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PROFESSOR:

All right, welcome. We have some fun origami topics today, mostly related to a topic
called pleat folding. General idea of pleat folding is to fold alternating mountains and
valleys back and forth. And you can do a lot of cool things with pleat folding, and

that's what | want to talk about today.

In particular, this model is usually called the hyperbolic paraboloid. It's pretty simple.
You start with a square paper. You fold this crease pattern, which is concentric
squares alternating mountain and valley, and you fold the diagonals, alternating

mountain and valley.

You crush it all together, you'll get this sort of x-shape. And you sort of let go, give it
a twist, and it pops into this saddle form, which looks a lot like a hyperbolic
paraboloid, which is one of the standard saddle surfaces. It's approximating a

hyperbolic paraboloid, we think, or we thought, and that's why it's called that.

So you should all try this at home. It's a great model. It's very cool. It's an example
of something | like to call self-folding origami because the paper basically folds itself.
You put in a very simple crease pattern, concentric squares. What could be simpler
than that? And yet you get this really cool 3D form automatically. Physics, in some

sense, is finding this form for us.

You can take this pleating idea and apply it to many different crease patterns.
Another fun one if you have a compass lying around, to score circles is you just
crease concentric circles, alternating mountain and valley. In this case, you also
need to cut out a circular hole in the center. Then you get a different saddle form,

which we don't know exactly what it is.

Let's see, | have some various fun things to talk about here. So what's going on with
paper-- if | take a piece of paper, paper is an elastic material. It remembers that it
was made flat. It likes to be flat. If | curl a paper a little bit, for example, it flattens

back out. That's elastic memory.



If however, | crease a piece of paper, then that's called a plastic deformation
beyond the yield point of the material. This works in sheet metal also, lots of
materials. I've effectively changed the memory of the paper. It now wants to stay
bent. If | try to unfold it, it goes back to some angle. Depending on how hard |

crease it, it will go to a sharper angle.

So that's basically what's going on. In these surfaces, where we crease the paper, it
wants to stay bent. Where we don't crease the paper, it wants to stay flat. It can't do

all of those things, but physics finds an equilibrium among all those forces.

So we simulated that some years ago. This is with architecture undergrad Jenna
Fizel and Professor John Ochsendorf, architecture. So on the right of each of these
examples, we have photographs of real models, pleated foldings, a hyperbolic

paraboloid, squares, hexagon, octagon, just not so pretty.

But we re-created that physical model with a virtual model just using some spring
approximation to the forces | described. And here's an approximation to a circle,

where we just took a really big regular n-gon. This is real circles and the simulation.

So this confirms that what | said is actually true. Those are the only forces you need
to model, and you get an approximation of what really happens in real life. So

instead of folding real paper in this way, you could simulate it. Cool.

Here is that simulator in action with pleated hexagons, just to show you what it looks
like. So the creases are trying to become more bent, at this point have reached
equilibrium, and you get your 3D form. Once you have that 3D form, so you have a
virtual model of a physical piece of paper, the natural thing to do is build a physical

model of the virtual model of the physical piece of paper.

And you've seen this on the mailing list. This is what we're calling origami skeletons.
Here the vertices, which you can see bigger here, are 3D printed plastic spheres,

and there's aluminum rods. The spheres have holes at just the right angles to make
exactly the 3D form that was made by that simulator. So this is something you could

really only build if you had a virtual model of that thing.



So this is a fun example of taking mathematics and our sort of the computational
understanding of how paper folds and turning it into sculpture that requires that

mathematical basis.

On the topic of sculpture, at the very beginning-- so this is early on in my PhD, with
my dad and my PhD advisor Anna Lubiw, same authors as like the folding problem,
one of our early explorations on the mathematical sculpture side was to take
hyperbolic paraboloids and take a lot of them and join them together to make
polyhedral surfaces. These are what we call hyperhedra because hyperbolic

paraboloids are also called hypars, | think, originally by the architect community.

So these are algorithmically-generated sculpture. The input to the algorithm is a
polyhedron, like the cube, and the output is a way to join hypars together to

represent that cube. And the algorithm is very simple.

For each face of the polyhedron-- so here it has four sides, you take four hyperbolic
paraboloids and join them together in a cycle just sharing one edge. So you do that

for each of the six faces, so in all you have 24 hyperbolic paraboloids.

Then to join two faces together, you join them along a pair of edges like this. And
when you do that, you get an enclosure. It's a closed solid. And you can do that for
every-- here we're doing it for all the Platonic solids. You can do it with any
polyhedron in theory. So it's like an infinite family of sculptures here, which is kind of

fun. Here is a simulation of that cube just for fun. That works, too.

And back to the curve creases. These are some examples | showed way back in
lecture 1. These are sculptures in the permanent collection at MOMA. And the idea
here is instead of taking just one concentric circle which goes around 360 degrees,
we take a circular ramp which goes around twice, and then join the ends. So we

have 720 degrees of material there, which you might think of as negative curvature.

But it's a little weird because there's the hole cut out in the center. So it's a little hard
to measure curvature, but you can actually define it. And these are three different

foldings with the same idea, slightly different parameters in how big those ramps



are, and different numbers of creases. And you get very different equilibrium forms.

Again, this all sort of self-folding paper wants to live in these three configurations.

Here's some that you may not have seen. They're on the web. But these are taking
regular 360-degree circles but taking two or three or four of them and joining them

at a couple of key points, and the rest is self-folding.

So the big-- | mean, the sort of powerful scientific engineering idea here is that you
could deploy complicated 3D structures just by manufacturing very simple flat
structures, maybe joining a few points together, and then just say go. If you can
manufacture these things so that every crease locally wants to bend, then you'll get

these 3D forms automatically.

This is especially powerful at the nano scale, where you can't have your fingers
moving around and pressing things. But you can probably use materials that, say,
when heated or you add some chemical, cause everything to fold. It's very easy for
us from all the chip fabrication we do to manufacture flat crease patterns, and that

will let us manufacture 3D things at the nano scale.

You could also imagine it a much larger scale like a space station-- like a space
station that looks like that. That would be pretty cool-- and something where you
don't want to have to physically fold everything by hand. But if it could be done

automatically, life would be good.

Now, we don't have any algorithms for the reverse engineering problem-- If | give
you a 3D curved surface like this, find the crease pattern and the joins that make it
happen. But that's the goal. And towards that goal, we make sculpture to explore

the space of what you can make.

All right. | think | have one more sculptural example here, which is combining these
curve creases with glassblowing. And to make glassblowing more tactical, Marty

here, our cameraman, is blowing glass blindfold. Don't try this at home.

So paper folding is a very tactile experience. To make glassblowing more about

touching the material, which you're not usually supposed to do because it's over



1,000 degrees Fahrenheit-- blindfolds.

AUDIENCE: 1,000 degrees Centigrade.

PROFESSOR: 1,000 degrees centigrade. Wow. The temperature of an erupting volcano.

