MITOCW | watch?v=rfWCDzG4PWk

PROFESSOR:

All right! Welcome back to 6849. Today, we're going to move into linkage folding.
And before we get there, | want to talk about an issue that sort of motivates linkage
folding. And it's about the definition of folding. So we've talked about origami a lot,
and we've talked about crease patterns, and we've talked about the folded state--
which is the finished product after you fold something. But there's another thing we

might care about.

So whenever we wanted to prove that we could fold a piece of paper in a particular
way, we described a folded state. We said what does the paper look like in 3D, how
are the layers stacked, all these kinds of issues. But when you fold a real piece of
paper, you start from a flat thing, and you want to continuously deform it into some
3D shape. And that is another kind of folding, which we call a folding motion, which
we haven't really worried about up until now. And it's going to be the central concept

in linkage folding.

The way to define a folding motion is just a continuum of folded states. It's a movie.
You start somewhere, usually we start from the flat folded state, and then at all
times we specify a new folded state, a new way to fold a piece of paper. As long as
that's a continuous process, then that is a folding motion. So we've done all this
work proving that folded states exist. The question is, what if | want a folding
motion? Because really, in order to fold the paper, I've got to get there. And that's

we're going to worry about for the first few minutes.

The good news is the reason we haven't worried about this up 'till now is there's an
equivalence between the two for paper folding. So if you have-- it's called a simple
polygonal piece of paper, and that just means your piece of paper some polygon,
but it has no holes in it. It's sort of solid, there's nothing like this. Then, it has a

folding motion into any desired folded state.

So you say, | don't know. | have this folded state where all the lines of a swan are

aligned in that second fold and cut. How do | actually fold into that folded state? It's

possible. Any folded state we describe, you can reach by a folding motion. So we're
going to prove this. When you look at it the right way it's almost trivial, but maybe a

little confusing. So I'll describe the proof to see what you think about it.

I'm going to start with the case of one dimensional paper, because it's always easier
to think about. The idea is the following. You have a piece of paper, and you have
some folded state. I'm going to draw a little letter m, what you want to fold it into.
They should have the same length. We're given this map, we're told how the piece
of paper folds-- in this case into two dimensions-- and if there were any touching
layers here it would be described which is on the top of which. We're told how to
instantaneously go from here to here. What we're not told is the steps in between,

and that's what we're going to fill in over here.

So the idea is rolling creases. | have my piece of paper here, and I'm just going to
curl in the end a little bit. So I'm going to fold this thing into-- or I just roll up the end,
| can do this continuously. It's sort of like the real piece of paper. If you start folding
and then pull, | continuously roll that crease. At all times, in fact, this is supposed to
stay flat. It's really hard to get started in reality, but in theory, you can get started
with an infinitesimal part of the crease. You just roll it in. So you make the piece of
paper smaller. It will be-- geometrically these are on top of each other, so it'll be
tiny. So it'll actually be a subset of the original piece of paper. You keep doing this,
you end up, let's say, with a rolled up piece of paper like that. A little hard to draw.
Really, it lies along the line segment, and you're just going around and around in a

line segment. But it's like a cinnamon bun.

Why do we bother? Well, if we look at a tiny piece of this folding-- so in fact | should
have done this at the beginning, let me do that now-- away from the creases. If |
look at a tiny portion, it's nice and smooth. I'm not at a crease. I'm going to highlight
which portion of the paper here ends up-- this piece of paper's roughly in quarters.

This is like the third quarter-- that ends up over here.

What I'd really like to do is roll up everything to lie on top of that, so | do some

rolling. Maybe this is the-- and I'm going to roll this up. So | end up with the thick

segment, and then some stuff rolled on top of it. | don't really care too much what it
looks like, | just need that there's a continuous rolling process to get everything to lie
on top of that segment. Now what | do going down-- this is all in one dimension. All
of this lies in one dimension. Now we're going to go into the second dimension.

Exciting.

So we imagine that there's this M, the folded shape that we want to build. And we're
going to place it where the thick part belongs, where that highlighted part belongs.
So it belongs here, and of course everything comes along for the ride. So you've got
a little roll here and a bigger roll here. Something like that. Just taking that-- or |
guess they were all on the same side, I'm not drawing very consistently. OK, but it's
all lying along this segment of the M. Now | just need to unroll. This is where for the
mathematicians this will become obvious in a little while. Maybe, | don't know. It's

kind of a common trick.

