MITOCW | watch?v=MDcAOTaCXHs

I'm Erik Demaine. You can call me Erik. This is the web page for the class. You
should all go there if you haven't already, and sign up on this sheet if you want to be

on the mailing list. Good.

So, maybe I'll tell you a little bit what this class about. Then I'll tell you about how the
class works, and then we'll do more about what it's about. The idea of lecture 1 is to
cover the entire class in one lecture. Obviously, | will omit a few of the details
because we have a lot to cover, but | thought it would be fun to give you a picture
what the whole class is, what the sort of content is, so you know whether you want

to be here. And my chalk.

So this class is about geometry. It's about folding. It's about algorithms. In general,
we are interested in the mathematics and algorithms behind folding things. And also

unfolding things, because that turns out to be pretty interesting.

And the formal term for things is geometric objects. And you think of things like your
arm folds. Pieces of paper fold. All sorts of things fold in the world. A lot of the-- if
there's any sheet metal objects in this room, maybe some of these parts are folded
out of sheet. | would guess so. So folding is everywhere, and this class is all about

how that works mathematically.

And I'm a theoretical computer scientist. | do algorithms, so my slant is towards
algorithms, which is getting computers to do all this for you. How many people here
are computer scientists? How many people are-- you've got to pick one--
mathematicians? How many people are neither of the above? Wow, cool. It's like
not a lot of mathematicians only, but a lot of computer scientists, a lot of everyone

else. So I'll go around later maybe and find out what your background is.

You may be interested less in the mathematics and more in the applications, so let
me tell you a little bit about those. | have a long list of applications, some of which

have been realized, some of which are still in progress or just ideas.



Robotics is a big one, folding robotic arms. And I'll show later different kinds of
transforming robots, like Transformers or Terminator 2-style, where you want one
robot to take on many different forms, this idea of programmable matter, where you
can program the geometry of your object as well as you could program the
software. So next time when you buy the new iPhone, you download the hardware
in addition to downloading software. That would be the crazy idea. That, of course,

doesn't exist yet. But it exists in some simple forms.

Computer graphics. If you're making Toy Story 4, and you want to animate your
characters from one position to another, you have some skeleton which is a foldable
object, and you'd like to interpolate between two key frames that the animator draws

automatically. That's a morphing problem, and it's a folding morphing problem.

We have mechanics. A lot of the early folding work is in like 17, 1800s, and is
motivated by building mechanical linkages to do useful things. This is back before
electrical computers, we had mechanical computers of sorts. Things like you could
sign your name in triplicate by just signing once, and having a linkage that made

many copies of it. | think Jefferson used such a linkage.

We have manufacturing, which is a pretty broad term-- things like sheet metal
bending. Nano manufacturing, | think, is an exciting context, where you can-- we're
really good at building flat nano-scale objects like CPUs. And if you could get them

to fold up, then you could manufacture 3D nano-scale objects.

| have optics here, Jason. Sure. George [INAUDIBLE] group does some optical

devices through folding here at MIT.

Medical is a big one. Imagine folding a stent really small, so it can fit through small
blood vessels until it gets to where you want in your body and expands-- do non-
intrusive heart surgery. Drug delivery is another one. You have some object you
want to deliver, your cancer drug, so it follows through your body until it detects the
cancer, and then it releases the drug, for example. Something we just started

looking at.



Aero-astro. You want to deploy something out in outer space. You've got to get it
there first within the space shuttle. So how do you fold it down small so it fits in your

space shuttle, and then expands when it gets there?

Biology. Big one. I'm interested in protein folding. Proteins are the building block of
all life forms we know, and we'd like to know how they fold. I'll show you some
pictures of them later. We'll talk more about it, obviously, in the rest of the class.
And the goal is to use this mathematics of folding to try to figure out what biology

might be doing in real life, though that's still obviously very difficult.

Sculpture, sort of an obvious one. Designing cooler origami is possible, thanks to
mathematics and algorithms. Hopefully Jason agrees. Jason Ku is, | guess, the top
origami designer currently at MIT. That's a safe bet. You could make some broader
claim. And we'll get him to give a guest lecture on the more artistic side of origami,
and I'll talk about the mathematics-- some of which is currently used in origami
design today, either implicitly or explicitly, some of which is yet to be used, but
hopefully will make cooler sculpture. You could also imagine building interactive

sculpture.

