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PROFESSOR: This class is talking about two lectures, both about protein folding, fixed angled

chains, things like that. There's a few questions about them. One is mostly about

these open problems, equilateral, equiangular, obtuse 3D chains, fixed angle open

problem is, are they locked? So the question is about, what about any subset of

those combinations?

So this originally comes from an open problem I think posed in 1999, one of the first

3D linkage papers, and it asked whether equilateral universal joints can lock, and

that's still open. For universal joints, these two constraints don't make a lot of sense

because who cares if it's initially equiangular. As soon as you move it, it will no

longer be equiangular. And obtuseness I don't think matters too much, although it

potentially could. So for that problem, equilateral seems to be the core.

For fixed angle, though, we conjecture that fixed angle equilateral is not enough

from this example. It's still not proved to be locked. I don't know if it's hard, but it's

probably tedious, so it hasn't been done. This was the crossed legs example. All the

edge lengths are the same, and if you don't allow the touching part, then all the

angles are also the same. So this is everything except the obtuse property and it's

probably locked, so dropping obtuse is no good.

The other things you could drop are equilateral or equiangular. This is if you drop

equiangular. Fixed angle equilateral is not terribly constraining because you can

simulate a long bar by having a lot of 180 degree angles. This is obtuse and it's

equilateral but it's not equiangular and it's locked for a trivial reason. So this is

dropping equiangular.

If I drop equilateral, I can also just make a knitting needles example. I take a really

long link, and this thing is basically string, so I don't really care. This connection can

be done with a lot of obtuse angles, and then have a really long link. So dropping

any of the three constraints makes it easy to lock, so for fixed angle chains, you

need equilateral, equiangular, and obtuse. All these things together potentially
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mean you're not locked, but we don't know. That's the open problem. Of course, we

don't necessarily need exactly equilateral or equiangular. Hopefully, within some

small min to max ratio would be enough, but we don't know.

Next question is, why did we model the ribosome as a cone? That seems rather

simple. Is this realistic? And partly, when I taught the class in 2010, I didn't use any

images I couldn't get permission for. This year I'm more lax. We'll ask for

forgiveness instead of permission.

This is a paper from Science 2000. This is what the ribosome actually looks like.

There's many different figures of it, but I particularly like this one because it

highlights a tunnel in the center of the ribosome. And so the idea is this is a machine

for converting MRNA into your proteins, and the idea is the protein comes through

here. There's a little bump in the tunnel. Some people conjecture this is where the

amino acid gets attached, and then it feeds through here and starts spitting out.

And as I said, there's barely enough room here for an alpha helix, so probably not

too much folding happens inside and the folding should just happen over here. And

the observation is if you have a reasonable size protein that's only going to be about

this big, then there's this big, flat wall at the exit, so you have a plane there and this

half space is more or less a big obstacle. It's the alpha cone model where alpha is

180, I think, if alpha is the half angle.

So it's not really a cone. It's a cone that's been opened up all the way to a plane, but

that's one of the situations that's handled by the theorems that we talked about. So

that's why the cone model. We generalize to cones just because it works for general

cones, but the real one is a sort of flat cone. That's where that comes from. I think

actually we proved the theorem before we knew this, but then we looked it up and it

was true.

And the last question is about the lecture 21, which some of you may not have

watched because it's optional, but there's this model called the HP model for protein

folding. It's a model of protein energy and it says you have a chain of H and P

nodes, and basically, the H nodes are attracted to each other and the P nodes don't
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care. And the model is that the H nodes are hydrophobic so they want to be next to

each other so they're not next to water, which is surrounding the whole molecule,

and the P nodes don't care, or they're hydrophilic.

And it's known that if you have an HP string and you want to find the optimal folding

into a 2D or a 3D structure, that's NP-hard, which is kind of weird because somehow

nature does it, maybe because it found the easy instances by evolution, or maybe

there's something we're missing. This model doesn't capture reality. We don't know.

But it captures part of reality, as least as we observe it. Unfortunately, these

hardness proofs are a little too complicated to cover here, but I can at least answer

what are they reducing from.

There's two proofs. I guess they were basically the same time, I think around 2001.

The first one here is in 3D, and these are by two MIT professors. There's this big

construction but the reduction is from bin packing. So you have a bunch of fixed size

bins and you have a bunch of items of varying sizes and you just want to fit them all

in using the fewest bins possible. And the rough idea of the construction of this one,

this is how an individual number is represented.

