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We’'ve done several
combinations of the
constraints of equilateralness,
equiangularity, and

obtusehood for 3-D chains we
want to know whether can be

locked. What about the
others?







Image by MIT OpenCourseWare.



The geometric (cone)
model for a ribosome
seems too simple. Is it

actually based on some
verified model from
biology?




Image of surface of polypeptide exit tunnel removed due to copyright restrictions.

|Nissen, Hansen, Ban,
Moore, Steitz 2000]



[L21] In proving the NP-
hardness of the 2D HP-
model folding problem,

what are the NP-hard
problems used in various
reductions?




Protein Folding in the Hydrophobic-Hydrophilic (H P) Model is
NP-Complete

Bonnie Berger™ Tom Leightont

bin packing

Figures removed due to copyright restrictions.
Refer to: Fig. 4-5 from Berger, B., and T. Leighton. "Protein Folding in the Hydrophobic-

hydrophilic(HP) is NP-complete." Proceedings of the Second Annual International Confer-
ence on Computational Molecular Biology (1998): 30-9.



On the Complexity of Protein Folding

PiErLUIGI CRESCENZI, DEBORAH (GOLDMAN, CHRISTOS PAPADIMITRIOU
ANTONIO P1cCOLBONI, MIHALIS YANNAKAKIS

Hamiltonicity in
max-degree-4
graphs

Figure and excerpts removed due to copyright restrictions.
Refer to: Fig. 2 from Crescenzi, P., D. Goldman, et al. "On the Complexity of
Protein Folding." Journal of Computational Biology 5, no. 3 (1998): 423-65.



Any progress on any of the
open problems?
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Flattening Fixed-Angle Chains
Is Strongly NP-Hard

Erik D. Demaine* and Sarah Eisenstat*™

MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar St., Cambridge, MA 02139, USA

Problem Linkage Edge lengths  Angle range
Flattening fixed-angle chain equilateral ~ [16.26°,180°]
Flattening fixed-angle chain e(1) (60 — £°,180°]
Flattening fixed-angle caterpillar tree  equilateral {90°,180°}

Min flat span fixed-angle chain equilateral  [16.26°,180°]

Max flat span fixed-angle chain equilateral ~ [16.26°,180°]

Courtesy of Erik D. Demaine and Sarah Eisenstat. Used with permission. 12



(0,0) a5+ (14, —2)

a5+ (22, —4)
a4 (26, —6)

az

aze (26, —9)
aze (22, —11)

ais (14,-13)
[Demaine & Eisenstat 2011]

(40, 0)

|

7 —

Courtesy of Erik D. Demaine and Sarah Eisenstat. Used with permission.
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Courtesy of Erik D. Demaine and Sarah Eisenstat. Used with permission.
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Courtesy of Erik D. Demaine and Sarah Eisenstat. Used with permission.

B
ais 6 . . as
14 ag
aie ais aio az
ai2| |aii
by b3
a7
b2 [Demaine & Eisenstat 2011]
| | | ] [
| I | ] |
e --- ---— —e--- ---— —® - - -

15



XLi T
----— e L e . . . ———® - -
| €T; | Xl
—--e— ° L ° N . e —  —e -
xI; €Tq Il I

rigid edge
(unspinnable)

Courtesy of Erik D. Demaine and Sarah Eisenstat. Used with permission.

[Demaine & Eisenstat 2011]
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(a) Zig-zag gadget.

(b) Turn gadget. (c) Switch gadget. (d) Articulation gadget.
Courtesy of Erik D. Demaine and Sarah Eisenstat. Used with permission.

[Demaine & Eisenstat 2011]



Fig. 1a removed due to copyright restrictions.
Refer to: Demaine, E. D., B. Gassend, J. O'Rourke, et al. “All Polygons Flip Finitely... Right?”

Contemporary Mathematics 453 (2008): 231-55.

ADVANCED PROBLEMS

3763. Proposed by Paul Erdios, The University, Manchester, England.

Given any simple polygon P which is not convex, draw the smallest convex
polygon P’ which contains P. This convex polygon P’ will contain the area P
and certain additional areas. Reflect each of these additional areas with respect
to the corresponding added side, thus obtaining a new polygon P,. If P, is not
convex, repeat the process, obtaining a polygon P,;. Prove that after a finite
number of such steps a polygon P, will be obtained which will be convex.

This article is out of copyright and in the public domain. Erdés 1 9 3 5

18



Fig. 1a and 1b removed due to copyright restrictions.
Refer to: Demaine, E. D., B. Gassend, J. O'Rourke, et al. “All Polygons Flip Finitely... Right?”
Contemporary Mathematics 453 (2008): 231-55.