Interactive buildings' architecture is another big one. How many people here are
architects? Cool. A bunch. So | think this is really exciting and underexploited at the
moment, reconfigurable buildings. Hoberman is one example of somebody
exploring this, getting the building to fold from one shape to another, or getting your

shades to fold from one shape to another, all sorts of things.

That's all | have. Maybe there are more. You're welcome to tell me. But this is

somehow why you might care about the mathematics of folding things.

And what else do | have? Yeah, let me tell you a little bit about the field. It's, in some
sense, old. There are some problems in this world of geometric folding that go back
four or five centuries. And some of those problems are still unsolved, but a lot of the
action in the field has been in the last 12 years or so. And it's been really exciting. A
lot of theorems have been proved. In fact, a lot of theorems have been proved in

the context of previous iterations of this class. And so | always have to update



things, because we keep getting new results. And the idea of this class is to cover
the bleeding edge, whatever the frontiers of what's known, and also to push that

edge further.

So there is an open problem session, which is optional. But if you want to come
solve new problems that haven't been solved before, every week probably we'll
work on a problem related to what | cover in class. So you know what's known, and
then we try to prove what's unknown. That's the idea. And that's worked pretty well

in the past.

Let's dive a little bit into the sort of mathematical structures. So say geometric
objects. There are three main things that we typically think about, linkages, pieces

of paper, and polyhedra.

A linkage is something like your arm or a robotic arm. You have one-dimensional
straight links like bones, and hinges that connect them together. And you'd like to
know how that thing can fold. So this is like in the graphics world or mechanical

linkage world.

The typical way we think about linkages is that they have rigid bars. As opposed to a
string, which is really floppy, here you have these rigid, like maybe metal, parts, and
you can only fold at the hinges. That's typical thinking on linkages. Makes it

interesting. And sometimes we also require no crossing.

I'm trying to take a physical thing you have intuition for, and write some of the
mathematical constraints. No crossing means you can't intersect yourself.
Sometimes that's important. Sometimes it's not. In a lot of the mechanical linkage
world you can have crossing bars, but just because they're in different planes in real

life, if you're making a two-dimensional linkage.

Paper. This is my drawing of a piece of paper. The rules are you are not allowed to
stretch the material, and you're not allowed to tear or cut. So all you can do is fold.
And so intuitively this is saying you can't make paper any longer. You can't really

make it shorter. The only thing you can do is change its 3D geometry. But if you



look really closely, the geometry is the same. It has a fixed intrinsic geometry. All the
distances on the surface are staying the same. And usually in modern origami,
you're not allowed to cut the paper, because that makes things too easy, basically.
And | guess also no crossing here. It's a requirement. This is a pretty informal
description of paper. You can formalize it. We will do that at some point. But it's

pretty intuitive. You've all done it before.

Polyhedron is something more three-dimensional. So here we had one-dimensional
things we were folding. Two-dimensional things we were folding. A three-
dimensional thing, or at least a two-dimensional surface in three dimensions, a
typical thing you might want to do with a polyhedron is build it. And often you want to
build something out of flat material, something like-- you've probably made a cube

by building a cross, and then folding it up into that thing. That's the folding problem.

The unfolding problem is, where do | cut along this surface in order to make one of
these nice unfoldings? | think there's one more cut here in the back. If | did it right,
that will unfold into the cross. So if | have some complicated 3D shape, what 2D
shape do | cut out in order to bend it into that 3D shape? That's the unfolding

problem.

There are actually lots of different kinds of polyhedron folding problems, but here it
is you want to cut the surface. You want one piece-- it's a little harder to assemble
multiple pieces-- and you'd like no overlap in that unfolding. Because if, when you

unfold, it overlaps, then you can't actually make it out of one piece of sheet material.

So these are the sorts of things we study. And | think the plan in the class is | will
start with paper, because it's kind of the most fun, origami design, computational
origami design. And then we'll talk about linkages and polyhedra. And I'll probably
jump around from week to week, just to keep it exciting, because they're all
interesting. You might each have your favorite one. And so that we can talk about all

of them at once.