[MUSIC PLAYING]

This is in the glassblowing studio in 4.003 near here. He's made a whole bunch of
those. And here's what it looks like to fold from scratch, so to speak, a concentric
circle model. Of course, it's accelerated in movie time. It only takes 10 seconds. In
reality, it takes 10 minutes after pre-scoring, maybe more. And now we get some

ship-in-the-bottle action.

And this is a lot of fun for us because not only do you have the self-folding
constraint, but you have this enclosure constraint. These forms would not look as
exciting if they could sprawl out, and they didn't have any constraints to live inside

these bubbles. So you get yet another collection of forms from that glass.

All right. | think that's the end of our little sculpture tour. We'll come back to

sculpture at the end of this lecture. But | want to talk more about-- oh, question.

AUDIENCE: What was the idea behind the blindfold?

PROFESSOR: What was the idea behind the blindfold? So paper folding is all about touching
material. Glassblowing is usually very visual. It's about you look at the material, and
you don't usually touch it. So we wanted to unify the two in order to put them

together. Plus it was just a crazy idea.

| think what happened is | was in my office. My dad calls me up. He's blowing glass.
He's like, | got this great idea. Come over with a camera. So in that video, | was the
cameraman. And | was like, all right, you want to burn yourself blowing glass. He
didn't actually burn himself. Usually, he does. But blindfold, he was more careful.
Yeah, blindfold glassblowing, it's pretty crazy. That was his first try ever blindfold

glassblowing in that video.



AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

All right. So this hyperbolic paraboloid, it's been around for a long time. | didn't
mention the history. It goes back to the Bauhaus in the late '20s. Albers, who I'm

sure many of you know of, taught a class about design.

And he liked using paper as a material that would force you to focus-- not worry
about material in the sort of architectural scale and what would stand up-- and just

think about design. And paper folding was really tactile and good for that.

And I'm not sure exactly whether it was him or a student of his, it's somebody in that
period, 1927, '28, came up with this model and the circular one. And then it's been
taught many times since then. Then it really hit it big in the origami community in the

1980s by [INAUDIBLE], and since then everybody's been folding it. Question?

Is it not rigid, but paper [INAUDIBLE]?

Ah, you made one. Can | show it? Thanks, [INAUDIBLE]. Simple little example, but
here is concentric squares, and you crease it down. Normally you get this kind of X.
You let go, and it pops into a little saddle. So this is a sort of low-resolution one. If

you spend twice as much time, you can double the resolution and so on.

Your question, is it rigid? Probably not rigid. There's like this degree of freedom.

Rigid in the sense of that between creases [INAUDIBLE].

Yeah. What's happening in between the creases?

Exactly.

That is exactly the topic of today's lecture. In fact, we have a paper called "How
Does Paper Fold Between Creases" to address exactly this question. I'm going to

hang onto it, if you don't mind because it'll be useful to point at.

In fact, it is completely impossible to fold that crease pattern into this shape. And so
your idea that there's something weird going on is an idea-- we've known for a long

time that these faces could not stay planar. | mean, at least visually it's hard to see



unless you stare at it with all the right angles. But the faces look like they twist.

Now, that's OK. Paper can do all sorts of curving stuff without creasing. | mean, this
is sort of like a twist, no creases involved. So we thought this was possible, but in
fact, it's not. So this is the big surprise. It's something we discovered just last year,

and I'm going to prove that to you today.

So the theorem is, if | have this concentric square crease pattern, even ignoring the
mountains and valleys, it is impossible to fold that crease pattern into anything that
is not flat. So you can, of course, not fold it at all, then none of the creases get
folded. You can collapse it all the way down. That probably isn't even allowed. But

never mind.

But what we really want is a 3D form where every crease is bent by a non-zero
angle and also not by 180 degrees. So we'll call that a proper folding, something
where every crease is strictly between 0 and 180, which is what we want in these
3D forms. And the theorem is, that is impossible for the hyperbolic paraboloid.

There is none.

So that's weird because we fold them all the time. We've been folding them for like
11 years, and other people have been folding them for 80 years. What's happening
with the real piece of paper? Well, one possible answer is that there's more creases
that you don't see in this model. And if you add more creases, it is possible to fold

something that looks like a hyperbolic paraboloid.

So here we have the regular crease pattern in black, and then I've added some
purple diagonals. Wherever we had a black trapezoid, I've added one purple
diagonal to triangulate the crease pattern. And here I've chosen what seems to be
an especially good triangulation where | zigzag back and forth within one quarter.

And then also from around a ring, | zigzag back and forth.

So that triangulation folds into this. That's another theorem. This is construction on
a computer, obviously, where we have 16 rings, and the central crease here is

folded by an angle of 30 degrees. That's the theta. Notice | also had to remove part
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of a diagonal. That's also necessary. In the center, you can't crease both of those,

the folds in an X, by a non-zero amount.

Those are all things we're going to prove today. But before we prove the negative
things, | want to prove the positive thing, that this thing can actually be built. That
may seem obvious because here it is. | built one. But because there's all these
arguments of, well, here it is, | built one, we've got to be especially careful about,

does this thing really truly exist?

So let me tell you how it's constructed and how we can actually prove not only can
we build it approximately on a computer, but we can prove there really is one there

even though we don't have it exactly. So it's actually pretty cool and pretty easy.

So this is the triangulated hyperbolic paraboloid. So the idea is to work from the
inside out. We're going to start with this central square here-- and let me draw it
over here-- fold it by some angle theta. That, | think, we all know how to do. It's

some rotation matrix. And then | want to work my way out.

So at this point, | know the location of these four vertices. In general, | know some
square and everything inside. | want to figure out everything in the next square. And

the creases are going to look like this, from my zigzag pattern.

So there's stuff in here, which is known. So | already have figured out the location of
these vertices. And | want to know, how do | figure out these vertices on the
outside? If | can do that, | just repeat, and | get a bigger and bigger hyperbolic

paraboloid.

So what | do is pretty easy. I'm going to look at this vertex first and say, well, | have
these three points, and | have known distances between those three points. I'm
going to assume here, and we'll see why later, that each of these creases remains a
straight line in three dimensions. It's not obvious, because creases might bend

around.

But let's assume that we were going to fold it in a simple way. These triangles are

going to remain triangles. These edges will remain straight. And they have to



remain the same length because we're paper folding. You can't stretch. And so |
know these three points in 3D, and | know these three distances, just measuring

them on the crease pattern, flat crease pattern.

So this point is on the intersection of three spheres, and the centers of the spheres
are not collinear. This is a trick we used last class but in two dimensions. So | have
three non-collinear points. | have three spheres-- little hard to draw-- centered at

them.

The intersection of two of the spheres is going to be a circle, and the intersection
with the third sphere is going to be actually two points. So the intersection of three

spheres is two points. So a little bit of ambiguity.

But it turns out one of these points will set the mountain-valley assignment correctly,
and the other one will set it incorrectly. Like if | want this to be a mountain, one of
them will be inside and one of them will be outside. One of them will make this

mountain, one will make it valley.

