we know, are pretty

static. They probably would jiggle a little bit. But you can think of them as edges. So

you can think of this as a linkage. The catch is, also, the angles are fixed because

the way this atom wants to bind to other things has very fixed angle patterns. If you

ever played with a chemistry construction set, that's how they work. They have

holes at just particular angles.

So if you think of like a robotic arm, normally-- like here, I have it two edge robotic

arm, let's say. Normally, you have two degrees of freedom in three dimensions. You

can change the angle and you can spin around this edge. Now, it's saying the angle

is fixed-- for example, here it's, say, at 90 degrees. All I can do is spin. I'm not

allowed to flex my muscle in this way. So that is the model. All of-- in this case, we

have a tree-- all of the angles here are fixed. But you can still, for example, take this

entire sub chain and spin it around this edge. That'll preserve all the angles and all

the lengths. That's all you're allowed to do. You take an edge, you spin it-- spin one

half of the edge relative to the other half.

These are called fixed angle linkages. And they have been studied quite a lot

because of their connection to protein folding. So embedded in the term linkage, we

assume that the edge lengths are fixed, and then we add the constraint that the

angles are fixed. And the motivation is the backbone is something like-- the

backbone of a protein is something like a fixed angle tree. Of course, it's not much

of a tree. Most of it is a chain. There's just small objects hanging off, and if you add

the amino acid there are bigger things hanging off, but still constant size. They'll

have some cycles. They're not trees. But it's slightly more approximately-- I should

2



draw wavier lines. It's a chain. Usually an open chain although occasionally a closed

chain.

So we think a lot about fixed angle chain and sometimes about fixed angle trees.

Now, fixed angle linkages are harder to think about than universal joints-- that's the

usual kind of linkage. So we know 3D linkages are kind of tough. Nonetheless, we

found lots of really interesting mathematical problems to solve here, and that is the

topic of today.

At some level, we are thinking about the mechanics of protein folding. We're

throwing away energy. We're throwing away the actuators in real life that make

proteins fold. We're just imagining, given this mechanical model of how a protein

might fold, what's possible. So in some sense, it's broader than reality. And the

hope is you find an interesting algorithm for how to fold these protein chains. And

maybe that's the algorithm that nature is implementing. That's the kind of general

picture. We're not constrained by reality, and by how nature actually folds things.

So I'm going to talk today about four main problems here. The first one's called

span. Second one's called flattening. Third one is flat state connectivity. And the

fourth one is locked, our good friend locked chains. And of course there are locked

chains because we're constraining linkages even more than before. So you could

take knitting needles, it'll still be locked. So you add extra constraints. Makes it

harder to fold. But there are actually some interesting positive results we can give of

chains that are not locked in some sense.

And flat state connectivity is about the same kind of thing, where instead of worrying

about getting from anywhere to anywhere, we just worry about getting from one flat

state to another flat state. Flat means lying in a plane. Flattening is about is there

such a configuration. And span is about given robotic arm-- like a more complicated

one, like with multiple edges-- how far apart can the endpoints get, and how close

can the endpoints get. The universal chain is not very exciting. Farthest it can get is

when it's straight, and the least far it can get is when it's closed. You can always do

that, I think. Well, no, I guess you can't always close it up. That's a little nontrivial.

3



But for fixed angle linkages, you can't straighten out because you have to preserve

the angles. So it's kind of what is the straightest like configuration, given that the

angles are fixed.

So let's start with span. So the span of a configuration is the distance between the

endpoints. And in general, you'll find the max span and the min span. This search

was begun by a guy named Mike Soss, who was a PhD student at McGill. And he

proved that if you want to find, for example, a flat state that lives in two dimensions

with the minimum or the maximum span, this is NP-hard. This is in his PhD thesis.

Question?

AUDIENCE: If you have a linkage or [INAUDIBLE] chain that actually loops around, is there a

span because there is no endpoint?

PROFESSOR: Oh, here I'm assuming open chain-- I should say that-- which most proteins are. I've

been talking about trees and stuff. Here I mean chain, otherwise there aren't two

end points to think about. Good. So here are his NP-hardness proofs. [INAUDIBLE]

the problems are NP-complete. They're pretty simple. The problem here we're

reducing from is partition. I give you a bunch of integers. I want to divide them into

two halves of equal sum. And the top example is minimum flat span problem.

So you make an orthogonal chain where the horizontal edges are long and they're

proportional to the integers you're given, the vertical edges are really tiny. And so

what you'd like to do-- all you can do is sort of flip because you have to stay in the

plane, you can flip one of the vertical edges, say, and make any of these edges go

left or right. You get that freedom. So each integer, you get to choose. Do I go right

by that amount and or do I go left by that amount? And if the amount you go left is

equal to the amount you go right-- in other words, is it partitioned into two equal

sums-- then those endpoints will be aligned, and then their distance will be very tiny.

Otherwise, it will be quite large because the horizontal distances are all big. So it's

kind of a very easy NP-hardness proof.

To maximize your flat span, instead of mapping your integers on to lengths, you

map them on to angles-- return angles. I won't specify that too precisely. But again,

4



if you make your total counterclockwise turn equal to your total clockwise turn, then

the two end edges, which are super, super long, will be parallel. And to maximize

the distance between the endpoints, you want them to be parallel. If you make them

go some other angle, they're closer. Now, both of these proofs rely on the

requirement that you want a flat configuration with minimum or maximum span.

Now, there's a claim that flat configurations matter for proteins, so it's a natural

constraint. But what about the general problem? What about, I have something in

three dimensions, I want to maximize-- I have a fixed angle chain in 3D, maximize

or minimize the span?

Both of those problems are open. Can you solve them in polynomial time? For 3D

max span, so the non flat version just for maximization, there's been a lot of work.

And there are two papers on the subject. One of them is by Nadia and Joe

O'Rourke. Another one is by Borcea and Streinu. And I just want to quickly

summarize that because there's a lot of stuff there. But essentially, they find what

the structure of those spans look like. I have an early figure that's in our book before

all this work was done.