So what kind of mathematical questions would you ask about these structures?

Well, there are two main types | like to characterize. On the one hand, we have



what | call foldability questions, where you're given some existing structure like a
linkage, or a piece of paper with some creases on it maybe, and you'd like to know,

how does that thing fold?

So | give you some structure, and you'd like to know, does it fold? Maybe just does
it fold at all? Or, in some particular way, can you make it fold into something
interesting? Or some notion of interesting? I'm going to be generic here, because

there's a lot of different questions obviously.

And this is in contrast to a design question, where you're given-- what you start with
is a goal. Like | want to make a butterfly. And then the question is, how do | fold a

piece of paper to make that butterfly?

So here you're given maybe a crease pattern and given some structure. You want
to see how it folds. In design, you're given the goal and you want to figure out what

you should build, what folding structure should | make that will achieve this goal?

So what shapes? Shape is one thing you might want. But in general, you have some
property you want to achieve. Can you fold it? And of course if you can, how do you
do it? So this tends-- in general you could think of this as a more mathematical
question, this as a more algorithmic question. But usually actually both of them are

addressed with algorithms to some extent.

Of course design is somehow cooler, but often we need to understand foldability

before we can solve design. But not always. It depends.

And just to give you like-- | mean if you looked at the entire set of results, the
questions and answers, that we consider, and you filter them down, there would be
three kinds of things that we prove in this class. These are the results. All the results

in three bullets.

It could be either you get universality. This is the coolest kind of result, and it's
surprisingly common. Everything can be folded, for some notion of everything.

That's always a challenge. And you get an algorithm to do it.



So if you say | want to fold a butterfly, you put the butterfly into the algorithm, out
come your design for folding a butterfly. That's the ideal picture when you get a

universality result.

The next best thing you could hope for is a sort of decision result, which is that
there's a fast algorithm that will tell you whether something is foldable. So we say it
decides foldability. So you give it a butterfly. It says, oh, that's impossible. That's not
true. But you could imagine that. Or maybe you give it a butterfly, it says yes. You
give it the skyline of New York, and it says no, you can't fold that. That's not true.
But if it's not the case that everything is foldable, the next best thing is you could at

least distinguish which things are foldable from which things are not.

And then, of course, the worst thing that could happen, in some sense, is you get a
hardness results which says, there's no good way to even distinguish foldable things
from unfoldable things. So I'm going to say computationally intractable to mean
generically that there's no good algorithm to solve a problem. We're going to be
more formal about that in the future. Because different people have different
backgrounds, you may know about competition complexity. Many of you don't.

That's cool. We're going to talk about all that here.

All right. That's the class in a nutshell. Totally generic. Any questions so far?
Probably not. | thought now | would tell you a little bit about the class structure. The
main part of the class are these lectures, and attendance is mandatory for classes,
because you're not going to learn it unless you come here. You can have
exceptions. Just email me and watch the videos later. That's one of the fun features

of the videos, although the videos are mainly to reach the world for fun.

There will be a few problem sets in this class, not too many. And the other main
thing that you turn in is the project. So sort of a project-focused class. You will hand
in some write up. You will give some presentation in the last few lectures of class, if
you're taking the class for credit. If you're listening, you don't have to do this. You
can, if you want. You can do the problem sets. Some of them will be fun. Hopefully

all of them will be fun. None of them will bee too painful.



AUDIENCE:

PROFESSOR:

But for people who are taking the class for credit, you have to do a project and
presentation. The project could be about tons of things. You could build a sculpture.
You could come up with a cool virtual design of something amazing that somehow
relates to folding. It doesn't have to be direct. If you're a coder, you could implement
some algorithm we talk about, or make a beautiful image or animation or applet or

something.

If you're more theory, you could solve an open problem. Obviously that's a big win.
But even trying to solve an open problem is fine. You can talk about how you failed
to solve it, in the unhappy case that happens. But if you want to solve an open
problem, | would encourage you to come to the open problem session, so we can
all solve it together. Then you can have a joint project on what we do, but it's totally

unpredictable, of course.

Even posing an open problem in this field is pretty interesting. | know a lot of the
hard open problems. | would like to find more of them, more tractable ones. And so
if you have some idea, especially related to some application field that you know a
lot about, it'd be cool to try to extract, what is the mathematical problem in a lot of

these fields?