Erdos 1935



Fig. 2 removed due to copyright restrictions.
Refer to: Demaine, E. D., B. Gassend, J. O'Rourke, et al. “All Polygons Flip Finitely... Right?”
Contemporary Mathematics 453 (2008): 231-55.

de Sz. Nagy 1939



Fig. 6 removed due to copyright restrictions.
Refer to: Demaine, E. D., B. Gassend, J. O'Rourke, et al. “All Polygons Flip Finitely... Right?”
Contemporary Mathematics 453 (2008): 231-55.

Joss & Shannon 1973
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Table 1 removed due to copyright restrictions.
Refer to: Demaine, E. D., B. Gassend, J. O'Rourke, et al. “All Polygons Flip Finitely... Right?”
Contemporary Mathematics 453 (2008): 231-55.

Demaine, Gassend, O’'Rourke, Toussaint 2008

22



Table 1 removed due to copyright restrictions.
Refer to: Demaine, E. D., B. Gassend, J. O'Rourke, et al. “All Polygons Flip Finitely... Right?”
Contemporary Mathematics 453 (2008): 231-55.

Demaine, Gassend, O’'Rourke, Toussaint 2008
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" flokasatenbcTeo sTO# Teopemsi, nannoe B. Cekedpanveu-Hanem [cm.
B.Sz.-Nady, Amer. Math. Monthly 46, 1939, c1p. 176—177], nesepno.

“The proof of this theorem, given by B. Sz. Nagy, is incorrect”

Table 1 removed due to copyright restrictions.
Refer to: Demaine, E. D., B. Gassend, J. O'Rourke, et al. “All Polygons Flip Finitely... Right?”
Contemporary Mathematics 453 (2008): 231-55.

“Bing and Kazarinoff remark that Nagy’s proof is invalid,
but there is no basis for this claim.”

Demaine, Gassend, O’'Rourke, Toussaint 2008z



de Sz. Nagy 1939

SOLUTIONS

3763 (1935, 627]. Proposed by Paul Erdis, The University, Manchester, Eng-
land.

Given any simple polygon P which is not convex, draw the smallest convex
polygon P’ which contains P. This convex polygon P’ will contain the area P
and certain additional areas. Reflect each of these additional areas with respect
to the corresponding added side, thus obtaining a new polygon P,. If P, is not
convex, repeat the process, obtaining a polygon Py Prove that after a finite
number of such steps a polygon P, will be obtained which will be convex.

Solution by Béla de Sz. Nagy, Szeged, Hungary.
The process described in the above problem, i.e., the reflection of all addi-

tional areas, does not always lead from a simple polygon to a simple one, as
shown in the following example:

This means that the repeating of this process is not always possible.

In order to avoid this difficulty we modify the process in the following way.
Instead of reflecting all additional areas mentioned in the problem we reflect
only one of them, so obtaining obviously always a simple polygon again. We
agree to define the process also for convex polygons as the process of leaving
them invariant.

Let Af, A#, - - -, A? be the vertices of the given simple polygon P° Apply-
ing the process # times leads to a polygon P, the points A2 (v=1,2, - - - , @)
being carried thereby into the points 4,*. Let us denote by C* the least convex
polygon containing P* in its interior. Each polygon in the sequence P, C° P!,
1, P, C?, - - - contains obviously the foregoing ones in its interior. The lengths
of all polygons P* being plainly the same, there is a circle containing all P*'s in
its interior. This implies that the sequence of the points 4,* (m=0,1,2, )
has at least one point of accumulation,

It follows readily from the nature of the above process that if B is a point
on, or inside of, P, then dist (B, A») =dist (B, 4,7") for n Zm. Especially we
have: dist (A% A2)=dist (4,*, A7) for nZ=m. From this it follows that the
sequence of the points A® (=0, 1, 2, - - - ) may have only a single point of
accumulation. It is thus convergent: 4 #—4, for n— .,

The polygon P= (4,44, Asds - - - s Ap1d s, A.4,), being the limit of the se-
quence P*, is also the limit of the sequence C" and is therefore convex.

Denote by «¢,(#) the interior of the circle of radius r drawn around 4, as cen-
ter.

Let A, be a convexity-point of P (i.e.,such that A, 1, 4,, 4.1 do not lie on
the same straight line; 4, being denoted also as 44, 4: as 4,;). We may find
then obviously a straight line L and a positive number p such that ¢,(p) lies
wholly on one side of L while all ai(p) (A#£y) lie on the other side. For n =na(u)
we shall certainly have: 4 ec.(p) forr=1,2, - - -, 0. L separates thus 4,* from
the other points 4y (A#p). Hence 4, is a convexity-point of P, It must be
therefore invariant: A1 =42, This implies that for nZn(p): dame(p) =4,".
Sois A, =A, for n=na(u).