The rough idea is you have this big cube. You fill the sides with stuff to protect from

the outside boundary. The insides are just used for connections, and then the front

face here is this stuff. You construct these bins, and you construct numbers which

have to fit inside the bins. That's the rough idea. The details are complicated.

The 2D proof by several people is from Hamiltonicity in maximum degree-4 graphs.

So you have a graph for every vertex that has at most four incident edges. You

want to find a Hamiltonian cycle, I think. It's much harder to see this picture, I would

say. There's no one diagram that summarizes it. This is roughly the construction,

which is quite complicated, and I'll just leave it at that.

That's what they're reduced from. I think an interesting open problem would be to

find a simple or cleaner proof of these results. Now that it's known that they're hard,

it's probably easy or hardness proofs. There's also some open questions from

lecture, like is it APX hard? Is it approximable to a 1 plus epsilon factor or 1 minus
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epsilon factor for any epsilon or is there some limit to approximability? We saw a

nice approximation 4/3 whatever, 3/4 whatever, but can you do better? Still open.

So that was the questions, and then this is a question that you usually ask in every

lecture. You didn't actually ask it on this one, but I copied and pasted. So there's

some interesting progress from this class two years ago, and I think in the open

problem session initially, probably also a class project related to this part.

So this is back in lecture 20. We had this proof, which is kind of fun, that flattening a

fixed angle chain, deciding whether there was a flat folded state, is weakly NP hard,

weakly meaning it depended a lot on what these numbers look like and it was a

reduction from partitions. You had to split up the numbers into two equal parts, and

if you did, then this key would fit in the slot and you're OK. If you didn't, the key

would collide with something here.

So this means the problem is hard if your edge lengths are vastly different. They

would have to differ by a ratio of exponential in the number of edges for this to really

be hard. So a natural question is, well, what if all the lengths are equal, equilateral

chains? Turns out that is still hard, and this is a paper just published last year with

Sarah Eisenstadt, who took the class then.

And there's a bunch of results here. All of these are NP hardness results, strong NP

hardness, so it doesn't depend on the numbers. We've got flattening results.

There's also min flat span and max flat span. Once you have that flattening is hard,

these are pretty easy to show hard, so I won't talk about them so much.

But basically, we consider different ranges of angles and what you might allow. In

some cases, we can get perfect equilateral chains. In some cases, they have to

range between, say, 1 and 2 in length. A natural question is obtuse angles. We

don't quite know that. The best we have is 60 degrees minus epsilon and larger.

This is nice for orthogonal chains, but it's not for chains, it's for trees. So still some

open questions here, but lots of hardness results.

I thought I'd show you roughly what the hardness proofs look like because they're

4



kind of fun. They all follow this kind of structure. This is a gadget, and it's a fixed

angle chain. Here I'm going to show everything with 90 degrees because it's easier

to think about. And it's kind of like-- I'm thinking plunger, but it's something like that.

You can decide which parts get pushed in and which parts get popped out, and this

L shape can basically shift left and right to three different places if I did it right-- this

one, this one, and this one.

So that's a useful construction, as you might imagine, and the idea is you take that

and you add on these guys. So I've got another kind of plungey thing like this, and

this guy can move left and right to various extents. That's not very intuitive. So then

this connects to these little guys, and these can just flip up or down if it's a flat

embedding of a fixed angle chain.

And so the idea is you have three of these pokey elements and they can attach.

They bump into these different things. And if it's up, then this can be up, but when

they're down-- like this guy is currently down, but it could be pushed up-- then this

guy must be flipped down like that. That's the rough idea of how these parts fit

together.

And so then this is how you end up building some kind of three sat problem. So you

have some variables. They can either be true or false. And the idea is that the true

guys are on the top, the bottom guys are on the bottom, and there's some

complicated interaction between them to make sure that they can't both be true and

false. Basically, you want these things to point in whenever possible because then

these guys can go down. Otherwise, you would collide.

And if this guy's in, the corresponding guys in the bottom must be down, and that's

enforced by this long thing, which is either completely down or completely up. So

when it's completely down, these guys all have to be down, which is going to be a

problem down below if things aren't satisfied. When it's up, all of these guys would

have to be up. Some of them could be up if you feel like it, but really, you'd probably

put them all down whenever you can because then you can take these guys and

stick them down.
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So this is how you set variables, and then the other things I showed were clauses,

essentially. At least one of those pins had to be pushed down and you don't know

which one, and that's the hard part. Rough sketch of how this proof looks.