Or you can write a survey. That's a typical project. You should avoid overlap with-- |
don't actually have it here, but the textbook for this class-- you can imagine it being
here-- is Geometric Folding Algorithms. Here it is. Thank you, Jason. That's good. |
ran out of copies. Now | have one. No, I'll give it back. So this is by me and Joe

O'Rourke at Smith College. Any questions about class structure? Yeah.

Can projects be individual? [INAUDIBLE]

Projects can be with groups. | forget whether the website has a limit on the number
of people. I don't think so. But at some point you'll have to do a project proposal. |
should mention that also. And then | will vet your project group. But | think
anything's fine. Just when you have more people, you're expected to do a little

more, naturally.



Other questions? Yeah. | love collaboration. | think I've never written a paper
without a co-author. It wasn't a survey paper. So collaboration's good. All right.

Doing well.

So the next thing | want to do is actually dive into actual content. This was totally
generic. And to me, it's useful. But maybe to you, it's less useful. This is sort of an
organization. As we go through, everything you'll see will fit almost always into one
of these three categories. The question will fit into one of these two categories, and
the answer will fit into one of these three categories. Now let's see what some of
those actual problems, questions and answers, are. That's the fun part. There's so
many cool results here, and so many cool open problems. | thought I'd tell you a

bunch of the big open problems, too.

So in today's class, I'm going to go in order. We're going to start with linkages, and
then paper, and then polyhedra. And I'm going to start with linkages allowing
intersection. So magically, bars of the linkage can overlap each other. And then
later I'll talk about linkages, which is most interesting in two dimensions, because
you can actually build them in three dimensions. And then we'll go to linkages that

do not have intersection.

So an early motivation here where a lot of this linkage folding came from originally--
this is the 17, 1800s-- is converting linear motion into circular motion. Actually, it's

really-- yeah, get it right. Linear motion to circular motion.

I don't know what order to cover these things. I'll show you a slide. My rules are
essentially no words on any slide. This is just for pretty pictures, and I'll write stuff on
the board. There's this fun book called How to Draw a Straight Line by Kempe in
1877, which is all about this problem. How do | turn a circular crank and make a

straight line come out as a result?

And the motivation for this problem is steam engines. You have a steam piston,
which is moving something up and down along a straight line. And maybe you're
building a locomotive train, and you want to turn a wheel in a circle, because wheels
are round. So how do you convert this linear motion into a circular motion? That is

9



How to Draw a Straight Line, affectionately titled.

But you can see that one of the earliest linkages for this is called the Watt parallel
motion. And we have a little animation here. So the idea is this vertex in the top left
is pinned down. This one in the bottom right is pinned down. And then, | think if |
move this around the circle, the green guy moves along that figure eight. And

there's a limit to how far it can go.

So and if you draw it right, the figure eight is almost a straight line. So that was
mathematics back in the day. No, no one thought that that was perfect, but it was
pretty good. And that actually led Watt-- you may have heard of Watt. He's a unit.
And he was very proud of this invention. And he made tons of innovations in the

steam engine world, and this was his favorite. And, | mean, it changed things.

But later on-- | mean this is like 100 years later, 1864 versus 1764. Exactly 100
years later. Peaucellier a French guy in the army, | think, came up with this linkage.
So again, you have two pinned vertices here. This one's moving around a circle. So
you just turn the crank, and look. This guy moves along that red line. Perfect. Very
cool. Again it has a limit how far you can go. But it's pretty awesome. | mean you

could play with this forever. | won't bore you.

There's this other guy you may have heard of, Kelvin, Lord Kelvin. Another unit.
There's a story about him playing with one. He wouldn't want to give it up, because
he was having too much fun just pushing it back and forth. It's like, wow, a straight

line out of a circle.

So that's pretty cool. Making straight lines out of circles is pretty neat. In fact, you
could think, well, what else could | make? | can make a straight line. That's kind of
nice. But could | make, | don't know, some other curve? | mean a straight line is a

special kind of curve.

Maybe | could make this curve. That's a nice curve. In general, there's a universality
result which says there's a linkage to sign your name. That's the cute phrasing. So

it's a two-dimensional linkage. You turn one circular crank, and it signs your name.