So we have this motion that got us here. We can obviously play that motion
backwards. It's symmetric, | could unroll just as easily as | rolled. But now what |
want to do is not unroll in one dimension-- if | did that, I'd end up lying along the line
segment extending this old part. Actually, it's not even quite straight, but let's
pretend it's kind of straight. But now | want to unroll along the M. So unrolling here,
the first thing | would unroll is this stuff. It's going to go along the long direction, the
left side. So it's going to unroll along, and but instead of going straight, | want it to
just move along the M. It's like I'm an ant, and | don't realize that | live in this two
dimensional space. I'm going to pretend that I live on this one dimensional space,
even though it's not physically there yet. That's why | drew it dashed. | just unroll. So
I'll end up by the end-- at this point | will have this half of the M, the bold part, and
then this half of the M hasn't been made yet. And I'll have a little roll that's enough

to make that. | unroll more, and | end up going there.

So it's kind of crazy. Just roll up the piece of paper so it's super tiny so you can put it
on the folded state without having any creases, then undo everything you did, but
living on the surface instead of in the line. So you may or may not believe that

works, but it works. It's kind of cool.

You can generalize that to two dimensional paper. It's a little harder to draw the
diagram, so | bring the textbook. Here we have a polygon of paper, but same idea.
We're going to roll up that piece of paper until it's super tiny-- in this case, super tiny
is a little triangle. We identify-- actually, ahead of time we identify a portion, a little
triangle on the surface here, that does not hit any creases. Here it is. And so we roll
up the paper to be contained in that triangle. Of course, there's many layers above
it, which you can't-- it's hard to draw here. You just curl that triangle a little bit. Now it
lives on the crane. Here, we're supposing we want to get a continuous motion of the
crane. It's multiple layers, all sorts of fun things. And then you just keep on rolling,
just like you did in the top thing but backwards. And instead of living in the plane,
you now live on the crane surface. And the mapping between them is given to you.
You're given the folded state that tells you how the piece of paper lives on the
crane, and so you just undo everything on the crane, instead of in the plane. On the

crane instead of in the plane-- should be a Doctor Seuss.

Yeah, question. How do | pick the region? | just-- in general, we have some crease
pattern. | just take some region interior to one face of the crease pattern. So just
avoiding creases is all | want. Yeah. The level of detail in describing any region will
do. In reality, we want it small, so that's almost flat by smoothness. But that's sort of

a technical detail.

Other questions? How many people does this make sense to? Just curious. Yeah,
almost everyone kind of makes sense. Good. You have to see it a few times. |
remember giving a talk of this paper in 2001, and | sort of understood it, but it was a
very interactive talk. People kept asking questions. | think by the end everyone

understood it. Now | understand it. It's good stuff.

There's some important open questions, though. This crucially relies on-- this
maybe not so-- well, yeah. If you had a hole in your piece of paper, this would not
work. Because you can't reduce-- you can't get rid of the hole by folding. And you
can do all sorts of rolling, folding corners over, and making this thing smaller, but
you'll never be able to get rid of that hole. And so this approach breaks down. Also,

if your piece of paper was a cube, the surface of the cube-- like, the end the last
4

class we talked about flattening, we had a cube, and you want to collapse it flat.
There we know that there's a folded state, but we don't know about the folding
motions. It's kind of disconcerting. We presume there's a folding motion, but again,
this approach doesn't work because you can't get a cube down to a tiny triangle.
You can't get rid of the-- it's kind of like having holes, but you surround a hole in the
case of the cube, and you can't get rid of that topological feature by folding. So it's

tricky.

We avoid collision throughout here. We also crease basically every point. This is
rather impractical if you actually want to make something. It's comforting,
theoretically, but this is not how you actually fold a crane, because you have to do
all this continuous crease rolling. So over time, every point of paper is at some point
on a crease. And a big open problem is what can you do with finitely many creases?
I'll write that down. Let's suppose you have no overlapping layers of paper, to make
life a little bit easier. So the paper doesn't touch itself, so to speak. Can you do a

finite number of extra creases?

| would conjecture maybe yes, but this is a challenging problem. Here we have sort
of infinitely many creases. Everything becomes a crease. The extreme form of this
is what we call rigid origami, where you have no extra creases. So you're supposed
to just use the creases that are given to you in the crease pattern, and the faces of
the crease pattern are rigid polygons. They have to stay flat throughout the folding
motion. So rigid origami is a thing about ridge-- about folding motions, not about
folded states. | have some folded state | want to get to, can | get there with rigid
polygons? And the creases now become hinges, basically. If you're making origami
out of metal with flat sheets, or plastic polygons, whatever, hinging them together.
Can use still fold this thing? Or did folding it require this kind of bending the paper in
crazy ways, putting creases all over the place? Sometimes you can do this, most of

the time you can't. And there's a lot we don't know about rigid origami.

| have one simple example. Something we know is bad, which is kind of fun. Should
have brought an actual paper shopping bag. You take a paper shopping bag,

they're mass produced in this crease pattern, so they're produced flat, | believe.