Let now A, 4d,, - - -, A,, be all the convexity-points of P. We have then
AN =4, (r=1,2, -, 5) for N=max (no(p), molpa), - + -, molps)).

This involves that C¥ =P and therefore also that P*=P for n= N. We thus
obtain after a finite number of steps a convex polygon indeed.

This article is out of copyright and in the public domain.
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SOLUTIONS

3763 [1935, 627]|. Proposed by Paul Erdiss, The University, Manchester, Eng-
land.

Given any simple polygon P which is not convex, draw the smallest convex
polygon P! which contains P. This convex polygon P’ will contain the area P
and certain additional areas. Reflect each of these additional areas with respect
to the corresponding added side, thus obtaining a new polygon Py. If Py is not
convex, repeat the process, obtaining a polygon Py Prove that after a finite
number of such steps a polygon P, will be obtained which will be convex.

Solution by Béla de Sz. Nagy, Szeged, Hungary.

The process described in the above problem, i.e., the reflection of all addi-
tional areas, does not always lead from a simple polygon to a simple one, as
shown in the following example:

-
R A R
-

polygon containing P* in its interior. Each polygon in the sequence P (C° P!,
Cl, P2, C?, - - - contains obviously the foregoing ones in its interior. [he lengths

de Sz. Nagy 1939

them invariant. .
Let A?, A®, - - - | A2 be the vertices of the given simple polygon P". Apply—:
ing the process # times leads to a polygon P», the points 42 (»=1,2, - - -, g)e

being carried thereby into the points 4.°. Let us denote by C* the least convex M

polygon containing P in its interior. Each polygon in the sequence P, C°, P!,
C', P2, C* - - - contains obviously the foregoing ones in its interior. The lengths

of all polygons F* being plainly the same, there 15 a circle containing all P*'s in
its interior. This implies that the sequence of the points 4,* (n=0,1,2,--)
has at least one point of accumulation,

It follows readily from the nature of the above process that if B is a point
on, or inside of, P~ then dist (B, 4») =dist (8, 4,*") for nZm. Especially we

have: dist (4,®, A.) =dist (4., A for nZm. From this it follows that the

sequence of the points 47 (=0, 1, 2, - - + ) may have only a single point of
accumulation. It is thus convergent: 42—, for n— =,
The polygon P= (4,44, Asds - - -, Ay1d,, A,44), being the limit of the se-

quence P*, is also the limit of the sequence C" and is therefore convex.

Denote by c.(r) the interior of the circle of radius r drawn around 4, as cen-
ter.

Let A, be a convexity-point of P (i.e.,such that A,,, 4,, A,y do not lie on
the same straight line; 4, being denoted also as 4y, 4: as 4,4;). We may find
then obviously a straight line L and a positive number p such that ¢,(p) lies
wholly on one side of L while all ax(p) (A#£y) lie on the other side. For m = nq(u)
we shall certainly have: A7 ec,(p) for v=1,2, - - - ,o. L separates thus 4 from
the other points 4;* (A=%p). Hence 4,* is a convexity-point of P~ It must be
therefore invariant: 4+t =4, This implies that for nZ=ng(u): dae(p)=4,".
Sois A=A, for n = ng(p).

Let now Ay, 4,,, - - -, A,, be all the convexity-points of P. We have then
AuN¥=4, (r=1,2, - -, s) for N=max (mo(p), nolpa), - + +, mal)).

This involves that C¥ =P and therefore also that P*= P for n = N. We thus
obtain after a finite number of steps a convex polygon indeed.
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Fig. 4 removed due to copyright restrictions.
Refer to: Demaine, E. D., B. Gassend, J. O'Rourke, et al. “All Polygons Flip Finitely... Right?”
Contemporary Mathematics 453 (2008): 231-55.

Demaine, Gassend, O’'Rourke, Toussaint 2008
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Fig. 6 removed due to copyright restrictions.
Refer to: Demaine, E. D., B. Gassend, J. O'Rourke, et al. “All Polygons Flip Finitely... Right?”
Contemporary Mathematics 453 (2008): 231-55.

Demaine, Gassend, O’'Rourke, Toussaint 2008
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Image by MIT OpenCourseWare. 2 O 0 1
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Image by MIT OpenCourseWare.

Thurston 2001
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Courtesy of Adrian Dumitrescu and Evan Hilscher. Used with permission.

[Dumitrescu &
Hilscher 2009]
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