The simple chain, this black guy at 1, 2 3, 4 bars open chain, and in that black three

dimensional state, it maximizes the span, the green span there. And if you look from

above, which is this picture-- of course, the end points look much closer in

projection-- and the red configuration is the max span if you restrict to flat

configurations. So here, of course, 3D buys you something. In general, it always will.

An interesting thing is that this max span-- the green line-- passes through another

vertex. It seems kind of weird. And in fact, there's a general theorem there sort of

characterizing the structure of these chains. It's still not known whether we can

solve this problem in polynomial time.

But for orthogonal chains, where all the angles are 90 degrees, we can solve that in

linear time, I guess. And here's what it looks like. Suppose you have some

orthogonal chain. Orthogonal chains are nice because you can draw them in the

plane as a staircase. So there's a nice canonical configuration.

5



One way to think about how to find the max span configuration-- I'm just going to

give a high level overview here, this won't be a complete algorithm-- is you

triangulated that staircase in this sort of obvious way of connecting every endpoint

to the one, two ahead. And think about this as like a body that's hinging around here

because I can spin-- if I spin the left part of this chain around this edge, it's like

hinging that triangle around that hinge. Same thing. You could think of these

triangles as just being hinged together, like in rigid origami. It's the same class of

motions.

And now you can-- what I'm going to do is compute a shortest path in this surface

from here to here. Confusingly, this is called a geodesic shortest path although it's

not really related to geodesics from polyhedral surfaces. But if I compute a shortest

path, it's going to go like to this vertex and then probably to that vertex. But I'm

constrained to stay inside the union of those triangles. I want to go from one

endpoint to another.

Then I claim that-- OK, these two edges will stay planar, of course they form a

triangle-- I claim these four edges will stay planar, and in the orthogonal case they'll

stay zigzag. And then also these two guys will stay in their own plane. And then I

claim that actually this wiggly line, which is not straight because it bends here and it

bends here, the total length of that wiggly line is the max span.

And you achieve that by folding this planar part with respect to this planar part with

respect to this planar part so that the wiggly lines become aligned and straight. And

that's very hard to draw. But it can be done, and that's what you do in the

orthogonal case and that gives you the answer in linear time with enough work. For

non orthogonal though, it's open whether you can do this in polynomial time. Maybe

it's NP-hard, actually. I don't know. That's all I want to say about span.

Next, we go to flattening. The first question about flattening, and the main one we'll

talk about here until we get to flat state connectivity, is does a fixed angle chain

have a flat state at all? Can you even draw it in the plane without crossing? So we're

restricted here to have no self intersections. We want flat state, no self intersection.

6



Then there would be a question of given some configuration, can I actually

continuously get to a flat state? But the simplest question is ignore getting there.

Just, is there a flat state? And this problem is NP-hard. Again, Mike Soss and his

advisor Godfried Toussaint.

It's a little more complicated, but it's basically the same idea as that very simple

proof, which was just to map integers to a little zigzag staircase here. So the goal is

to force x to end up being-- the two endpoints of the green curve-- to be aligned

with each other. That will exist if and only if there is a partition of given integers. And

there's all this infrastructure that's sort of-- there's little lock here and a key, and

some structure on the left. Basically forces the picture to look like that.

So the first claim is that the black stuff is basically unique. I think there's one global

reflection you can do that doesn't affect anything. But you try any of the other flips.

Again, we're restricted to flat states here. So there's only sort of a bounded number

of things you can do, a finite number of things you can do. You try all of them, they

self intersect. So the black thing is basically forced, and it forces the endpoint-- this

endpoint x-- from the black side to be aligned with this very narrow spike. And

because the angles are preserved, that red guy's going to be vertical. It can't go

down so it must go up.

And so only if this thing is aligned in the center, aligned with x-- in other words, this

problem has a partition-- will this have a flat state. So it's not the most exciting

example. This is only a weak NP-hardness proof. Lots of interesting questions still

open here, like if all the links are the same, if they're all equal, then we don't know.

Or if all the links are even polynomially bounded, this needs really, really long

lengths verses really, really tiny links exponentially-- exponential in ratio. All these

problems are open. And that's flattening. So we're going very quickly because there

isn't-- well, partly because I'm more excited about this-- but there's more work in

these two parts. So I'm going to focus on that.

Next topic is flat state connectivity. So the idea is to think about the configuration

space of these fixed angle chains, let's say. And we kind of know that it's going to be

7



disconnected because there are knitting needles, there are nasty things. So there's

maybe various connective components. But let's say that we really care about flat

states.

And the question is, are they connected to each other? So in other words, do all the

flat states-- mark them with x's-- do they all appear? There's only finitely many. So

configurations, there's this continuum that there are these messy blobs, semi

algebraic sets. The flat states, those are discrete things. Because we have fixed

angles, you can flip or not flip every edge. So [INAUDIBLE] most exponentially many

of them, so finite. Are they all in one component? So I can get-- if I pick two of my

favorite flat states, there's a path between them? Or are some of them in multiple

components?

So in this case, we call it flat state disconnected. And if they're all like this, we call it

flat state connected. And we'd just like to know which chains, which fixed angle

trees, whatever, are flat state connected versus flat state disconnected. I would say,

the big open problem here is every fixed angle chain, open chain flat state

connected? That is still open. We have lots of results in that direction.

So the top four results are about open chains, but they have an extra constraint. For

example, open chains that have a monotone configuration, like the staircase. Those

are flat state connected. In fact, whenever the angles between the edges are either

orthogonal or obtuse, then they're flat state connected. When the angles are acute,

we're not really sure. If all the angles are equal and acute, then we can do it. But if

they're different and acute, we don't know. Unless the edges are all unit length and

the angles are in this funny range, then we can do it.

So there's all these special cases we can solve. The most relevant to proteins is

actually obtuse chains, so we've solved sort of the main problem with this second

result. But there's a natural theoretical question here is, are all open chains flat state

connected or do we get disconnectivity? I will show you that-- I'll show the

orthogonal case in a little bit.

We can do some stuff if you have multiple chains that are attached to some blob like

8



a cell. Closed chains is a little bit-- for disconnected, we don't have very interesting

examples, I would say. This is funny because locked examples are easy to come by

but flat state disconnected examples are little trickier because flat is so constrained.