And can't be folded, doesn't fold rigidly. You just have these creases-- the edges of
the bag, this kind of simple thing. It looks like straight skeleton over here, and a
perpendicular. Looks very nice from a fold and cut standpoint. And it does have a

folded state, which is flat. There's no way to get there.

If you look at all the possible folded states of this pattern with rigid panels, there are
two. There's the 3D state you should see here. There's the flat state. There's
nothing that could possibly connect them. There are no other states, so there's no
folding motion from one to the other. You could instantaneously be flat, and you
could instantaneously be open, but you can't do anything in between without curving
the paper or doing something invalid according to rigid origami. So obviously you
don't want to make a paper shopping bag out of metal, | guess is the lesson, without

adding extra creases at least. Yeah.

| would love to find more open questions on rigid origami, but so far we've just
looked at a few small things. But this turns us over to linkages, which are all about

finding these motions without making extra creases.

So | need to introduce a little bit of terminology. This is like creases and all those
things from the origami world. But we care about various levels of linkages. Let me
remind you, in general a linkage is going to be something like these guys. This is
the Peaucellier linkage, these guys were pinned to the projector screen, these guys
were flexible, these are rigid bars, and this guy ended up tracing a straight line as

this thing moved.

So that's the thing we want to map-- model mathematically. We're going to have
zero thickness, just like with paper folding. We're going to have vertices, where
things come together. And we're going to have edges, which are those rigid bars.
And I'm going to try to speak in two languages at once-- the fairly intuitive one, and
I'm going to use some notation in parentheses. So if you follow the math, great. If

not, also fine.

The graph is just combinatorial structure. It just says, look, I've got things joined

together like this. There's no geometry, there's just a sense of what edges are

joined together at vertices. It's an abstract thing, kind of like the shadow trees we
work with. They're not really embedded anywhere, though here, you don't even
have lengths. Linkage, you assign lengths to the edges, and that's it. So | take a
graph and then | add lengths to edges. Its lengths of edges. So in math, this would

be a function | that maps every edge to a non-negative real number.

And | might want a little bit more. So this is sort of optional. You might have some
pinned vertices, things that are not allowed to move. So you might add coordinates
for pinned vertices. And so in math, this would be a function p that maps some
subset of the vertices E prime to wherever you happen to live. So here, I'm
supposing our linkage lives in d dimensions, because we're going to think about
linkages in 2D today. We're going to think about linkages in 3D, linkages in 4D, and
higher. Everything is fair game. We're going to be pretty general.

And sometimes, | want to think about the linkage as this abstract thing. It tells me
how things are connected, tells me what the lengths are. This is again like a shadow
tree. Maybe I'm also told some vertices are pinned in particular places in the plane
or in 3D or whatever. But sometimes | want to forget about that extra stuff and just
think about the graph. We won't do that 'till next lecture, but | mention it now
because we will need it. And then where the real action is is in the configuration of a
linkage. And that's the geometry, that's how the thing is folded. This is basically a

folded state for linkages.

Why is it different terminology than folded state? Just because it's a different sub-
field, | guess. Avoid confusion with the other notions. With folded states, usually we
allow creases all over the place. With the linkage, you're really only allowed to bend
at the vertices, so it's a bit special. So a configuration just gives you coordinates for
every vertex. So we would say configuration C maps every vertex to some pointind

dimensions, and you have to satisfy a bunch of constraints.

And the constraints are given by the linkage, so you've got the lengths and you've
got the pinning. So you have to have that. If you look at two vertices that are

connected by an edge, that edge has a length, the distance between those two

points should be equal to the length of that edge as given by that function I. This is
for phi w an edge, and then for the pinned vertices the point you choose better be
exactly what's given by the pin function. Never mind the detalils, it's pretty intuitive.
But link-- whenever | say linkage, | mean the abstract thing. Configuration, | mean

actually embedded in whatever space you're living in.