So it turns out if you actually do this, it's uniquely determined at every step of the
way. Because you know what mountain-valley assignment you're aiming for, you
uniquely figure out what this point is. By the same reasoning, you can figure out

what this point is, intersect these three spheres.

And then once | know those two points, | can figure out this point because it's the
intersection of these three spheres, with now these points are known. And then |
can figure out this point in the symmetric way. OK? That's how you do it. We repeat.

And that is exactly how this model is built.

Now, this is still not a proof that it really folds. It's a construction method. I'd say it's
an algorithm. If | start out with the inner thing here and | give you some angle, | can
approximate where these vertices are. And then | can keep going and, at each step

of the way, approximate where the vertices are.

The worry is the approximation gets worse and worse because | have this

propagating error effect. The larger n is, the number of rings in my hyperbolic



paraboloid, the lower the accuracy will be. But | get to choose, at each step of the

way, how much precision | use to compute all of these numbers.

Let me tell you how this computation actually works. | did this in Mathematica, or we
did this in Mathematica. Here's Mathematica. And | asked Mathematica, well, here
is the equations for the intersection of three spheres. | say, well, squared Euclidean
distance between this point and some unknown thing x, y, z is this distance

squared. And here's the second one, and here's the third one. It's kind of tiny.

And then here's the answer. It's a little messy. In fact, you can ask how many terms
are in this thing. It's 444,000 terms in the solution. Don't try this at home, | guess, by
hand. Intersection of three spheres is a bit messy. There's probably a cleaner way

than what Mathematica does, but this is an easy way to get it in.

Now, in theory-- so if you look at all of this stuff, all that's happening is you have all
the various inputs, x1, y1, x2, z2, and so on. You have some numbers like 4 and
minus and 2. All you're doing is taking these numbers, adding them, multiplying

them, dividing them, squaring them, subtracting them.

And at some point, taking square roots. | don't know if we'll ever see that. | mean, if
we search through, there are some square roots, but they're going to be in very
specific places. Yeah, so | probably won't find one instantly. Oh, there's one, square

root.

So all I'm claiming at this point is you can compute the intersection of three spheres
just using basic arithmetic and square roots. This is called a radical expression, not
because it's so amazing and controversial. But it's radical because that symbol is
called rad, | guess, and radical refers to square roots. | guess they were crazy at

the time.

All right. Actually, | want to stay with Mathematica. So that's the idea. Still not a
proof, just a construction method. But here's a trick, which you can use to turn a
construction into an actual proof that this thing exists. It's called interval arithmetic,
little computer science lesson.
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How many people have heard of interval arithmetic? No one-- one person, all right.
Yeah, even computer scientists probably don't necessarily know this unless they've

seen some numerical analysis.

So it's an idea that instead of computing an approximate location for this point, |
want to get not only an approximate location, but also an error bound on how much
| don't know it. So there are three coordinates to every point. For each coordinate,
every number | want to represent I'm going to represent as an interval from some

lower bound to some upper bound.

So say, well, | don't know what the value is, but | know that it is somewhere in
between these two numbers. So represent every number like this. And then you just
need to define, how do | add numbers, subtract them, multiply them, divide them,

and take square roots? And the answer is carefully.

I'll show you one example. If | have two numbers, L1, U1, and L2, U2, and | want to
add them together, then | believe it's pretty simple. It's just L1 plus L2, and U1 plus

U2. This is in perfect mathematical world where there's no round off.

In reality, when you add two numbers, you lose a bit of precision. And you make
sure that when you add these numbers, you always round down, and when you add
these numbers you always round up. So that way, these intervals, the accumulation
error is realized by these intervals getting wider. You can start with them super tiny,
maybe, in fact, 0 length because you know exactly where these points are, so

they're 0 intervals.

But then, because of the error in every operation you do on the computer, the
intervals will widen. But as long as you do this computation with enough bits of
precision, they'll widen slowly. If you do it slowly enough-- if you do it with enough
precision, and the errors accumulate slowly enough, you can build your n-ring
hyperbolic paraboloid without any error, or without too much error to make things go

wrong.

What could go wrong is that these three spheres might not intersect. That's really
11



the worry here. There are two things that could go wrong. One is that the spheres

don't intersect. The other is that the surface intersects itself. Both would be bad.

How do you tell when the spheres don't intersect? Well, we have this formula, this
ginormous formula. The only thing that could go wrong is that you take a square

root of a negative number. Now, hopefully that never happens in reality.

But what could happen for us is we have such a poor approximation of our
numbers. And we try to take the square root of some interval, and L is less than 0.
Now, probably the actual number is more than 0, but we can't tell, and we just know
the number is somewhere in this interval. If the lower bound is negative, then we

can't take the square root. We don't know what the right answer would be.

So Mathematica conveniently can do all of this for you. If you just plug in intervals
instead of numbers, it will do interval arithmetic correctly, and you can tell it what
precision to do. And that is how we found this example. In fact, | will show you the
notebook, and there's all this computation and stuff. This is all, | believe, it's in our
paper, so if you want the code. So we compute the crease patterns so | can
measure all the distances. And there's some collision detection and stuff to make

sure everything's working. And it computes some rings.

And then, actually, the one | want to show you is this one. This is model we've been
looking at, and here it is in three dimensions. The way it's being rendered is a bit

odd, but you get the idea. That is the hyperbolic paraboloid we construct.

Now, in reality, each of these points is actually a little interval. It's hard to draw that
because it's smaller than the resolution of the screen. | think | compute up here the-
- this is like how much we've messed up the edge lengths. It's like all of these 9's,

and then this little area at the end. OK. Cool.

So the point is, you just do this with enough precision. As long as you don't end up
computing any negative square roots, you get a surface where every point is

actually a little box. You don't know where the point is exactly in that box.

Then you check for collision, just knowing that the points are somewhere in those
12



AUDIENCE:

PROFESSOR:

boxes. You try to intersect two triangles. As long as they intersect away from the

boxes, you're OK. Then you know there's no actual intersection.

And we have done that for this triangulation up to-- get it right-- up to n equals 100,
100 rings, and where the theta angle here is any even number between 2 and 178
degrees, so 2 degrees, 4 degrees, up to 178 degrees. We're not interested in 180
because that would be flat. That's not interesting. We're not interested in 0. Every
even number of degrees in between. Why even? Just because of the

representation.

I'm sure it works for the odd. In fact, I'm pretty sure it should work for any theta and
any n. But this technique will only let us to prove it for specific theta and specific n.
Because we're just using a computer, it's only going to check one example. We

don't have a nice way to do them all at once.

In case you're interested-- oh, here I've built it out of sheet aluminum, | think?

Galvanized--

Galvanized steel? All right. Water jet cut along the creases. Now, steel's a little tricky
to not add extra pieces by accident, so there's a few defects. But this is also some

kind of verification that it works.