So let me just show you these examples.

This is what we call a partially rigid fixed angle tree. So not only are the angles fixed,

but also the black edges are not-- in fact, only the blue edges here are allowed to

spin. Everything else is held rigid. So these arms are somehow forced to be in

exactly that geometry. I can spin it around this edge, so spin it up into 3D, for

example. These are two different flat states of the same linkage.

The only difference between these two-- I haven't rotated or anything-- is that I've

taken each of these arms and flipped it around a blue axis. If I do all four of them, I

would get this picture. But the claim is, you cannot do that without self intersection.

The intuition is, when there aren't very-- oh, one other thing that makes it slightly

more interesting. It's weird to say, well why did you force some of the edges to be

rigid and not others? One way to force that is to use a general graph. If you add

some extra edges to sort of brace this and all these angles are fixed, then this

linkage will behave exactly like that one. So that at least is somewhat more natural,

although what we really care about are chains, maybe trees. But we don't know

whether there's a-- we also don't know whether all fixed angle trees are flat state

connected. These are the worst examples we know.

Let me give you an idea of why it doesn't work. This is a little animation of just a

couple of moves attempted, and it's just going cycle through that. And these are

some static images of the same kind of thing. So the intuition is the following-- you

have four arms. You have two sides to the plane, there's up and down. The four

arms and two sides, at least two of them are going to have to go to the same side.

The best you can do is two and two, or three and one. But in either case, you have

two sides go to the-- two arms that go on the same side.

Now, it could be, like in this image, that they're opposite arms. So there's this arm

here and there's this arm here. So they're connected by a 180 degree angle. And

9



those guys, when they fold up, actually these edges will just hit each other dead on.

So that's kind of obvious from a geometric standpoint. Maybe you call it cheating for

them to hit dead on. You can twiddle the edge lengths so that they will properly

intersect without dead on collision, without being degenerate basically. The

alternative is that-- and this is a little harder to see geometrically, and that's why we

drew that animation-- is that you have one arm and you have an adjacent arm

connected by a 90 degree angle.

Now here, there's clearly some collision going on. And if you happen to fold it up 90

degrees like that and then fold the other guy, obviously you get stuck. But maybe

you fold it a little bit and the other guy goes a little bit more and there could be some

dance between those two degrees of freedom, those two arms, that somehow gets

them both to pass over to the other side. It's obviously not possible. How do you

prove it? Well, you could prove it with topology-- knot theory or link theory. So it's a

very cute proof.

You start with-- so here's the full example, but I've highlighted the two arms in red

that are going to move. And I imagine connecting the endpoints of each arm with

these little blue ropes underneath the plane. They're both going on the same side.

Let's say they somehow pass through each other on the top side. Then I'm free to

connect stuff on the bottom, and I shouldn't collide with that. So if somehow, both of

these guys flip over-- so arm on the left, A3 flips over. A3 stays where it is but now

the arm is on the top, the north side instead of the south side.

And the other guy, from B to B3, used to go like this and now it goes like this. If that

happens somehow, then these ropes could remain intact during that whole motion.

On the top, you have two closed loops that are not interlocked. On the bottom, you

have two closed loops that are interlocked. So there's no way to get from there to

there without colliding somewhere. The blue stuff didn't move, so the red stuff must

have collided. So even just topologically, you are screwed. That is their only

negative example. Lots of interesting open questions here.

On the positive side, let me show you for orthogonal chains-- and the same

10



algorithm works for obtuse chains, all the angles are obtuse-- how they are flat state

connected. So in order to show it's flat state connected, I want to think about two flat

states and show that I can fold from one to the other via some intermediate 3D stuff.

Let's start with one of the flat states.

So it's orthogonal. So in two dimensions, all the edges will be horizontal or vertical.

In 3D, they can kind of be in many, many different angles, many different dihedral

triangles. In 2D, it's pretty simple. And all I need to do is sort of pick up that chain,

and I'm going to try to pick it up into a staircase because there's only one staircase.

If I can make it a staircase, I make flat configuration A a staircase, flat configuration

B a staircase, and just FedEx in the middle. Once they're both staircases, I play one

motion and the other one backwards, get from anywhere to anywhere.

So here's all you do you. You take the first edge and you just rotate it up to the red

line A. And then you take the next edge and you take both of those edges, and you

just rotate them like this, so you get that little 2-step staircase. Now I'd really like to

pick up this edge, but I want to first get these two edges in a plane with that edge.

So I rotate this flag over to the left, I get those two guys. And now they're in a plane

with this, and I just lift that up. Then I'm going to flip, then rotate up. Flip, rotate, flip,

rotate.

Here's some more examples. So if at this point, I have this staircase-- sorry, I guess

originally I have from V3 to D up there. it's not in plane with this guy, so I just rotate

it like that. I'm spinning around this edge. So now I have from B3 to #, and then I

rotate it up along that green arc. And I get a bigger staircase above the chain and

because everything's staying above, it will never penetrate the plane and will never

hit anybody else. And I'm building a staircase by design. I always rotate this--

there's actually two ways I could be in plane-- but I always rotate it so that when I

pick an edge up, it'll be in a staircase. So this is actually really easy.

And slight generalization is to obtuse chains, then instead of making a staircase, we

make a monotone. Let me get this right. Yeah, sum z monotone state. So it goes

monotone and z, out of the plane, that's enough to avoid collision, and you get a

11



canonical configuration. Also, if you have acute angles but all the angles are equal,

then there's a natural conical state, which is just like a compressed staircase. And

that will work here, too. That takes more effort. That was in a separate paper. But

big open question is, chains with arbitrary angles. We have no idea. It is very hard

to do an operation like this. Wow, we are burning through this. This is fun.

So the next topic is about locked chains. Now as I said, you can take a knitting

needles example, which has five edges. And that will still be locked if you force the

angles to be fixed because it was locked without the angles being fixed. Now, it

required a length ratio of 3:1, I think. This edge had to be longer than the sum of

those three.