10



The mathematical version is that you trace a piecewise polynomial curve. Or if
you're an architect or graphics person, call this a spline. Pick your favorite word.
You can make it all with one linkage. It's pretty crazy, and not super practical.
Building this would probably require thousands of bars. But hey, who's counting? At

least you can get a universality result.

This is actually something that goes back, in particular, to the first time this class
was taught six years ago. We found some better ways to do, so it's known that it

could be done. And I'll talk about those ways later on. Cool.

Open problem. Not everything is known. There's a lot of open problems here, but
one of them is, what if you forbid crossings? So these linkages, like the ones I've
been showing here, like the Peaucellier linkage, there's crossing bars. And yeah,
you could do that, but what if you forbid crossings? It'd be really cool to sign your
name with a linkage that doesn't even cross itself. That's totally open. Getting any
kind of result, positive result, maybe not everything, but at least getting some
interesting things. Even drawing a straight line, | think, is open. Could be a fun

problem to work on. All right. That's one.

Let's go over here. Let's see, is that the end of linkages, is crossing? No. Next
question you might ask is-- so that's sort of a design question. | was given the goal,
which was to make a straight line or sign my name. And | wanted to find the linkage

that did it.

The other question, the foldability question, one of them is rigidity, which is, does a
linkage fold at all? | should say a given linkage. So for example, I'll give you three
examples. Test you out here. These are rigid bars connected by hinges. OK, rigid or
flexible? Rigid, | agree. Rigid or flexible. Rigid. Any other answers? Flexible, correct.

Both are correct.

In two dimensions, OK, it depends where you live? In two dimensions, this is rigid no
matter what, in any dimension. But in three dimensions, this is flexible and in two
dimensions, it's rigid. In three dimensions, you can pick this guy up and it spins

around a circle, out of the board here. Or you could pick this guy up. It spins around
11



a circle. In two dimensions, though, it's rigid because it's really just two triangles.
Triangles are rigid in two dimensions. This is a tetrahedron. Tetrahedra are rigid in
three dimensions. Rigid or flexible? Everyone agrees. In both dimensions it is

flexible.

OK, pretty intuitive for four vertices. But you can ask the mathematical question and
give you a linkage. Is it rigid in 2D? Is it rigid in 3D? And there are many versions of
this question. But the short version, a short answer, let's say, is that distinguishing
rigid from flexible two-dimensional linkages is easy. There's a good algorithm to do
it. It's very powerful, very useful. In 3D, we have no idea. Very open. Tough. Very
tough problem. A lot of people have been thinking about that for decades. So that's

rigidity. I'm just going to touch on lots of topics very briefly.

All right. Next we go on to, | guess, one and a half. This is linkages forbidding
intersection. And this is more interesting when you're talking about 3D linkages like
my arm. | really don't want it to penetrate other bars. It's not possible. And the first
question you might ask in this world, which | guess is a foldability question, sort of a
reconfiguration question, let's say | want to fold my robotic arm from one

configuration that | know-- call it configuration A-- to some other configuration, B.

When is that possible? Can | go from A to B? Can | go from some other A prime to
some other B prime? Sometimes yes, sometimes no. It depends. Sometimes it's not
foldable at all, even when you allow intersections. So this is a pretty open-ended
question. In general, it's computationally intractable. If | give you a linkage and two
configurations, to decide whether you can go from A to B is, for the complexity
theorists, piece space complete. Talk about what that means later. Really, really

hard is the short version.

But a lot of the times you can think about special linkages. There are a lot of
interesting special cases. In particular, we like to think about chains like | drew
before. Also polygons. That's a little messy, but imagine those don't self-intersect.
So this is what | call an open chain, and this is a closed chain. In general, these are

chains.

12



And the other thing | might like to think about, in particular because proteins look
kind of like this, are trees. Trees are just linkages without any cycles in them. So
those are nice and simple. Here | have no cycles, no cycles, one cycle. Easier to
think about. And sometimes you actually get a universality result that these linkages
can fold from any configuration to any configuration. And that's especially cool. Let

me tell you about them.