One thing is here, for this to work, these edges can't be spinnable. When I go here,

I must immediately go back down. I can't flip it. So these are rigid edges. That's not

really the original problem, but you can simulate rigid edges, and this is where the

angles get small. You can simulate rigid edges with a very sharp zigzag because if

you ever flipped one of these, it would collide with the previous edge.

So for sufficiently sharp angles, you can force parts to stay straight in this funny

way, which is not great, but it's one way to force it. We can also do it with trees or

various other techniques, but that's how the proof looks. So that is flattening fixed

angle chains, strongly NP hard.

We go next to one more topic for fun. This is the topic of flips. I guess I have an

image for this. This is a problem posed by Paul Erdos, I think when he was a

student. He was a very famous mathematician. 1935, he asked this question. This is

the whole question as originally written.

You have a polygon and you take the convex hull of the polygon, and you take

these regions which are in the convex hull but outside the polygon. We call those

pockets. And you imagine flipping those outside, reflecting through that supporting

line, that tangent on the outside, so then you get this polygon. Here you get two

pockets. Maybe you flip both of them, and then you get a convex polygon. Now you

have no pockets, and so you're done.

And the question is as posed. Prove that after a finite number of such steps, the

polygon would become convex. So you might call this a conjecture by Erdos that it is

finite. He'd never published a proof.

There's one issue with the problem as stated. You can't actually flip both pockets at

once if you want to avoid collisions. The relation to linkages is we imagine these flips

could actually happen by a rotation, but you could also just imagine them as
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reflecting instantaneously.

There's this issue. If you flip two pockets at once, you might have collisions

afterwards. The way this problem has been interpreted by most people is don't flip

them all at once. Just flip them one at a time, and then you guarantee, because this

is a supporting line, a tangent line, of the convex hull, when you flip one pocket out,

it will go to the other side so it can't intersect the rest of the polygon. So you would

avoid collision if you do one flip at a time.

Now, this was observed, I guess, a few years later by Bela de Sz. Nagy, and he also

published the first proof. Before we get there, a weird property and why you might

worry about this being finite or infinite is if you take this quadrilateral and make this

very narrow, this edge very small relative to the horizontal edge, then you can

require arbitrarily many flips to convexify. Even for n equals 4, you could require a

million flips. So definitely there's some dependence on the ratio between the longest

length and the smallest length, though in open problem, what we still don't know is

whether you can bound the number of flips in terms of n and that ratio. Is it pseudo-

polynomial? Who knows?

So it turns out it's always finite, and there have been many proofs over the years of

this result. It's kind of been rediscovered many times. Nagy solved it originally in

1939, and he cited Erdos. These two guys didn't cite anyone, so they may have

come up with the problem independently. This paper, these are two Russian proofs.

Then this paper cited-- they knew about everything. They cited all of them. They

cited Reshetnyak. I don't think they necessarily knew about Yusupov.

Independently, Kaluza posed the problem in 1981 and Wegner solved it, and then

to finally clean it up, Grunbaum, who we saw from un-un-unfoldable, knew about

everything. Presumably, this is everything. Of course, we might have missed one.

But he knew all the above, came up with his own proof. And then Godfried

Touissant, father of computational geometry, one of them, knew about these and

came up with yet another, simpler proof.

So the story of this is kind of fun. When I taught this class for the very first time,
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2003 or so, I thought, OK, cool. This is a classic theorem. Everyone should know it.

So I thought I'd cover the latest proof that's presumably the best, so I covered

Godfried's proof. I was a little unhappy with it, but I finished writing down the proof,

and then one of the students raised their hand and asked, is that really right? Can

you do that in step two? And the answer was no, you can't do that. It basically

skipped a step.

And so I thought, oh gee. And so I corresponded with O'Rourke and Godfried that

weekend and was like, is something missing here? Maybe we should go back to

some of the other proofs because we've got lots to choose from. So we went to the

original, which is a very short proof. It's only one page long, maybe one and a half

pages. And so this is fun. This is 1939, the way mathematics used to be done.