So let me put down some open problems. So you may recall in the case of universal

chains-- universal joints, I should say-- the big open question was, can you lock a

universal joint 3D chain with unit edge lengths? So, equilateral-- every edge is the

same length. Is there a locked chain like the knitting needles when all the edge

lengths are the same. And one of the motivations for that is in proteins, the edge

lengths are all within like 50% of each other. So it's pretty natural, of course. We

don't have universal joints with proteins. We have fixed angle joints.

So the big open problem for fixed angle joints-- I guess we'll do this in parts-- is

there a locked 3D fixed angle chain that's equilateral? I'm going to add some

conditions here. So that's the first natural question. Knitting needles doesn't suffice.

We need a 3:1 length ratio, as far as we know. Turns out that question's not very

interesting. I need to do slightly nonlinear editing here.

So you take your knitting needles example, and you just subdivide the edges into

lots of little tiny bars. It doesn't have to be this extreme. You could not subdivide

these edges at all, and make these guys subdivide them into like three or four parts.

Because the angles are fixed, these guys act as a single [INAUDIBLE]. There's

really no difference. Maybe you make a slight curve there and then they can bend a

little bit, but really not much. So if you just say, oh, I want it to be unit length. I don't

constrain what the angles are but I fix them, then it's trivial to come up with locked

12



examples. So that's not very interesting.

What if I make it not only equilateral-- the lengths are the same-- if I make it

equiangular. Because, again, in proteins, all the angles are similar. They're around

110, 108, something like that. They're all pretty close, I think within 10 to 20% of

each other. Well, there's also a locked example. And just to show you how research

was done back at the turn of the century, this is pre-web 2.0, pre-Ajax and all that

fancy stuff. We used Ascii Art. Email was the tool of choice. I know it's hard to

imagine a time-- 2002, so long ago. And I tracked this down. This is the original

claim it looks-- we call this the crossed legs example because it's like two legs

crossed around each other. And this is the first time we thought, oh, maybe it could

be done, unit length. This is Stefan Langerman.

And here, for the first time ever-- this is not the first model, but this is the first

photograph of any model I'm aware of-- this is the crossed legs example. This is

made with a construction toy that used to be sold around here but is no longer in

production. So they're pretty hard to get. It's straws-- nicely colored straws-- and the

cool part are these connectors.

So the connectors force particular angles. In this case, every angle is 45 degrees.

So this is equiangular and equilateral because all the straws, I'm told, are the same

length. That's how they're sold. And you can do edge spins. Whoops, that's called

cheating. It's not totally obvious that this is locked. The problem with the model is

that the edges can bend. But if you treat it properly and only spin around the edges,

then you're stuck.

Now, there is one thing you can do. See if I-- yeah, like this. So here, I'm almost in a

plane. I've got the purple edge right against the pink one. Easier to see from that

angle? I don't know. So here, this guy can come out and this guy can barely go on

the edge. So actually, this doesn't quite work for equilateral. It works for one plus

epsilon. That's why I added these little nubs at the end. So if they're all exactly equal

length and you allow just abrasion of the endpoint, then this could go around like

that and then you'd be unlocked.

13



But if you just add slightly-- either you change the angles to be not quite equal, so

make this a little smaller, or you make the lengths a little bit longer at the ends--

then the claim is it's locked. We don't actually have a formal proof of this. We're just

remembering, hey, we should probably write this up. I was talking to Stefan last

night. So someday we'll prove that this is locked. But it certainly looks like it. So this

isn't open yet. I mean, modulo the details of that proof. Equilateral and equiangular

seems easy to lock with fixed angle chains. In fact, even easier, this example only

has four edges. So even less than the knitting needles.

Fixed angles make for complicated motions, I guess. Make it hard to unlock things.

So I need to add one more constraint, and the constraint is obtuse. So again, all of

these properties are enjoyed by proteins. Protein backbones have all these

properties. Even if you looked at fixed angle trees, is there something like this that's

locked? And now, we don't know. And this seems quite tricky. I guess the intuition is

that obtuse-- and usually we think about orthogonal, just cause it's easier to draw

the pictures, but reality is more like 108 degrees-- the conjecture is obtuse fixed

angle chains behave kind of like universal joints. And with universal joints, we don't

know whether equilateral is enough. So it's tricky. Yeah, question.

AUDIENCE: In the previous example, you showed the ribbon thing--

PROFESSOR: The subdivided.

AUDIENCE: Subdivided into a bunch of little interconnecting pieces. What if you, instead, made

your ribbon lengths basically a bunch of little unit obtuse angle connectors, and then

when you hit the big terms it's just obtuse, obtuse, obtuse, obtuse.

PROFESSOR: Yeah, you can make this example be entirely obtuse. You can make every angle

obtuse. Here, you could arc a little bit. Here, you could arc some more, but not too

sharp. And because here, we actually know that this part can be made a string. We

don't really care what it looks like. So you can make it fairly obtuse. It's just that

these guys should not bend much. They have to be long no matter how you fold

them.

14



So if you want equilateral and obtuse, that's also easy. But to make all the angles

actually be equal, as far as we know you cannot take that knitting needles

subdivided. Make all the lengths equal, and all the angles equal, and make them

obtuse. That's open. But any two out of the three, it's easy. Of course, in reality

they're not quite equilateral. They're not quite equiangular. But it's still open for

those. If you have like a small range for the lengths and a small range for the

angles, this is open. We pose it this way because it's the cleanest geometrically.

But the real question you care about is when these are fuzzy constraints. Obtuse is

real, but these guys are fuzzier. So if you think about proteins, which fold very well

in nature, there are a couple of reasons they might fold well. We know, as far as

fixed angle chains go, it's actually quite easy to find locked examples. And, this is

somewhat intuitive but bear with me, because they are locked examples in this

configuration space, we believe these configuration spaces are really ugly nasty. So

it would be very hard-- even if you know, oh I only need to fold something in my

component-- if these guys are highly disconnected and flat states are all over the

place, it's probably even within this connected component, it looks really ugly.

And so it's very hard to find a path from one state to another. Probably pieced

based complete, although we don't know that for sure. But that's the intuition.