Where do | want to go? So it depends again what dimension you live in. I'm very
flexible in this class. You can live in any dimension you want to, and even fictional
ones. And you can think about chains and trees, let's say. You could go more

general, but this is where most things have been studied.

And the answer is, for chains in 2D you get a universality result. You can fold from
anything into anything. For trees in 2D, you don't. There are some trees you can't
get from one configuration to another. Which ones? We don't know. But at least you
don't get a universality result. In 3D chains you do not get a universality result. And
so also for trees, because that's even harder. And for 4D, everything's easy. Also in

5D, any higher dimension.

Because the intuition here, at least for this column, is you think about tying knots. |
have a one-dimensional linkage here. Think of it as a one-dimensional cord. It's kind

of a kinky cord. It has kinks-- not the other kind of kinky.

And in two dimensions, if you draw a non-self-intersecting loop, it's never knotted.
You can't draw a knot in two dimensions. You can drawn a knot in three dimensions,
and you cannot draw a knot in four dimensions or higher. You may not know that
result, but it's true. So it matches, but things are little tricky, even trees. If this was a
piece of string, you'd be able to always fold this piece of a tree-shaped piece of

string into anything you wanted. But it's a little more complicated.

Let me show you a locked tree, | think, is next. Yeah. For a long time, these were
the only known locked trees. These are configurations of tree linkages that cannot
reach some other configuration. In fact, they can barely move at all. It's less obvious

for some of them. But say, in this top left one, you have these little sort of petals
13



tucked into their armpits, | guess, and you can't get any of those arms open unless
you had a lot of room to open it. And in order to make room, you'd have to squeeze
all the others really tight. And if you draw this example tight enough, also none of
the arms can get compressed very much. And so it's locked. And this is one of the

first examples actually discovered in 1998, and publication took a while.

There are a few others, which you see here. This one's kind of crazy because it has
only one vertex with three incident bars. Everybody else is like a chain. So it's like

three chains joined together at that point, and still it is locked.

And for a long time, these were the examples we would always carry around. These
are the ones that appear in the textbook. But | thought it would be neat to see, well,
are there any simpler examples? And last time this class was offered three years
ago, we found what is believed to be the smallest locked tree in existence. It has 1,
2,3,4,5,6,7,8bars, if | counted right. And it looks curved here, just to make it
easier to see. But, in fact, you could straighten these out and it's still locked. If you
squeeze these little regions down, they'd be very tight. So that was with a bunch of

students from this class. Cool. So that gives you some idea of this answer.

Maybe I'll draw you a picture for chains, because it's really simple. OK, imagine
tying a knot, but don't actually close the loops. And make these end lengths really,
really long. We call this the knitting needles example, because the intuition was you
have two long knitting needles, and then a very short cord connecting them in a

knot.

Mathematically, this is not a knot, because if it were string, you could untie it, no
problem. But because of these really long bars, you can't untie it. So that's why 3D
is hard. Or one example of why 3D is hard. It's pretty much our only example. It is

the smallest example, and we can prove things about it.

But there's a pretty fascinating open question here, | would say, which is,
characterize these bad examples. Which 3D chains and which 2D trees have locked
configurations? And all that means is that there are two configurations, A and B, for

which you cannot get from A to B. So this is an example. Those locked trees are an
14



example. It'd be really fascinating if you could do this. | would guess that this is a

hard problem, but | don't know. It's hard to know whether it's hard.

It'd be nice to understand 3D chains in particular, because they relate-- and 3D
trees. Oh, sorry. | have more animations. | forgot. Let me show you some pretty
pictures for this result. This was actually my PhD thesis, way back in 2001. And this

is @ more modern algorithm for solving this problem.

| give you some complicated polygon. First thing you want to know is, can you
unfold it into a nice convex shape? Once you get there, you could refolded into
some other shape by playing one of these motions backwards. So that's how you

unfold some teeth.

Here's one of those tree examples, but doubled. For a while, people thought that
might still be locked, but it's not. Can do this crazy fivefold rotationally symmetric
motion to unfold that thing. We're zooming in and out, so it looks like things are
getting bigger and smaller. But in fact, each of these bars is staying the same

length, and they're never crossing each other.