So let's do a simple example. Basically, the simplest linkage that you can think of is
a square, and abstractly just a bunch of vertices and edges. This is the graph. |
haven't written down anything. When | add lengths-- let's say they're all the same
length, | want to represent a square-- that becomes a linkage. And maybe | also
specify this guy is at coordinates 0, 0; and this guy is at coordinates 1, 0 that's one
unit away from this point. So that would sort of pin things down, and these guys are
still available to move. This is of course not a valid drawing, not a valid configuration
of the linkage. The lengths aren't all the same, this guy looks longer than this one.
But then a valid configuration would be an actual square. | should draw in the plane.

Let's say-- so thisis at 0, 0; thisis at 0, 1; thisis 1, 1; 1, 0. So that's a configuration.

There are a bunch of configurations this linkage. For example, that would be
another configuration. And there's a whole degree of freedom here. And we really
care about all those different configurations. We call that the configuration space.
Configuration space is the set of all configurations. So it has one thing for the
square, there's one thing for this particular parallelogram, and there's that whole

picture. Why don't | show you graphically what it looks like?

So here we have a square-- square, move. There we go. So yeah, it's flexible. That
vertex C is moving around a circle. We can go around, and around, and around. All
right, you get the idea. Are there any other configurations? No or yes. Pick one. Yes
is correct. Ah, yeah, there. So when | get to here and everything's sort of
overlapping-- little hard to see, but you see there's the yellow and green. Then | can
bend-- and this | can't do in the way this program's set up-- | can now move d

without moving AB. | could move the segment BD and spin that around.

So in fact, if you think about it for a while-- | hope | got this right, because | think

every time I've given this lecture | draw a different picture. The space, the
configuration space, it looks something like three kissing circles. So it's not quite
drawn to scale. Each of these points | want to correspond to one configuration. |

should really draw this with more board room.

All right, so we started with the square. And let's say these are the pinned guys on
the bottom. | had this one circle of motion, which just moved this segment around
sort of in a circle. So at the opposite point would be where these guys are pinned
and the square is inside out. And halfway along would be | don't know, let's say I'm
going left here, I've got this, and then my square is over here. Draw the right
number of points, yeah. And over on this side would be these are the pinned guys,

and my square is over there.

From here, | can do another circle of motion, which is | can never move these
points, but now | can turn this guy around. And when | go halfway around it will be
sort of folded on itself. So these are the pinned guys, and then the polygon's like
that, all on top of itself. We're only thinking about where the vertices are, we're not
thinking about overlap order here, one of the differences with linkages. And if | go
around from this guy, it turns out-- I'm pretty sure these circles of things are
different except right here. And so this thing is equal to this thing. So hence, three
circles that, pairwise, kiss, | think is the topology of this space. You can walk around
this thing. It was a little hard to draw, but in this very simple example, we can draw

effectively how the configuration space works, how you can navigate operations.

In general, | want points in the configuration space to correspond to configurations
of the linkage. and | want paths in the configuration space to corresponds to
motions. This is actually the first time we get a definition of motion. | haven't
specified one here, although motion is just going to be a continuum of
configurations, just like we had with paper. In the configuration space, a motion is
just some path through the space. You start at some point. You end at some point.
There may be multiple ways to get there, but if your thing is connected, there's a
way to get from anywhere to anywhere. We want to understand the structure of

paths in that space. That's motions. That's how you can get places.

Mathematically, | guess this is one big parenthesis, you can think of a conflagration
of an n-vertex linkage as a bunch of coordinates. You've got the coordinates for the
first vertex, coordinates for v1, so if we're in d dimensions, there's going to be d of
these things. So you've got, x, y, whatever. Then you could write down the
coordinates for v2. Let's say we're in three dimensions. So we've got three here,
three values here. I'm not going to write down what they are, because | don't know

what they are-- then three values for the third vertex, and so on for n vertices.

Why is this useful? Because you can think of a configuration, specify all these
coordinates. How many coordinates in total? It's d times n numbers. You can think
of a configuration as just d times n numbers. So you can think of a configuration as
a point in d times n dimensional space. So this is giant space. Like for our square, |
drew it as a two-dimensional diagram, but in reality there's four vertices. Each has
two dimensions. So it's an eight-dimensional space-- a little hard to imagine. But it's
so constrained-- you can't just take any set of numbers here. They have to satisfy
the edge length conditions, and they have to satisfy the pinning constraints. And by
the end, the space is locally one-dimensional. It lives in eight dimensions, but you

can only move along one-dimensional curves.