Locked equals messy. When there are no locked configurations, like carpenter's

rules, we get really nice algorithms. It's super easy to get from state A to state B.

Now, if you're nature or you're designing nature, let's say, or you're building your

own virtual world, Second Life, and you want to design proteins, you would like to

design them in such a way that they fold easily because it happens all the time.

Every thing that is being acted on by our body, every living thing that we know has

tons of little proteins that are doing all the work. They are folded into their shape

and they do something. That's proteins plus RNA, but mostly proteins. So to

understand life, we should understand proteins. Now, how to proteins fold so well

when we know there are all these locked configurations? One possible answer is

that proteins have extra structure, namely these three things, which somehow make

it very easy to algorithmically go from A to B. Notice I'm not assuming anything

15



about how proteins fold in terms of what is the mechanism that drives them because

we don't really understand those mechanisms. There's hydrophobia, which we don't

really know how it works.

So all these little forces that we don't fully understand. We understand lots of parts

of the story, but not the whole story. And what's convenient about these kinds of

problems is you don't need to assume anything about how it actually happens. All

we're assuming is the mechanical behavior of the proteins, and how they could

possibly fold. And the idea is if there's locked configurations, that's probably the

wrong model because then everything's messy. Now there's also evolution coming

into play and maybe some proteins are easy to fold, some proteins are hard to fold.

That's an interesting question which should be experimented with. But let's hope

that there's a model.

Things are mutating randomly. You really like everything to fold nicely. Maybe it's

because you have all three of these properties, approximately, in real proteins. So

general idea is that nature has some extra constraints that make protein folding

easy. Just have to figure out what they are and why it makes them easy.

Unfortunately, this is still an open problem. If this had an algorithm, that would be a

natural candidate for what nature's doing using its mechanical-- or using it's

energies and forces, and so on.

This would be a rather unsatisfactory ending if this was-- if the climax was an open

problem. We have a theorem too. And this is what I'll cover in most detail. And it's a

paper called producible protein chains. Protein chains just means fixed angle

chains, open chains. And the idea is well, yeah, there are these constraints or there

are these extra features. We don't know how to exploit them, so let's not even worry

about them. Suppose they don't even exist. Maybe I'm going to assume obtuse, but

none of the others.

There's another constraint in how proteins fold, or really how proteins are created.

They're created by a machine, a molecular machine made up of a whole bunch of

proteins and RNA, called the ribosome. You may have heard of. It translates

16



messenger RNA into proteins. So there's some mRNA around here, maybe. Don't

know exactly how this machine works. But there are actually very accurate three

dimensional reconstructions of the ribosome.

With no copyright free images, you're going to have to-- there's a link on the slide

that goes to the cool and 3D models of the ribosome, with a slice away. So you can

see there's a tunnel down here, and the protein get sort of created here. The

background gets created here. And it starts going through this tunnel. There's a

bend in the tunnel around here, where it's conjectured and an amino acid gets

attached. And then it goes out the tunnel and the protein starts spewing out here

and presumably folding at the same time. We don't really know. So this is how

proteins are created. The birds and bees, I guess, of proteins.

So what's interesting about this is it's not like a protein exists and then folds, which

is how a lot of people might think about it at first glance. That's the natural way to

model protein folding-- start with a protein, say, and just zigzag configuration. If it's

obtuse, there's a nice zigzag monotone configuration. Then you see what is the

best configuration I could fold into, for some notion of best. And that's sort of what

this configuration space picture is about.

It's if I already have a protein, what configurations can I reach by motions? And that

is interesting. That's important because you're still going to have to reach by a

motion. But, it's actually more flexible than that because the protein could just be

partially built. The rest of the protein hasn't been built. And it could start folding

already. It might be easier to fold when you don't have the obstacles of your existing

protein. So that's both a worry, but it's also a convenient structure because this

ribosome is a giant obstacle. Bigger than most proteins. If your protein's really long,

maybe it could go over here.

But most the time, it's going to stay on one side of this plane because locally, this

thing is basically flat, if you look at the real 3D pictures, not the schematic. Now, this

is good news for a geometer because there's this giant obstacle-- think of it as a

half space-- which the protein cannot penetrate while it's being produced over here.

17



That's it. That half space constraint is enough to get really good algorithms for

folding your chain. It's weird because we've made a problem both harder because

the protein is only partially produced at any time and it can fold, which is part of it,

but we've also made our life easier because there's this big obstacle.

AUDIENCE: [INAUDIBLE] makes sense why there's only obtuse angles there, right?

PROFESSOR: Yeah, right. Out of this, we're going to get that the angles and the protein are

constrained. And in particular, for this angle-- it depends. I mean, in this picture

because it's perpendicular here, yeah, the sharpest angle you could make is 90

degrees, more or less. That's a good point. So it's a convenient match between the

chemistry, which also forces the angles to be obtuse, I guess. I don't know a ton of

chemistry. But also, the ribosome just geometrically forces. We're going to use a

property like that.

Our model is going to be a little bit more-- both more general and simpler. We're

going to imagine that the ribosome is a cone. It's part of the upper come here. This

is like a mirror image. And in reality, that cone is actually a plane and everything

above the plane. But to be more general, we're going to allow some angle alpha

here. It's also just easier to think about when alpha is smaller than 90, but

everything I say will work when alpha equals 90 and that is sort of the reality case.

So the model is-- so the ribosome is a cone. We call this the half angle of the cone.

From the vertical axis to the edge of the cone is alpha. So if you were going from

one axis to the other, it would be 2 alpha. The model is, you start with one link of

your chain, which is inside the cone. It's spews out through the apex. That's the exit

of the tunnel. Here, we're allowing the tunnel to be actually quite free. Doesn't have

to be perpendicular to the apex or the plane of the apex. So the edge comes out,

and as soon as the endpoint of the chain reaches here, then a new link is created.

This is like a very simple model for how a chain can come out of a cone without

worrying about what's happening inside the cone. Imagining everything's totally

free. This is like you can allow self intersection in the cone, who knows what. But

once you come outside the cone, you're not allowed to self intersect and you're not

18



allowed to intersect the cone. Once you come out, you can't go back in. So that is a

model of producing protein chains. And if you have a cone of angle alpha, we call

this an alpha producible chain. For whatever reason, we often call it beta producible

chain. Just change the variable.