In the computer here, the number of digits of precision. So for whatever reason,
Mathematica speaks base 10 instead of base 2. Which is weird to me, but maybe
intuitive to everyone else, non-computer scientist, | guess. So there's normal sort of
floating points like 16 digits of precision or so. And there you can build this thing up

to n equals 3, 3 rings.

But you go up to about 1,000 digits of precision, and then we can get beyond 100. It
depends, though, on what the angle is that you fold. So for angles that are very big,
close to 90, we had to go up to 2,000 digits of precision. And | don't know how far n
can go here. | think maybe a couple 100, but I'm not sure exactly. The larger n is, of

course, the more accumulation you have, and so you have to do every operation
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with more digits of precision.

But the conjecture would be, any specific data and n, there's some precision for
which this approach will work, but we don't actually know how to prove that. All right.

So that's a triangulated hypar.

Here's another triangulation, which we also studied in this paper, where instead of
zigzagging up one quarter of the square, we just do all the diagonals in the same
direction. We still zigzag around a ring but not between rings. And this can also fold,

as the other model that was in the Mathematica file. | won't bother going there.

This is for a small fold angle of just 8 degrees in here, n equals 16. And there's a
reason | did it for a small angle, because it doesn't work for large angles. So that
triangulation we started with was a good one. It's actually not the first one we tried,

but it is sort of natural.

If you fold by a very small amount, you can get all the way up to 133 rings, but then
it fails after that. The spheres just don't intersect anymore. Depending on how much

you fold, like if | fold by 22 degrees, | can get up to 13 rings.

But here | wanted to get to 16 rings so | only went up to, what was it, 8 degrees or
something. | could have gotten a little beyond but not a lot. And up at 178, you can
still get three rings, but it doesn't fold after that. So triangulation matters, which

triangulation you do.

Going back to the one that works well, natural question is, is it actually a hyperbolic
paraboloid? It's called a hyperbolic paraboloid because-- or there is a surface called
a hyperbolic paraboloid, where if you take a cross-section this way, you get a

parabola. That's the paraboloid part.

And if you take a cross-section this way, you get a hyperbola. That's a little harder
to draw, but it goes around here and around here. Hyperbolas have two connecting

components.

So let's look at the parabolic part here. We're supposed to be approximating a
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parabola if we look at all the points on the top here and also maybe on the bottom.
So that's what I've drawn. The green lines, which are very light so a little tricky to
see, they zigzag back and forth, and that is what we compute. Again, it's
approximate, but it's so close to accurate that | just draw them as single points. The

error is much smaller than the thickness of these lines.

And then the blue and purple lines here are fits of the best parabola that matches
these points. Actually, it's not even the best parabola. It's kind of funny. | just take
the last three points-- three points determine a parabola. | take the parabola that fits

through those three points and bam! It is almost a perfect fit.

These are the error charts, | guess. This is relative errors, probably the most
informative. Or actually, it's the ratio-- it's not really an error-- the fit value over the

actual value.

So when it's 1, that means it's perfect. And yeah, this is at the end of the chain
where [ fit it, so of course it's going to be perfect out here. At the center, at the very
beginning-- so I'm only looking at one quarter of this thing-- yeah, the error is a little

bit.

The ratio is not 1, but it's 0.9997 or so, maybe a little bit less, so that | had to write it
down. It's like 0.003% error, if | got it right, maybe just 0.03% error. Fix the notes.

Something like that. It's very small is the point. But it is non-zero.

I mean, initially we thought, well, maybe if you increase the resolution-- you make a
finer and finer hyperbolic paraboloid-- it will more closely approximate a hyperbolic
paraboloid. That does not seem to be true because, really, making it finer is really
just like making it bigger. You never really change the center behavior. It's always

the same.

And this construction proves it. We build the center, and we can go as far out as we
want. It's just changing the scale of the thing. But the center will always remain the
same, and it will always remain off the parabola, but super, super close. Really, it's

all right to call this a hyperbolic paraboloid, but you should triangulate, especially if
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AUDIENCE:

PROFESSOR:

AUDIENCE:

PROFESSOR:

you're making something out of more rigid material. Cool.

Let's go on.

[INAUDIBLE].

Yeah, question.

Do the creases have to be uniform? | mean, could you tighten up inside?

The creases do not have to be uniform. Most of the hyperbolic paraboloids we've
made, we do evenly space all the squares, but they don't have to be. | say that in
that we've made them out of paper, and they fold to something, and you get other

kinds of surfaces. Probably not going to be a hyperbolic paraboloid anymore.

I have not done it with Mathematica and checked that it really is possible, but it

should be. That would be a fun thing to explore at some point. Other questions?

All right. So this is the end of the positive news for hyperbolic paraboloids. Now
we're going to go to the negative stuff, showing that it is impossible to fold this with

this crease pattern. Hyperbolic paraboloids don't exist without triangulation.

For this we need a little bit of math tools in this paper, "How Paper Folds Between
Creases." So in the study that we just did, | assumed that all of the creases stayed
straight. And therefore that all of the faces-- therefore? Yeah, | guess, because
triangles are rigid. If | forced the edges of the triangle to stay straight, then the

interior of the triangle must stay flat just to preserve distances.

So | assumed that every face of the piece of paper stayed flat. Why did | assume
that? Because paper, real paper, does not have to stay flat in between the creases.
This is real stuff here. But paper is constrained on how it can curve without creases,

and that is the purpose of this little mathematical endeavour.

There's some technical stuff, and | want to get to the meat as quickly as possible.
But I'll just mention some assumptions. We assume that the thing that we fold, the

folding of our piece of paper, is piecewise C2. C2 means you can take two
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derivatives, and it's still good and continuous and sort of smooth up to the second

level.

Piecewise means, of course, we have creases. Those are not C2, not even C1. So
we have some crease pattern on our piece of paper. It's whatever. And what we
mean is that inside one of these regions, it's C2. On the creases, it's nothing. It's
CO. It's continuous. We don't rip the paper. But we don't necessarily have

derivatives everywhere. So that's the assumption.

Now, one annoying thing here is you can have something called a semi-crease,
something we call a semi-crease, which is C1 but not C2. Yeah. So you have to
divide into pieces, but it's not technically a crease. And this is some of the worry of

what might be happening.

Maybe you don't need creases here, you only need semi-creases. Maybe you only
need to violate the second derivative, not the first. Creases should be violation of

first derivative. Those are sharp things. Semi-creases are just kind of little sharp.

It's like-- what's a good example of a semi-sharp thing? | guess if | take a parabola,
and then | take a more shallow parabola, then at this point there's no second
derivative because the first derivatives don't meet. This one has a first derivative of
this. This one has a first derivative of that. They're not the same. Is that true?
Parabolas maybe not. But you get the idea. This is a discontinuity in the second

derivative, not the first.

All right. I'm going to basically ignore semi-creases here, though, because they're
just kind of a technicality. They don't end up mattering. So we have piecewise C2.
And we assume that our surface is intrinsically flat, meaning it came from a piece of

paper-- trinsic-- oh, boy, intrinsically flat.