And it's funny because Grunbaum's proof was based on Nagy's proof and

Toussaint's proof was based on Grunbaum's proof, so in the end, these proofs were

very similar. In fact, they differed exactly in the one step, which was kind of omitted

here. So I thought, OK great. Here we have a fill-in on how to do it.

And so the next class, I went up and I presented it. I was really happy. Isn't this cool,

1939 mathematics? It's really awesome, and it's one line that filled in this step. The

same student raises his hand and is like, I don't think that's true. So now the step

was filled in but it was wrong.

So it turns out actually most of these proofs are wrong, but not all of them,

fortunately, so the theorem is still true. So that one was wrong, this one was wrong,

this one was wrong, this one skipped a step that was key, this one essentially also

skipped the step that was key. So in the end, there's two correct proofs, Reshetnyak

and Bing and Kazarinoff, which was surprising. So I thought I'd show you one of the

errors in the Nagy proof.

There's one other interesting feature here, which is, why wasn't this discovered until

our class? The student was Blaise Gassand, and so then we wrote a paper about it

and we have our own proof, of course. Now, some people may have realized there

was an error in some of the proofs. Bing and Kazarinoff, one of the correct proofs, a

8



very nice one, wrote-- here's the original Russian sentence. The English translation

is, "the proof of this theorem given by Nagy is incorrect," which leaves something to

be desired. And Grunbaum, who can read Russian-- we had to get them translated-

- mentioned this. So he noticed that point. "They remarked that Nagy's proof is

invalid but there's no basis for this claim." Then it remained undiscovered until 2005

or something. Kind of funny. Good thing there's so many proofs to choose from.

So this is Nagy's original proof. You can see the example where flipping two pockets

simultaneously causes a crossing. Don't read the whole thing, obviously, but there's

one sentence here which is, if you take a polygon, call it p0, and you flip a pocket

and you get p1, and you flip a pocket and you get p2, and you take the convex hull

of p and you get c0, and you take the convex hull of p1 and you get c1, p2, you get

c2. And then you interleave these polygons so that the polygon is a convex hull,

next polygon is a convex hull, because you're always flipping out, each of these

polygons obviously contains the foregoing ones.

And so that seemed really nice and we thought, oh, this is so elegant. They used

this to prove that the limit of the p's is convex because the limit of the p's then would

be the limit of the c's because it was interleaving. But it's not true that these things

contain the previous ones because if you have two pockets and you flip one of

them, it's this one pocket versus multiple pockets issue. If you flip one of them, that

will not contain the convex hull of the original because you haven't flipped them all.

If you flipped all the pockets, than you would contain the convex hull of the original,

but that would end up arguing that some flip sequences work, not all of them.

So this is annoying, and I think this is where I run out of slides. But we have some

time, so I can give you a sketch of the proof. This is the Bing and Kazarinoff proof or

our version of it. Give you an idea of how this works. It's an easy proof, it's just easy

also to get it wrong or to skip one of the steps.

I will just do a proof by picture, I think. So suppose you have a polygon on the plane,

and let's say you flip a pocket. So this would look something like that. A little hard to

do a reflection. So this is the reflective polygon, and if we look at each of the
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vertices over here, these guys don't move, these guys moved over here, reflecting

through that line.

Observation one. If I take some point x interior to the polygon, then these points that

move get farther away from x. Why? Because if you look at this line here, let's say

you look at a vertex and where it goes. This line is the Voronoi diagram of those two

points. This is the perpendicular bisector of this and this. That's the meaning of

reflection.

So that means everything to the left of the line here is closer to this point than that

point. Everything to the right of the line is closer to this point than that point. Now x,

which is interior to the polygon, must be to the left of the line because the whole

polygon is to the left of the line. So distance from x to this vertex increases.

I mean, x will remain inside because as you flip, you only get bigger. So if I take a

point x and I look at the distance to some vertex, it can only monotonically increase.

It also can't get arbitrarily large because the maximum it could possibly be is half the

perimeter of the polygon. The perimeter of the polygon is preserved so it can only

stretch so far.

So if you look at this distance, it's monotonically increasing and it's bounded

because it can never get bigger than the perimeter of the polygon. Therefore, it has

a limit. That distance has a limit because monotone bounded sequences always

have a unique limit. So cool. Distance from x to some vertex has a limit.