So if you think of the ribosome as a cone with half angle beta, you can produce it

like this. That is beta producible. Now this is a pretty powerful model because you

only have to worry about it link by link. You don't have to worry about the rest of the

chain until it spews outside of the cone. But it's restrictive in that you cannot

penetrate the cone. All right.

One thing we can talk about is angles. So I'm going to write call a chain a less than

or equal to alpha chain if all the turn angles are less than or equal to alpha. I don't

know if I've used turn angles in this class. Probably. If I have two edges, the angle

would be this. The turn angle would be this, the supplement. Yeah. I guess we used

turn angles way back in origami land, Kawasaki's theorem and so on. It's just, if

you're going straight, how much do you have to turn to get to the next edge.

So we'd like fairly obtuse things. So alpha is going to be small. There isn't a ton of

turn. But in general, less than or equal to alpha chain for some alpha. Now there's a

relation-- as Jason was mentioning, there's a relation between alpha and beta in the

ribosome because you always exited orthogonally to the plane that was your cone.

The sharpest angle you could get was 90 degree turn angle. Here, we're a little

freer because this edge can wiggle around as long as it touches the apex.

So if you're up against the cone, you have to slide out into the complimentary cone--

that was the previous picture-- and as soon as you get there, you could create a

new edge which is like this. So the sharpest angle you can get is actually twice beta.

In general, we're going to have alpha over 2 is less than or equal to beta. That is--

you can get up to beta equals 2 alpha. Get that right. And also in the obtuse case,

this is not too exciting. But it's true.

There's actually some problems here. When you have that full flexibility and you set

alpha to two beta, not the other way around. I'm going to assume here that alpha

19



equals beta. This will be convenient. And it's the interesting case because, in reality,

the cone has a half angle of 90 degrees. So beta is 90. And the sharpest angle

we're going to make was always obtuse. So saying that you have a less than or

equal to 90 chain is just fine. But on the mathematical side, I think we saw the case

when alpha is less than or equal to beta, but not when alpha over 2 is less than or

equal to beta. That's a weaker constraint. So there is a range where it's not so easy.

Now, what do I claim about these chains other than their angles are not so sharp? I

claim they're good algorithms for folding them. What could I possibly mean? There

are still locked configurations. Is that true? Well, I mean presumably-- this is acute--

but you take the obtuse versions of this guy. Because I didn't constrain the edge

lengths or anything, I just said that the angles are obtuse.

So I could just sort of round these corners, make it obtuse. You know, add lots of

dots just at the corners that would be obtuse. And a chain like this will be producible.

A chain with these angles and these edge lengths can be produced from a cone.

But this configuration of this chain cannot be produced, I claim. I claim anything that

can be produced is in one connected component. So while I can make a linkage

that is locked and that there are bad configurations you can't get out of, the things

you can actually make, you can always get out of.

So there's going to be the space of producible configurations. Maybe there's some

stuff that's unproducible but still connected to it. I don't know. It doesn't matter too

much. I won't worry about this stuff. There's other bad locked configurations that

cannot reach here. But everything that's producible is in one connected component

of the configuration space. That's property one. That's kind of nice. Also, all the flat

states are going to be in here. This is actually pretty easy. I just need to prove that

flat states are producible, which we'll worry about later.

So in particular, these guys are flat state connected. All the producible protein

chains are flat state connected. That's interesting because we don't even know that

all chains are flat state connected. But here-- I guess we know that obtuse chains

are flat state connected, so maybe it's not so surprising. But what's important is not

20



only are the flat states connected to each other and the producible states are

connected to each other, but producible is connected to flat states. Everything is

together here. I might have more properties. But that's already some good news.

And there's algorithms to do all of this.

How do we prove it? Well, as usual we use the FedEx method. And in some sense,

one of the challenges is what is the natural canonical state for protein chains? In

fact, we're just going to assume that our chain is-- in reality, we're going to assume

that it's an orthogonal chain-- an obtuse chain, I should say. But in general, for any

less than or equal to alpha chain, for whatever alpha you like-- and it will be the half

angle of the cone, so alpha equals beta-- we will define a canonical configuration. I

think we called it the alpha CCC.

So it's going to be kind of like a helix. I think I have an example, an actual computed

example. That's not the best picture because you can't see everything that's going

on. But this is an actual canonical configuration of a particular chain. Let me tell you

how it works in general. So in general, we have some chain, v1, v2-- sorry, starting

at v0, v1, v2. I want to define a canonical-- and there's defined lengths between the

two. And there's defined angles between every triple in sequence.

So I'm going to start with v0 somewhere. Doesn't really matter by translation. Say,

the origin of space. And what I'm going to do is draw a cone whose apex is that v0.

And the half angle here is going to be alpha over two, not alpha. This is a smaller

cone than-- by a factor of two-- than the ribosome. That's important. So there's this

vertical line. And to pick v1, I'm just going to use the right edge, which is-- let's say

this is the x direction.

This is the z direction. Maximum x-coordinate. It's going to lie on the cone,

maximum x-coordinate. That's v1. Now, v1-- let me redraw this picture a little lower.

So there was v0, v1. Now I want to draw v2, and I want to draw it above. So what I'll

do is draw a vertical column whose half angle here is alpha over two. I want to draw

v2 on the cone here. Of course, the height of the cone is the length of the edge, not

the height. You could think of the cone as infinite.

21



And then I just clip this to when it has the right length. So again, this might be a

different height cone. I clip it to whatever the length v1, v2 is. I want it to be

somewhere on this cone, but now I'm constrained to have the correct angle at v1. I

can't just put it over here, because then the angle here would be 180. Presumably, I

don't want to make a 180 degree angle. So in reality, what happens is that there's a

cone which is-- whose axis is the edge v0, v1. So I extend v0 v1 out here, which, in

this case, happens to lie here. And I make a cone like that. Let me draw it slightly

more accurately.

In this case, the center axis of the cone would go right here, whatever the extension

of v0, v1 was. And to have the right angle at v1, v2 must be on that cone.