Now this is something we know as curvature zero. And | want to tell you a little bit
more about curvature. We have defined curvature in a few different-- well, | guess in
one particular way, which is you add up the material, and you take 360 minus that.

So curvature zero means you have 360 of material, which is good news.
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But there are other ways to define it, in particular, the way Gauss defined it. This is
usually called Gaussian curvature because he invented it. Gauss defined curvature
of a 3D surface. You have some weird curved 3D thing, like this shape, the orange
part. And there's actually a lot of natural notions of curvature here. Gaussian

curvature is just one of them.

So let me tell you a little bit about that. We're looking at this point, and | want to
compute the curvature of this point. Well, if | look in any direction, like say this red
direction-- so it's like | slice this world with a plane, this blue plane, | get a nice one-

dimensional curve.

Then the curvature is how bent that curve is at that point. That's like a directional
curvature. In this direction, how bent is-- what does how bent mean? It just means
you try to nestle a circle in there, in that plane, and you take 1 over the radius.
That's a curvature. OK? So if it's flat, the radius could be infinite, and so curvature
zero. If it's very sharp, then the radius is very small. And so 1 over the radius is very

large, big curvature.

So it's some thing here. Let's say it's a positive number. And then if | take, for
example, this other blue plane, so this cross-section, in that direction the curvature
is bent the other way. So you say, well, there the directional curvature is negative. It
depends which way is up. One of them is positive, one of them is negative.
Somewhere in between it's going to be 0. But you have all these different directional

curvatures.

The Gaussian curvature, which is the one that we sort of know and love and have
used a lot, mostly for polyhedra, is the min directional curvature times the max

directional curvature. Now, | really mean min and max. So the smallest one, in this
case, is negative. The largest one is positive. You take the product, and that's the

Gaussian curvature. It's a weird thing.

But in particular, because there's a negative one and a positive one here, that
means the product is negative, and that's because this is a saddle. Still the case,

negative Gaussian curvature means saddle. Positive means a convex cone. 0
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means intrinsically flat.

So this is still the thing we know, but this is a weird way of thinking about it. This is
how Gauss defined it. And he proved that even if you fold the surface, the Gaussian

curvature never changes. That is called the theorema egregium. Cool name.

So Gaussian curvature doesn't change under folding. We start with something that's
flat, zero curvature. Because if you take a flat plane, you take any directional
curvature, everything's 0. So it's the product of min and mix. They're both 0. So we

start with something zero curvature, it will remain so.

Now, if | have a product of two things, and | know this is equal to 0, that means one
of the two things is 0, maybe both. If it's still a plane, both of them will be 0. But one
of them still has to be 0. What this means is, basically, locally at any point, we have

a cylinder, some kind of generalized cylinder.

But it really only curves in one direction because there's some direction where it
doesn't curve at all. Everything's straight. In all the other directions, yeah, it curves
different amounts. The orthogonal direction will be where it curves the most. That

will be the max, | guess, and the min will be 0.

So that is what a folded sheet looks like. And it's maybe not so obvious, but when |
did all this contorting and what not, really | was only bending in one dimension, like
a cylinder. That's not exactly a cylinder because | can change the radius of the

cylinder all over the place, but I'm really only bending in one direction.

| was reading on Wikipedia, this explains how we eat pizza. Because you take a
piece of pizza, which is basically like a piece of paper, and if you bend it a little bit,
like you push in the center and push up on the sides, you give it some curvature in
one direction. And therefore it has to remain straight in the other, so it kind of
supports the piece of pizza. Never thought of it that way, but there you go, practical

applications for this stuff.

All right. These things we call planar points. If | have a point p and it's locally flat like

a plane, call it planar. These things, for some crazy reason, we call parabolic. This
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is to be consistent with other notation. | know it looks-- cylindrical would be another
fine term. But there's a third kind called a elliptic, which would be like this stuff. That

doesn't happen.

So we just worry about locally cylinder, which we're going to call parabolic because
it's also like locally a parabola, doesn't matter, and locally planar. Those are the two

kinds of points we can have.

Now, I'm going to give you some accelerated facts we're just going to take as given
from differential geometry. Well, really, we had to take some facts that were about
differential geometry and sort of port them to our context. They didn't give us
exactly what we wanted. We had to generalize them a little. Differential geometry, if

you were at Sunday's lectures, that was one of the main tools being used there.

Differential geometry is about smooth things, like C4 usually. Now, sometimes about
C2 things. It is almost never about piecewise C2 things. So you got to worry about
the pieces. Now, most the time, we're thinking about one little region here, and
that's nice in C2. And you can check. Most of the differential geometry still applies

there.

Blah, blah, blah. Let me tell you some facts. If | take a smooth point, so that means
not on a crease and not a semi-crease, then it lies on something called a rule
segment, which is a line segment, also called a rule line. And the endpoints of that

segment, here's the interesting part, are on creases or the boundary.

So we already know from this picture that any point lies on a segment, like an actual
3D line segment, because of this parabolic nature. What's interesting is that
segment, it can't stop. Just keeps on going, like the Energizer bunny, until it hits a
crease. At that point, things aren't smooth. We don't know what happens. But really,
these creases go straight. Those are rule lines. And here, actually, we have a

choice, many different rule lines.

But in the parabolic case, that rule line is unique. It's going to be unique for
parabolic points. And so we get what's called a ruled surface, which is just the union
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of a whole bunch of line segments, rule lines, around any point. Maybe any smooth

point, just to be safe.

So you may have heard of ruled surfaces. They're quite common. They're fun
because you can build them out of strings. So each string, if you hold taut, it's a line
segment. Take a whole bunch of them and just imagine the envelope there. That is
a 3D surface, and that's a ruled surface. Now this one does not have zero

curvature. It has negative curvature everywhere. So that can't happen.

This actually can happen. This is like you take a helix, and so there's a blue curve in
3D, a space curve. And then you imagine taking the tangent at every point. So just
like if you just went straight at every point instead of turning, then you get a bunch of

lines. Those are rule lines. And you get this cool surface.

Now, that is a valid folding of a piece of paper. Doesn't look like a cylinder, does it?
But locally, each of these lines looks like a cylinder. It's just the radius of the cylinder
is changing all over the place. But that's a valid folding of a piece of paper, | think.
Has zero curvature everywhere, if | did it right. Or | didn't do it, but if | imagine it

correctly.

All right. So it's a ruled surface, great. | mean, | can really create my whole surface
locally around a point by a whole bunch of rule segments. They're not all going to
be parallel or anything, which is what we imagined from the cylinder. They can turn

around.

But these segments do keep going until they hit another crease. Maybe the blue
line's a crease. And the boundary here could be the boundary of the paper, could

be a crease boundary. But that's what they look like.