So we say this configuration space or that these configurations have one degree of
freedom. And "degree of freedom" is probably a term you've heard before. It's used
all over the place. And the formal notion of degree of freedom here is just, locally,
how many dimensions do you have if you look at the paths going out from where
you are? If, for example, | have just a free segment, it's got a bunch of dimensions--
a bunch of degrees of freedom. It can translate, and it can rotate. | guess, three. If |
pin one of the vertices, now it only has one degree of freedom. It can spin around.
Just locally, how many different ways can you move? What is the dimension of your
space? And a lot of the time, we care about things that have only one degree of

freedom because they're controlled. We get to say what they do.

All right. Let's move on to something interesting about all this, which is Kempe's
Universality Theorem. So this is the result that you can sign your name, so to speak,

but I'll state it more formally. My input is an algebraic planar curve, and all of this
10

can be generalized to beyond two dimensions, but I'll start with the planar case. Let
me get back to that. Think of that as just this blind, some kind of polynomial curve.
We're going to restrict that curve to a bounded disk, then claim that is exactly the

trajectory of some vertex in a linkage.

OK. So | have a lot of things to define here. One of them is trajectory. So this is
pretty intuitive. So for example, you take some linkage like this square, and as it
moves, you just follow one of the vertices. So for example, if we look at c, the
trajectory of c is this white circle, at least as we move to here. | think even here,
when we move d, ¢ doesn't move. So the trajectory of c is that circle. It's just-- you
take all the configurations, but then you just focus on one vertex and see where it
can go in the plane. In general, it can be very complicated, like here, maybe. Yeah.
You may recall it seems | do this every time. If you look at the trajectory, this is not
actually a vertex, and that is not a valid color if you want to see something. This
vertex, for example, its trajectory is some kind of figure eight curve like that. In
general, it can be some crazy curve, and we want that crazy curve to match a given

planar curve.

What is this notation? All I mean, it's just something like 3x cubed times y minus 7y
to the fourth power equals 0. You can also add 23 to it. Whatever. So you have
some equation. This is an equation on points. In general, if you think about it, you've
got two degrees of freedom for a point. It has an x-coordinate and a y-coordinate.
You add one equation, one constraint, that effectively pins it down to be one-
dimensional. So it's going to define some one-dimensional curve. It could be very
general. It could even be disconnected. All sorts of weird stuff. But you can use this
to write down circles and ellipses. That's the quadratic polynomials. But you could

also write much more complicated things here.

So this defines some crazy curve, locally one-dimensional thing. And it may also go
off to infinity if there's hyperbolas, or whatever, in there. We're not going to try to
capture the infinite curve because that's actually impossible. If you have any pin
vertex, then you can only get so far away from that pin vertex. If you have no pin

vertices, then you can show you can make any point in the plane. So if | want to get
11

a one-dimensional set, it's got to be a bounded set from a linkage.

So | take some big disk that captures the stuff | care about in that one-dimensional
curve, and then | am going to trace out everything of that curve inside that disk
using one vertex of a linkage. That's my goal. So it's a pretty powerful result. I like to
call it Kempe's Universality Theorem because Kempe wrote a paper about it in 1891

or so-- 1876. Even earlier. He didn't really prove the theorem, though.

Kempe is quite famous for two wrong proofs of theorems, but the theorems are
true. The one he's most famous for is the four color theorem, which you may have
heard of. Any plane or map can be colored with four colors such that no two
countries share boundary if they have the same color. He didn't prove that theorem,
but it was the late 1800s. It wasn't proved until 1960 or so. But the technique he
used is called the discharging method, is the proof that people use today. There are
now two proofs to the four color theorem. They both use discharging. So they both

use Kempe's ideas. He was just ahead of his time.

He also claimed to prove this theorem. And he proved a slightly weaker version of
this theorem. I'm going to show you his proof because it's nice, and it can be fixed,
actually, relatively easily-- although that was done only in the context of this class six
years ago. So Kempe's proof has been around for over 100 years. Other people
had proved this theorem but in more complicated ways. We can prove it in the same
way Kempe did, just a little bit of extra. So the rest of the lecture will be about

proving that theorem.

All right. So we've got two things we need to worry about. We have to worry about
this curve, and we have to worry about being in a bounded disk. I like being in a
bounded disk. That sounds really easy. Let's start with that. So this is this figure. |
have, just for fun, a scan of the original Kempe paper where he draws the
corresponding gadgets. This is, again, a gadget proof. We're going to have lots of

cool gadgets to do fun things.