Conveniently, there are two intersection points between those two cones. I could

choose either one of them to be v2. And I will choose the counterclockwise most

one, which is this one. This is going to be v2. So I draw that edge. Now I repeat.

So for v2, I'm going to draw a vertical cone whose half angle-- here, the half angle is

always alpha over two. Half angle is alpha over two. This cone had half angle,

whatever the angle v0, v1, v2 was. Was that the half angle or angle? The half angle.

I think this is right. OK. And then I take the intersection of those two cones, and that

will give me where v3 is.

So I do the same thing for v2, for v3, and so on. I have a unique choice at every

moment. Yeah, basically. And the only exception was at the beginning here, when I

had a vertical line. These two cones could actually be equal, and then the

intersection is the entire cone. And that case, I guess I'd choose the maximum x-

coordinate one again. And then I have a canonical choice of everything along the

way. It will always go up. And it sort of spinals around because of the counter

clockwise most choice. And the result is a picture like this. Anything else I need to

say here?

I claim this canonical configuration lies in an alpha over 2 half angle cone. That's

true by construction. The challenge is, does the construction really work? So I start,

obviously, with one cone, and I can think of this as actually an infinite cone that goes

22



out to infinity here. And I claim the entire construction will lie inside that cone. And

it's kind of obvious because v1-- I chose v2 to lie in the same cone, just translated

up to start at v1 instead of starting at v0. Of course, this cone is contained in this

bigger one.

And by induction, in fact, the entire rest of the chain will lie in this smaller cone.

Therefore, it lies in the big one, also. OK. Fine. So by construction it will lie in alpha

over two cone. The worry is that these two cones don't intersect. Here we have an

angle. The half angle of the cone is whatever angle the angle is at v1. Sorry, this

should not be the angle. This should be the turn angle. That angle is how much you

turn from v0, v1.

Now, we know that-- we're assuming that-- the turn angles are all, at most, alpha.

The turn angle cone could actually be twice as big as the vertical cone that we were

always using. We always use a vertical cone, half angle alpha over two. But it's OK

because we always keep these edges, like v0, v1, was on the edge of the cone. And

so when we extend it, it lies on the edge of this vertical cone. So its angle-- in the

most extreme case-- its half angle is alpha, which would look like this.

We'll go all the way over from the right side of the cone to the left side of the cone.

In general, it's not going to be right and left, but it's going to be some side and the

antipodal point. And because the double angle of the cone is alpha, it's still OK. You

will intersect somewhere on the cone. This is a subtle detail, but it's really crucial

because we start with a chain that has relatively large angles, alpha.

And we get it into-- we squeeze it into-- a cone that still has double-- twice its angle

is alpha, but we kind of compress it into something of half angle alpha over two. You

might think, oh, I'm just changing the definition and calling it half angle. Therefore, it

gets to an alpha over two. But it's a little tricky to actually get it to fit in a vertical

alpha over two cone. Once we have this, it's really easy to canonicalize a chain, a

producible chain. So let me tell you how to do that.

So we're going use the FedEx method of taking some configuration and

canonicalizing it, and then uncanonicalizing to something else. We're also going to

23



use a new method, which I just came up with the term. Is called the momento

method which is you play the movie in reverse. So, I guess, also the Merlin method.

That's more complicated. So we have a movie here in mind, which is how was the

chain produced?

So what I want to show is that if-- I want to start with a producible configuration and

chain. Somehow, it got produced. So you had your cone and the thing starts

spewing out and folding, and doing whatever. That's an animation, in some sense,

of one edge coming out and stuff is folding at the same time. Then an edge is

created, then another edge comes out, and so on. What I want to do is play that

movie backwards. It's a pretty intuitive idea. I just want to start feeding the edges

back into the cone, and just keep stuffing them in.

Now, what happens out here is easy because we know it doesn't penetrate the

cone. That's the assumption. And we know whatever was created here could be

uncreated, as long as you can afford to erase edges one by one. That's the tricky

part. How do I erase an edge? And usually, I can't. But I don't have to erase any

edge. Like, if I had to erase this one, that would be hard because some motion here

might penetrate where that edge ought to have been. And erasing the edge will

make it-- adding the edge makes it harder to fold. So I can't erase it.

But the edges I have to erase are the ones that have been fully inserted into the

cone. So if I can somehow do something inside the cone, I would be OK. All this

work, defining a canonical configuration, was about forcing a chain to stay inside a

cone-- and not only an alpha cone, which is what we're going to have as the

ribosome, but an alpha over two cone. This is smaller than my ribosome cone by

factor of two. And I need that.

Why do I need that? Because this thing, I have no control over the outside chain. So

the way that it approaches the cone could be as sharp as like this, where I have the

first edge that is-- the current edge that is-- inside the cone. As far as the movie is

concerned, there's only one edge. There's nothing up here. I want to put something

up here, in a cone, naturally. But I don't get to control the first angle because that is

24



controlled by this motion. Maybe it really needed to go sharp like that so that it could

make a sharper angle or whatever.

So you might say, well, of course I can put it inside and alpha cone, which is the

same as this alpha. Sorry-- bad picture. This is alpha. This would be a problem

because I have this weird angle coming in, and now suddenly I have to bend back

like that. Maybe the turn angle here is not so sharp as alpha. Maybe it's one

degree. So I really can't force the rest of my chain to lie in this cone. But I claim I

can force it to lie in this cone, with half angle alpha over two. This is a little more

subtle. Oh, right. I wanted to mention that helices appear in nature. They appear in

proteins, but they also appear in this crazy climber plant. Marty, have you seen this

in Costa Rica?

AUDIENCE: Yeah.

PROFESSOR: Yeah. There's some really incredible wildlife in Costa Rica. I've never been there,

but I've seen lots of pictures and this is spirals in practice. Also, proteins tend to

form these things. They call them out alpha helices because they spin like an alpha,

I guess. So it's kind of neat that the canonical configuration, which is totally

geometrically motivated, also appears in biology. Not that kind of biology though.