Well, I'm going to do this for three different points, x, that lie on some non-

degenerate triangle, so not all on a line. That means the three distances from these

points to this vertex all converge to some limit. And therefore, that point converges

to a limit, namely the intersection of those three circles centered at those points. So

this proves that the polygon has a limit because every vertex has a limiting point.

Cool.

Now the tricky part is to argue that limit is convex, and this is where everyone had

an issue. The first thing we argue is that the angles converge to a limit. This is kind
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of a technicality because we know the points converge to a limit, so surely the angle

does. The only issue is, well, if all the points converge to the same point, then the

angle would not have a limit, but that's easy to argue can't happen because these

edge links are preserved. So I will just skip that one. It follows from some of the

things we said.

Now we get to the fun part. This polygon has a limit. The angles have limits. So I

want to look at the limiting angles. I want to in particular look at the vertices that

move because if you flip an infinite number of times, that means some vertex must

move an infinite number of times, because every time you flip, somebody moves.

These guys are considered not moving even though they're kind of involved in the

flip.

So if you look at the moved guys, what is their angle? So before, there was some

angle here, and afterwards, the interior angle is the reverse. If this was reflex

before, it's convex now. If there were a convex angle over here like this, it would

become reflex over here. You alternate between being less than 180 and greater

than 180 every time you move.

So if you have a vertex that is moving infinitely many times, its angle must alternate

between less than 180 convex and greater than 180 reflex infinitely many times. If

that happens and you have a unique limit angle, your limit angle must be 180.

That's interesting.

If our vertex moves infinitely many times, then its limit angle equals 180, must be

flat. Very close to a contradiction at this point. These guys are going to end up

looking like this.

Well, let's look at the other guys. So we have some limit polygon. In the limit

polygon, there are some flat vertices, but there must also be some non-flat vertices.

You can't just go straight and hope to close a cycle. So there's maybe some convex

ones like this. There may be some reflex ones.

At some point, these vertices must stop moving because everyone who moves
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infinitely many times has a limit angle flat. So anybody who is-- we call it "pointed"

here, although it's a little different from pointed pseudo triangulations. Anyone who's

not a flat angle must stop moving after finite time. So let's go to that time when all of

these guys have stopped moving.

So your limit polygon is something. We don't know whether it's convex or whatever.

It could have many flat angles. It's got to have at least one of them if we assume

there's something infinite here. This is the limit polygon.

Now, at finite time, we know that these guys have stopped moving, meaning we're

done with those guys. I've drawn the limit here, but also the finite thing, which must

be on the inside, right? This must be something like this. Somehow it's going to flip

and reach the infinitely many times and reach this in the limit. Hm. That looks weird.

So the way to argue this in the clean way is if you look at the convex hull of the limit,

let's say, convex hull of the limit is this. And look at the convex hull of this finite time

when the squared vertices have stopped moving. Convex hull will be-- well, it's got

to be at least this because these guys are already there. The convex hull is defined

by the square points. You don't care about the flat vertices. That won't affect the

convex hull. So that means the convex hull equals the limit convex hull at this finite

time. Now you're about to do another flip, which means you're going to go outside

that convex hull and contradiction. Is that clear?

Maybe go through that part one more time. After finite time, when all of the non-flat

vertices have stopped moving, we have reached the final convex hull. That means

you can't do any more flips because every flip makes the convex hull bigger, so you

actually had to stop at that time. That's kind of a fun proof. The key is really this

part, that if a vertex flips infinitely many times, then that limit angle must be flat, and

so they really don't participate in the convex hull. This is the Bing and Kazarinoff key

idea.

AUDIENCE: Two questions. Does anyone do this for 3D?

PROFESSOR: 3D is a good. People have tried to define flips for 3D, and I think there's never really

12



been a successful definition.

AUDIENCE: [INAUDIBLE]?

PROFESSOR: Yeah, and exactly how to flip it. I mean, you can define pocket in the same way, but

then the boundary won't be a single plane. It'll be some convex cap, and so flipping,

you can't really just reflect. It's kind of annoying.

AUDIENCE: The other question was, you have a sequence of simple operations that takes you

from non-convex to convex. Does anybody use that in a proof to say, these things

are preserved across the operations? You said perimeter was preserved. What

about shortest paths?