Now, it's also what we call torsal, torsal ruled. Here we get to somewhat more
obscure terminology but some useful things. It's quite restricted. | want to have a
common tangent plane throughout a rule segment. So if | look at any one of these
rule segments, there's one plane, which is going to be like this, that is tangent to the

surface at every point along that segment.
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So in general, you might imagine that the tangent plane turns as we go along. But
these segments are kind of-- they're locally cylindrical. So you can really make a
tangent plane all the way along. Whereas here, that's probably not true. Imagine the
tangent plane starts-- can you see my hand? It starts to bend like this, and it's going

to bend around like that. It twists along a single line.

In our case where we have zero curvature, it's actually going to be torsal ruled,
meaning the tangent plane just goes straight along each of these lines. We're going

to need this, that's why | mention it.

Another fun fact along the same spirit is that the points along a rule line are all the
same in terms of whether they are planar or parabolic. So I'll call them uniformly
planar slash parabolic. Remember, planar just means it lies in a plane. Parabolic is
the other case. So here everything's parabolic. But you can't like suddenly switch in

the middle and become flat. That's not allowed, not possible.

So those are some fun facts. We're not going to prove them. If you want to see the
proofs, they're a bit technical. You have to read our paper, and then the differential
geometry books we cite. But a bunch of these things, you can understand the
proofs just assuming a little bit of differential geometry, and it's not too hard. It's in

our paper, but it's a little bit technical.

So | want to look at the things that are more related to paper folding, how paper
folds. This is obviously related, but it's like the foundation on which we build what |
care about. What | care about most-- all right, let me tell you a fun fact, what we're

going to prove.

We want this nice proper folding of the hyperbolic paraboloid, meaning every crease
is bent by a non-zero angle and not 180 degrees. In that situation, first claim is
every crease remains straight. Second claim is every face remains rigid, can't bend

anywhere-- every interior face.

These guys on the boundary, they can do crazy things. And you see that in the

model, where the outside gets kind of all wiggly. That's allowed. The outside faces,
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the ones that share the boundary with the paper, can wiggle, can curve. But
everything else has to remain flat if there are no creases in there. And that's not at

all obvious. So we're going to prove it. And | need some water.

All right. First claim, I'll call it polygonal implies flat. So what | mean is, suppose |
have some region of paper. It's in the middle somewhere. Let's say it's smooth. And
I look at the boundary of the region. Doesn't actually have to be smooth. It could

have semi-creases. But it has no creases inside.

Suppose the boundary in 3D is a polygon, so it's piecewise straight. | don't know
how that corresponds to anything, but say the boundary is straight. Then the inside
must be planar. So if | have a polygonal boundary, then | have a flat planar inside.

This is assuming no creases.

OK? So what that means is that every point inside this region must be planar, not
parabolic. That's what we want to prove. So let's do a proof by contradiction, and
suppose that we have a parabolic point. So we have some point, and locally it is

curved, and we know there's a rule line through it.

I know by smoothness, by continuity, that if this guy is parabolic, it's bent, then, in

fact, all the points nearby should also be bent, because you can't go instantly from
bent to straight. You've got to do that slowly. So there's some little region-- we call
this a neighborhood-- around the point that is all parabolic. So I'll call this parabolic

neighborhood.

All right. All of those points have unique rule lines. That's what we've been saying.
So | take this little neighborhood, and each one of them defines some rule line.

Those rule lines go all the way out to the boundary something like this.

Now, this boundary is the boundary. That means it's polygonal, can't be curved like
this. In fact, it looks something like this. Maybe this is straight. Maybe this has two
segments. We don't know how many segments. | just want to look at one of these

segments here and all the rule lines coming out of it.

So what | have is | have the boundary of the paper. That's a poor imitation of a
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straight line. Straight line. | have some rule lines coming out. Now, | don't really
know what they look like. | want to understand what they look like. This is in 3D.

Imagine. OK, this is straight.

First thing | want to look at is the normal to the surface. So normal is like
perpendicular to the surface. It's easy to define normals in the interior of the

surface, but | can actually extend that out to the boundary.

So | want to look at a normal here. Maybe let me put it here, something like that. If |
took normals really close to the boundary, | just took the limit out to the boundary, I'l
get some normal vector. And by smoothness, that exists. Just wave my hands

there, but that's true.

OK, what's true about this normal? Well, it's perpendicular to the surface. Now
locally, the surface here, it's defined by the plane of this line segment and this line
segment. So in fact, it's perpendicular to the boundary, and it's perpendicular here

to the rule line. Buy that?

If | take some other normal, like this one-- sorry, like that, it's also perpendicular to
this, but it's perpendicular to some other rule line now. So these guys are

perpendicular to a common line, but they may not be the same direction.

What we do know, though, is that it's torsal. There is a single tangent plane that's
perpendicular to this entire rule line, which means the normal is the thing
perpendicular to that tangent plane. So in fact, all of the normals along this line are
identical, which is kind of neat. These guys are all parallel. Same thing here. | won't

draw that. It's going to get too messy.

So what? All right. Well, here's a crazy thing to imagine. | will look at the derivative
of the normal. So | have this point p. Imagine you have a point p, and it's moving
along this curve continuously. Sorry-- not curve. This is a straight line. It's moving

along this edge of the boundary just once. It goes like this.

And I'm going to define n of p is the normal at that point. So it starts at something,

and then maybe it's changing. | get to this normal, then | get to this normal, and
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then who knows what it looks like. | want to understand, can it change at all? So to
understand its change, I'm going to take the derivative, n prime of p. So this is as p

moves along here, how does the normal change?

| claim, in fact, it can't change at all. Why? Well, the derivative of the normal, first of
all, must be perpendicular to-- | haven't given anything a name here. This thing is
the boundary edge. So here's my boundary edge. Every single normal here-- |
didn't draw the greatest picture-- of those have to be perpendicular to this one

common edge.

Here's the fact where we use that this is a straight line. If it curves, then this is not a
consistent thing. But because it's straight for a while, all of these guys are
perpendicular to the same thing. All of the ends are perpendicular to the boundary

edge. This is just little perpendicular notation.

And if all of the n's are perpendicular to the boundary edge, the change in n must
also be perpendicular. Otherwise, it would change in such in a way it's longer

perpendicular. OK? So that's just sort of intuitive. Great.

What else? | need it to be perpendicular to something else. | claim that n prime of p
is also perpendicular to the rule line. Ah, yes. Because this normal-- all of these
points along a rule line have the same normal direction. These guys were all
parallel. And so if | look at the change in n, in order to make all these guys be the
same, | also cannot change n in such a way that it has a non-trivial-- I'm not going

to say this too well. Do you believe it, more or less?

Let me try to say it once. I'm looking at the change in the normal. | don't want the
normal to change in such a way that it will change along this axis. So for that to be

true, the change in the normal must be perpendicular to this direction.