So here is the picture. I have the big cone. That is my ribosome, and here I'm going

to write beta for the-- beta for big, I guess. And then we know that we can

canonicalize a chain, or there at least exists a canonical configuration of the chain,

where everything lies inside a cone of half angle alpha over two. Now the problem is

that cone, we want it to be at a funny angle. Let me draw a real picture.

Here's a ribosome. It has a big angle here. We'll call alpha. Now, I'm going to do the

not extreme case, try to be a little more general. There's some edge that is currently

entering, and we have no control over that edge or the rest of the chain. That's

determined by the movie which we're trying to play backwards. What we have to

control, and what we're free to control, is the rest of the chain because as far as the

movie is concerned, that hasn't been created yet or it's already been destroyed,

depending on whether you're playing forwards or backwards.

25



We need to say what happens to it. And what I want to happen is so that by the time

this edge is inside, that edge plus the rest is in the canonical configuration. If I can

achieve that, then as edges come in they become canonicalized, and then

everything will be canonical and inside the cone and we're done. That's our goal.

Canonicalization. So, what's the deal?

Well, in reality, there's some cone-- yeah, it can penetrate like that-- could penetrate

the outside cone. This is getting messy. So if I extend this line, there's a cone of half

angle here, which is equal to whatever the turn angle is at that vertex, which is,

again, specified. We're not free to set it to whatever we want. We know the next

edge must lie on this cone. What I do-- now, on the other hand, off to the side, I

have in mind a vertical cone whose half angle is alpha over two. So it's quite small.

And I know-- how do we do it-- initially, the first edge was along the maximum x

direction, and then it spirals up from there. OK.

Here's what I'm going to do. There are sort of two situations. What I'd like to do is

put a cone here that is vertical. Something like that. Just like I have here. The

trouble is, the right side of this cone does not intersect the boundary of this cone.

And need it to in order to form the right angle here. It's going to-- it might go through

the middle of the cone like it does here. So then what I do is I take this canonical

configuration and I rotate it so that-- this is hard to draw-- it'll be something like this.

There's no hope of seeing this.

So it's on the surface of this cone. It's not on the far right edge. It's going to be

some intermediate point. And that's exactly where it intersects this cone. It's just like

the previous picture, just harder to see. I'm taking the intersection of these two

cones. If I just rotate the picture, then it will lie in the intersection-- if they intersect.

But they might not intersect. So let me go here and try it again.

So the easy case is when I can draw a vertical cone and it intersects the cone that I

need to intersect. The harder case is-- maybe it's more extreme. Maybe it's a very

tight angle here. So there's a very small turn angle. I have to intersect this cone.

Because the cone that I'm working with is actually smaller-- it's half of this angle-- it

26



might not intersect this cone. In that case, I'm going to rotate the cone to fall over a

little bit. So instead of being like that, it's going to be like this. OK.

So I want the intersection of these two cones, which I've conveniently made this

edge here. So the first edge will lie along here, and then it's going to spiral out from

there. So I still have the canonical configuration. I've just tilted it. Tilting is going to

be necessary because I have this angle to match up. The convenient thing about

the canonical-- the alpha CCC, canonical configuration-- is that I have this half angle

of alpha over two, so I can afford to tilt it by up to alpha over two. It will still stay

within the ribosome, which is of half angle alpha.

And all I need to show here-- and once you think about it for a while, it's obvious--

that ideally, I don't tilt it at all. I've got tons of room. Huge amount of room here. But

sometimes I'll have to tilt it, but by at most alpha over two. So I will stay inside the

ribosome, because this apex was inside the cone and the smaller cone, even if I tilt

it all the way to meet this edge, it will stay inside the cone. In fact, it'll stay inside the

big cone. In fact, this cone that I tilt-- the one that contains the rest of the canonical

configuration-- will always contain the up direction. That's how to see it.

If it always contains the up direction, then at most, it's that big. And that will--

because that's an angle of alpha because that was the half angle of the big cone.

So that will be a half angle of alpha over two. As long as you contain the up direction

at all times, you will not fall outside the big cone. So the rest is just momento. So

you play this movie backwards. As things come in here, this cone is going to wiggle

back and forth, depending on how this angle changes. Once the edge gets all the

way in, you absorb it into the canonical configuration.

Little bit of work there but you just sort of twist the cone around until that algorithm

that we described for producing canonical configuration would actually produce

what's inside the cone. Then the next edge comes in, cone wiggles around until the

edge gets all the way in, then you canonicalize what's inside the cone, and repeat.

So if you had a way to get it out, you could put it back in and keep track of all the

stuff that happens on the inside. That's what this theorem says. And then there's

27



just slightly more to say.

If you have a flat state, we want to prove these things are flat state connected. So

take some flat state-- I really should have only obtuse angles. I claim this flat state

can be produced using a cone of the appropriate angle. If the sharpest turn angle

here is alpha, then you need an alpha cone. And the way to think about that is to

think of the cone moving instead of as the chain moving. It's a lot easier. So you

want the chain to lie around here.

So you start by moving the cone, I guess like this. So that it just barely touches the

plane, and this edge spews out. Is that the right way to think about it? I don't know.

Should be like this. So you take the cone. This is like putting frosting on a cake. So

you move your cone like here. You squirt out some-- this edge. Then, you do it so

that when you're here and the new edge is created, it's still in the plane. And then

you just sort of move around there. I'm just going to leave it as a sketch like that.

Once you know that you can produce any flat state, of course, you can reorient

yourself by relativity so that the chain is moving instead of the cone. So you can

produce this thing with a ribosome. Once you know all flat states can be produced

and you know all producible configurations can be canonicalized, then you know it's

flat state connected and you know all canonical things are flattenable and vice

versa, by continuous motions without self intersection. And all of this is algorithmic.

It can tell you how to go from one place to another.

And so this is a candidate algorithm, I would say, for how nature folds proteins. Just

thinking about the mechanics, not worrying about how it's implemented. Maybe you

take this model and then you try to make it physical forces, and you get a way to

fold proteins. That, of course, remains a mystery. But next time we will talk about

some very simple models that are motivated more closely via biology of how

proteins might actually fold, and talk about the complexities that you get there.

28