PROFESSOR: So is this useful for something? Shortest paths are certainly not preserved. Edge

lengths are preserved. Of course, we know how to do that with the carpenter's rule

theorem, just staying in 2D, so it's not that exciting. But the operations are definitely

a lot simpler. I think the easy answer to your question is there are many natural,

simple moves, and this is the first one that people considered, but actually, there

are a lot more, and I'm going to talk about those.

The main application I know for this stuff is basically, people wanted to generate

random closed walks in 3D typically, and so they wanted to find a small set of

operations they could just perform randomly and hope that that was a rapidly mixing

Markov chain, so eventually, you'd have a kind of random thing. I don't think there

are any rapid mixing results, at least that I'm aware of. In order to hope to get the

space randomly, you would at least have to be able to make anything. So for that,

the question is, can you convexify anything, because if you can convexify anything,

then at least you can make anything, more or less. So that's where these questions

come from. We focus more on the universality, but I think what people care about is

this random generation business.

To that end, of course, for random generation, you don't really care about

crossings. And so another fun extension which was in, I think, our paper for the first

time, although there's a weaker version in Grunbaum's paper, if you start with a
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non-crossing, this proof still works. You need to add a little more to the argument.

Either you decrease the number of crossings, which can only happen a finite

number of times, or this kind of stuff works. You can make crossing polygons, too,

which is kind of cool.

So that's the end of basic flips. Then we have something called a flip turn, which is

kind of fun and in some ways better behaved, and gets to your question of what

else is preserved. So let's say you have a pocket like this. So normally with a flip, we

would reflect. With a flip turn, you reflect and then also flip this way, so it's the same

as rotating 180 degrees about the center.

In addition to preserving perimeter, this preserves the edge directions. This

matches this, this matches this, this matches this. It does not preserve the edge

order, however. Here, we preserve the edge order. Here, we've reversed the order

of those three edges. So all this is really doing is permuting the sequence of edges.

The edge directions and the edge lengths are all the same.

So this means you could make at most n factorial moves here. Immediately, it's

different from this situation where even for n equals 4, you could have arbitrarily

many moves. Here, it's at most n factorial. That was the original bound. It turns out

every polygon convexifies after order n squared flip turns. It's a fun proof but I don't

have time to cover it here. That's flip turns.

Then we go to deflations. This is the inverse of a flip. So suppose you take a

polygon and you do an operation that, if flipped, would result in the original polygon,

exactly the opposite of a flip. This was conjectured to also finish after finite time, but

in fact it doesn't. If you take any quadrilateral satisfying Kawasaki, so if you add up

the opposite edge lengths and they're equal-- so 6 plus 3 is 9, 4 plus 5 is 9-- then

there it is at least a flat limit possibly. That's the Kawasaki thing. And in fact, it will

converge to that flat limit and it will take infinite time to get there. So that's kind of

fun. It gets very hard to draw the pictures.

This is really the main example of an infinitely deflating polygon. We have a paper

called "Deflating the Pentagon," which got some fun political views at some point.
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It's about a pentagon, five sides. And essentially, unless you have a flat vertex, in

which case you are quadrilateral, there is no infinitely deflating pentagon, which

means you can deflate the pentagon always in finite time. It is open for hexagons

and higher whether there is another example different from the quadrilateral.

Then there's the idea of a pop. This is an even simpler operation than a flip. You

just take two edges, like here we're taking these two edges, and, ignoring crossings,

you just flip as if that were a pocket lid, so if this were a pocket. Then you get this

polygon. Now here, you can be forced to get crossings. No matter how you flip, you

might get a crossing.

Still, we're wondering-- who cares about crossings-- are pops enough to make

anything, or to convexify? And the answer is no. There's this set of polygons called

alternating polygons where the vertices alternate between the x-axis and the y-axis.

And you can prove that no matter what pop you do, you are still an alternating

polygon, and alternating polygons, you can also prove, are never convex, so you're

stuck. This was open for many years but finally solved a few years ago.

There's also pop turns, which is where you take two edges and you do a 180

degree rotation like this. And there, we can prove if you allow crossings, you can

convexify any polygon. I don't have a figure of that because it's just an algorithm.

We haven't actually run it on a nice example. If you avoid crossings, we can

characterize when it's possible and when it's impossible. And those are pretty much

all the simple operations that at least have been studied. There's probably more to

think about, but that's it, and that's the end of my part of the class.
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