This is kind of weird because the normal is also perpendicular to this direction. |
mean, the normal satisfies the same things. It's perpendicular to the boundary
edge. It's also perpendicular to the rule line. That means that n, the normal, and its
derivative, they have the same direction.
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That's weird. In fact, it means that the derivative must be 0. Because the normal is
always unit length. So this would be saying that the normal is getting bigger or
shorter, but it can't do either. So in fact, normal's not changing at all. So in fact, all of
these guys are parallel along the whole segment. That means this whole region is
flat, and that's a contradiction. All right? So | waved my hands a little bit, especially

on this step, but believe me.

All right. That's one fun fact, but we want more. Because how do we know that the
boundary would be polygonal? For that we need that straight creases remain
straight. And something's not true when you have curve creases. Curve creases
obviously don't remain curved. But curve creases don't even remain planar. | mean,

they can do crazy things. But straight creases stay straight.

So what | mean is, | have my flat piece of paper. | take a straight line in the piece of
paper, and | say that's going to be a crease. It has no first derivative along the
crease. Then when | fold that, | get a straight line and some crazy stuff on the other

side, but that crease remains straight.

So | was in the middle of the paper, so it actually looks like this. Remains a straight
segment, obviously of the same length. But the point is it can't curl, and it can't even

kink.

Now, just any good theorem needs a counter-example. So if we take a piece of
paper and we make a straight crease, look, | can curl that crease. So this theorem

is not true unless | say that the crease is proper.

So here | had to make the crease all the way to 180 degrees, then | can curl it. Also,
if  don't fold it at all, then | can curl it. But if it's folded something in the middle, |
cannot curl. Paper will not be happy with me. | need extra creases in order to curl.

Well, yeah, it's just not possible.

So proper crease, which means the fold angle is not equal to 0 or plus or minus
180. So that's the theorem. Let's prove it. Maybe go a little faster. All right. So we

have our crease, and in three dimensions it might look curved. We take some point.
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We know that the paper is flat.

So if you look at the left side and the right side of the piece of paper, locally, at least,
it's flat. And | want to think of there being some tangent plane on the right side and

some tangent plane on the left side. Wow, that's not a good picture.

Let me draw the planes first. So here's two planes, and then here's my point p. And
locally the surface actually lies in these two planes and kinks here. The surface
kinks. We want the crease to be straight here, but maybe the crease is bent

something like that.

All right. Here's what we do. Again, | want to think of-- in this case, I'm going to look
at tangents, not normals. So I'm going to say, well, every point on the curve here
has some tangent. In fact, the tangent at this point must lie right along the

intersection of these two planes.

I'm going to give these planes names. This is p. This is going to be tangent plane
Tp, and this is going to be other tangent plane Sp, so on the left and the right side.
So the normal at p-- sorry, not the normal, the tangent at p-- did | give it a name-- p
prime. That's what you'd normally call it. That's the derivative. Tangent of p lies
along the intersection of those two planes. We don't really need that, but it's true.

Give you some intuition.

Now, what I'm really going to use is the second derivative, little more extreme here.
Second derivative is curvature on the curve. Now, we know that in the unfolded
surface, there's exactly 180 degrees of material here. Here's some point p. We
know there's 180 degrees of material. | mean, locally, everything's flat in terms of

the surface.

So here's where I'm going to wave my hands a little bit. | claim that the curvature
vector must be perpendicular to Tp and perpendicular to Sp. Because if | take this
curve, and | project it into one of these planes, say Tp, it should be straight at p in

projection.

It also must be straight when | project into Sp. And that actually means that it's
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straight in three dimensions also. So the straightness and projection corresponds to

straightness when flattened basically. I'm waving my hands a little bit.

But if I need the curvature vector to be perpendicular to this plane-- so it's
something like this. It's coming straight out of this plane. But that uniquely
determines its direction. It also needs to be perpendicular to Sp. These two vectors

can't be the same thing, and yet they have to be, unless these planes are the same.

So it could be there's a zero fold angle, then it's fine. Or it could be it's 180-degree
fold angle, then again the planes are the same. Can go in one direction or the other.
But if | have a proper crease, then there's no such vector. And so we're done. That

proves straight creases stay straight. Cool. Any questions about that?

So I'm trying to hit a middle ground of not too technical but also not too shallow. And
so you're left in the middle state of sort of make sense. But | did wave my hands,
and it's not super rigorous. Because to be rigorous it would take forever, and | need

to teach you differential geometry and so on.

But now that we are armed with these tools-- straight creases stay straight and any
polygonal boundary stays flat, planar-- that tells us that if we have some crease
pattern, any crease pattern made out of straight edges, so no curve creases
allowed, if | make straight creases, every single interior face must stay rigid in any

proper folding.

That's pretty cool. Because we've talked about rigid origami and said not much is
known about rigid origami. It's tough. But in fact, you really need to understand rigid
origami if you want to fold something like a hyperbolic paraboloid. Now, when you

do flat folding stuff-- well, | guess those are kind of rigid also.

But any kind of 3-dimensional folding, where you fold every crease somewhat but
not all the way, all the faces need to be rigid in the final form. Now, you could get
there by all sorts of means. But we want the hyperbolic paraboloid to exist with

creases only along these lines. And now we know each of these trapezoids must

remain planar. Also, each of these triangles must remain planar.
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Now, now we get to the contradictions. If you have this piece of paper and those are
your only creases, you can fold along one of the creases or the other, but not both.

Unless you fold one crease all the way to 180-- here, we can do it.

| have one diagonal, and | have another diagonal. So everything's meeting at 180
degrees. | can fold one and then the other. | can fold one, or | can fold the other.
But I cannot fold a little bit of one, and then try to fold the other too. It's not possible.
Therefore, this crease pattern doesn't fold at all. OK? Kind of trivial. The center is

messed up.

But keep in mind, again, these faces we don't know anything about because this
edge could do crazy things. But the interior faces of the crease pattern must all stay
flat and stay exactly as they were in the original. So it's really like we have rigid
panels here and hinges between them. The outside, though, we have no idea what

happens. OK. So the inside sucks.

So | think, at this point, we get to this picture. Here's the regular crease pattern. So
let's just make life easier and say, well, we'll cut out a hole in the center. That
surely-- that must be better. But it's no better. That thing still can't fold because you

take any of the rings that goes around, like a square annulus-- here's a ring.

The creases in that ring are just those four. So I'm just looking at these four
trapezoids. Again, each one must stay planar. And these are the only hinges | have.
It's actually really just like this. I've cut a hole in the center, but it won't really matter

because the extension of these lines meet at a point.

So effectively, you are folding this whole triangle. You can fold just the trapezoid.
But however you fold the trapezoid, you could just extend it and make the triangle,
and these triangles will remain meeting. So it's actually the same thing as the center

diagram. Because this doesn't fold, this also won't fold.

It doesn't matter how many layers you cut out. As long as there's one interior layer
that doesn't touch the boundary, it's going to be screwed. OK. That is why

hyperbolic paraboloid doesn't fold without diagonals. Once you know the creases
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are straight, it's kind of obvious.