Here's a much more complicated example. This is the first algorithm that could
handle examples of this size. It's pretty fast. That's like it's going to come back. You
can do it. It's like a spider. Spooky. | think it has 500 vertices, and it probably took a
couple minutes to compute. I'm not computing it live here. There's an applet on the
web if you want to pick your favorite polygon and run this algorithm on it. It doesn't
make quite movies like in this style, but it will show you how it unfolds. We call this

the tentacle.

Yeah, so we'll talk about this algorithm, how it works. There's a couple other
algorithms for solving this problem. It's pretty cool, and you could imagine using this
for planning the motion of a robotic arm in two dimensions. But in three dimensions,
things are a lot harder. We lack good algorithms. | would like to study four
dimensions actually. There's some pretty neat questions here, but I'm not supposed
to talk about that. It's not on my list. I've got to move quickly, but we're doing all right

on time.
15



What | wanted to show you was a protein. This is a particular enzyme protein called
hexokinase, whatever. Embarrassing myself. It's a particularly complicated one. It is
one of a few | could find a nice free image of. But you can see closely, if you look
closely here, it's a linkage. And this one actually has lots of cycles. But the backbone
of a protein is like a tree, and so it fits into this kind of world. Unfortunately it fits in
this world of three-dimensional trees, which are really hard to fold. Or three-
dimensional chains, if you really just look at the backbone. They're a little bit more
complicated than the sorts of linkages we're talking about here, but it makes it even

harder to fold things like this.

But there's something special about proteins that makes them fold really well. That
enzyme over there is in every living organism we have ever tested for the existence
of that thing, which | assume is everything. And yet it's folding. It's produced by this
machine-- the Ribosome, you probably know about it-- in a sort of straight state,
and then it folds into this shape pretty reliably, less than a second, usually like within
nanoseconds. So it's really hard to watch what's happening. It's very hot and jiggly,

so it's a little hard to see what's actually going on in the real thing.

But somehow, these kinds of barriers to foldability don't happen. Maybe that's
because evolution found the right things, or maybe it's because protein chains don't
really look like this. They don't have these super long bars and super short bars. If
you've ever played with a chemistry set, all of the bars are within a factor of like 1.5
of each other. So there's lots of cool mathematical questions that come out of
protein folding, and we will talk about the ones | know. I'd love to find more. But the

ones | know | will talk about. And that's linkages.

Let me move on to paper, unless there are questions. All right. Let's go over here.
So we've seen some universality results, some hardness results. | didn't go into
them. Folding these linkages. Let's do that for paper. | think first up | have
foldability. And then we'll talk about design.

So there are lots of questions in both. But for foldability, the sort of first question

people like to ask is, which crease patterns fold flat? So a crease pattern is just a
16



graph drawn on a piece of paper. So you have some collection of lines, and | think
that will fold flat. But I'm not going to try to draw something more complicated, but
you could imagine doing it. | don't know. That probably is not flat foldable. It might

be. It's close.

But that's the sort of question. If you take some origami and unfold it, what kind of
patterns do you get? Some flat origami, something that folds into two dimensions in
the end. There's some really nice structure here. If | drew it right, this angle plus this
angle should equal 180 degrees, for example. And that's true everywhere. And

there's all sorts of cool properties. But unfortunately, this is really hard.

This is NP hard problem. You've probably at least heard of P versus NP. Again, I'll
define it later. But it means probably there is no good algorithm to solve this
problem. It's really hard to figure out which crease patterns fold flat. It's kind of

annoying.

One good news is that if you just have an example like the original thing | drew,
which is like this-- so it has one vertex and a bunch of creases emanating out, that
picture we understand. So it's easy for a single vertex. That may seem kind of trivial,
but it's actually really useful because it lets you understand the local behavior
around one vertex. If you check that for every vertex, you don't know that the whole
thing folds, but at least you know it mostly folds, at least locally. And you can't tell

whether it globally folds correctly, because that's NP hard.

There are so many questions here like, what about two vertices? No one's studied
that. I think it's polynomial, but well, it's certainly polynomial, but | think you could do
it in linear time. Anyway, there's lots of open questions there | haven't even listed

here.

One of the bigger open questions is a particular kind of crease pattern, which you
may have encountered in real life refolding your roadmaps. The sa