But let me give you a more general picture. This makes things a little more
interesting and tells you, really, all those straight crease pleatings that I've shown

you, like hexagons and octagons, none of them are possible, which was a surprise.

So here I'm taking concentric shapes in such a way that the diagonals meet at a
point. | still need that fact. If they don't, in fact, it's possible to fold. And we have a

little example of that.

OK, now | actually need two interior rings to get a contradiction. So | take some ring
like this, and | take another ring, and | suppose none of them touch the boundary.
As long as | know there's at least four, there's going to be two consecutive rings like

this. And the hinges are the diagonals and the inner ring boundaries.

OK. If | just look locally at this, | claim it must be mountain-mountain-mountain-valley
or the reverse. This is something we would normally prove by saying, OK, this is
locally smallest, therefore these guys are different. And this is also locally smallest,
therefore these guys are different, and so on. Except that only works for flat folding.

Here | need to prove it for 3D folding. I'm not going to bother, but you can do it.

So in fact, let's say this is mountain-mountain-mountain-valley, then this must be
mountain, this must, all the way around must be mountain. OK? That's not such a
big deal. This must all be valley, and this must all be mountain, or the entire

reverse. But the point is, all of these guys out here must be mountains.

So really if | extend all of these guys and they meet at a single point, if | was lucky,
that's what I'm supposed to assume, really what I'm doing is folding a whole bunch

of triangles where all of the creases are mountains. That's not possible.

So if you didn't believe this thing, it follows from the same argument. They can't all
be mountains, and therefore some crease is not getting folded. So it's the same
argument again, you just have to be a little more precise. And that is not folding

hyperbolic paraboloids and things like that. But if you had diagonals, it all works.
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Now, in the last few minutes, | want to show you some more fun things, in particular,
pillows. Everybody likes pillows. But how are they made? Well, it's like two squares
of material joined along the edges, and then you stuff stuff inside. That kind of
weird, because doubly-covered square | think of as flat, and yet you can put

material inside.

What is the maximum volume you can stuff into a pillow? This is called the tea bag
problem because it also works for square tea bags. Open. We don't know. Lots of

practical explorations, but open.

Another version of this is Mylar balloons. Mylar balloons can't stretch, more or less.
And here is two circles glued together. Again flat, but you can pump air into them.
You get this weird behavior, these ripples on the outside. That's real stuff. But we
don't know what the maximum volume shape is, but it should look something like

what we see in reality.

Let me tell you some fun theorems. If you take any convex polyhedron, like say a
cube, you can inflate it and increase its volume. Also, | guess, works for a doubly-

covered square. This is the tea bag open problem, where these edges are joined.

How do you do it? I'm going to quote from the paper-- "by simultaneously delivering
karate chops to the edges of the polyhedron." That's in the abstract. So you take an

edge like this-- here's an edge and the two incident faces-- and | go like this.

Wow, that was exciting. So what happens when you go like this-- the whole board
shakes, I'll probably break it eventually-- you get something like that. So there's a

valley here, and then mountains there to replace this mountain.

And you can prove, if you do that with suitable parameters here, at every edge
simultaneously you increase the volume, which is pretty neat. Now, how far can you
go? What happens when you keep increasing the volume? Is the limit polyhedral, or

is it smooth with ripples?

Conjecture is it's smooth with ripples. In fact, you can prove it's not polyhedral.

Because not only for convex polyhedral, you take any polyhedron, it is possible to
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inflate it by at least some volume. So the limit has to be curvy. It's not going to be
polyhedral. Now, exactly what it looks like we don't know, but lots of experiments to

that effect.

A big open question in this field is, does this exist? We think so. It seems curve
creases-- none of this stuff works for curve creases. Curve creases seem a lot more
powerful. We haven't been able to prove this exists because it seems very flexible.
There's a lot of degrees of freedom. It's hard to figure out where the rule lines are.

But we think so.

So what about curved creases? | haven't talked about curve creases really at all
until this lecture. | would say the most seminal work in curve creases was done by
David Huffman. Huffman is super famous. He was a grad student and a professor

here at MIT for many years.

In particular, when he was a grad student he came up with these Huffman codes,
which are used in every MP3 player. Every device you use that uses any kind of

compression has Huffman codes in it. Super cool from the '60s.

But he also did a lot of curve crease origami, curve crease folding. And over the last
couple of years, we've been working with his family, so his wife and two daughters,

Linda and Elise. And this is me, that's Marty, and this is Duks Koschitz, who many of
you know is a PhD student in architecture. And we were visiting there back in May in

particular.

And what we're doing is taking his work, which is all in their houses and almost no
one has seen, and figuring out how he made them. What is the underlying
mathematics? What are the crease patterns that make it possible? And then

recreating them to check that we did it right.

So what I have here are just a few examples of our recreations so far. So these are
not the original models, but they look just like the original models, made out of the

same material and more or less the same way.

Although we do it a little more high-tech than he did because we want to draw
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perfect computational diagrams in CAD, and then reproduce them exactly on the
paper with no reproduction errors. So we use fancy robotically-controlled devices to
do that. So there's some fun curve creases. You get some really nice shadow

patterns. All of those are circular arcs, all the creases.

Here are some more. These are actually parabolic arcs and some straight creases
in between. Get some cool 3D relief effect. These are like tessellations like Tom Hull

was talking about but with curve creases.

This is pretty awesome. Here the creases are quite complicated to figure out. But
what's happening is you're taking a cone like this and pleating it back and forth but
with different angles, and so the whole thing twists. We have a physical one of these

in our offices. But this is the 3D model of what's going on.

Here's some particularly awesome crease patterns. David Huffman made a whole
variety of these. These are just a couple of examples. Got some crazy circular arcs.

You've got some-- | guess these are also circular arcs and some straight segments.

And then you wrap this around to make a cylinder, and you get this. That one--
there's a bunch of photos of the original David Huffman model on the web if you

Google around. Not looking exactly like that, but there's a whole variety.

Here's another one, a bit of a maybe surprise what it looks like. Most of the center
just gets eaten away from these creases. Here the creases are elliptical, and you

get something like that. So there's some hidden structure beneath.

| think just one more example. This is probably the most coolest puzzle. You say,
well, you float along these parabolas, just one valley and one mountain. But you fold
them a lot, you get that. And Huffman composed these to make various kinds of

tubes and really cool things.

So this is work in progress. Just wanted to give you a sample. There's a paper
about this which shows more examples. But our goal is to recreate all or most of

them and document how he did it and figure out how he designed these models. He
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had mathematical tools to do this, and we're still figuring out what they are. The

hope is it will lead to more great mathematics and art about curve creases.

And that is it. This is my last lecture. Next class we have-- or next three classes we
have a whole bunch of student presentations. Please come. There will be lots of
awesome things there. Send me your slides ahead of time, and you'll have 10

minutes to do it, to give a talk.

And then the last lecture, Wednesday two weeks from now, is Tomohiro Tachi. And
thanks very much. It's been a lot of fun doing this class and having you all as

students.

[APPLAUSE]
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