A rhombus looks like this. It has one pin vertex, a, here, and you have a degree of

freedom in how you specify this thing. You specify the lengths of the edges, but all
12

of the edges have the same length. So it's like a square, except | only pin one of the
vertices. That's really the same thing. And you can see, it can only go out to twice
that distance, and then it fails to exist out here. These figures are drawn using a
program called Cinderella, which is very, very cool. It's commercial, but you can
download a demo and make your own fun constructions like this. These are all on
the web, the ones | drew here. So you can see, basically, that point b is constrained

to lie in a disk. That's it. Very simple. So that's the rhombus gadget.

But | want to think about it a little bit. So this vertex is pinned, let's say, at 0,0. Well, |
guess it's pinned at the center of the disk. | don't know where that is. This vertex is
going to be the vertex | care about. It's the one that | want to force to lie on the
curve and trace out the curve. This is going to be my magic vertex. Let's call it x,y.
Say the point that it lives on is x,y. | somehow have to evaluate this multinomial,
various powers of x and y, multiply them by some constants, add them together,
and force that to equal 0 by some constraint, by adding-- bars, in general, are
constraints. Edges are constraints. They give me equality constraints. | say the
distance between these two vertices is equal to something. Somehow | have to set
up the distance between two vertices to be that crazy function that I'm given. It

could be anything. It could be a mess.

So Kempe had this cool idea. He said, look, you can write this point as a sequence
of motions, you can think of them. So you start at the origin here, and then you
move along this segment, and then you move along this segment. So let's just write
down-- what's that angle? Call it alpha. Let me be consistent with my notation. Yes,
alpha. And these are horizontal lines. And you can think of this angle-- I'll call it beta.
So there's some length here. Did | give it a name? | do. | call it r/2, because if these
are both r/2 and these are also r/2-- that's the definition of a rhombus-- then this
point can get to anywhere within a disk of radius r centered at this point. So this
would be the center of the disk. So we're given r, we're told what the disk is. We set

this up.

But now alpha and beta are in some sense free. They're actually related to-- no,

they're not even related to each other. This point still has two degrees of freedom.
13

Even though it can't go out to infinity, it can move in x and it can move in y. We saw
because only one point was pinned, it could float around in a tw-dimensional space.

So alpha and beta are actually both free to some extent.

So instead of coordinatizing by x,y, you could coordinatize by alpha and beta. And
you can relate those two coordinatizations by some trig. I'm going to cheat here
because | never remember which is sine or cosine without thinking for 30 seconds.
The way | remember is always cosine is alphabetically smaller than sine, and so
cosine is the x-coordinate and sine is the y-coordinate, if you draw the triangle in the
conical orientation, which you might forget. If you were given these angles and you
want to construct this point, it's like, well, | go in this direction. That direction is
cosine alpha, sine alpha. And | go that direction for r/2 distance. So | have r/2 times
cosine alpha in the x-coordinate, r/2 sine alpha in the y-coordinates. It's nice and
alphabetical. Then from there, | go in this direction, which is in the beta direction--
the cosine beta, sine beta direction. | go that direction by the same amount, r/2. So

there you go. That's x and y written in terms of alpha and beta.

For the purpose of this exercise | prefer cosines over sines. So I'm going to rewrite
these sines in terms of cosines in the obvious way, which | will look up, which is
cosine alpha minus pi/2, Those r/2 cosine beta minus pi/2. OK. Let's see if | can
successfully draw cosine and sine. Sine starts here and does that. Cosine starts
here and does that. They're just shifts of each other, which | didn't draw so
beautifully. Something like that. Cosine and sine, just a shift by pi/2. So if | subtract

pi/2 from the angles, | can turn it into a cosine instead of a sine. Great.

So | have x and y written as cosines of things involving alpha and beta. So what?
Well magically, when | think about squaring or raising x to some power like 10, if you
look in angle space what happens to alpha and beta, it's kind of like multiplying the
angles by 10. In some sense, going into the trigonometric world is like taking
logarithms if you're into algebra. You have these exponents, and they're hard to
think about. You take logs, it's just multiplication. No biggie. And for those of you
who know complex analysis, that should be obvious. For the rest, just take it on

faith, and we'll just find out that it's true. Because you have this good friend. You
14

have the product of two cosines. You can rewrite it in terms of adding and

subtracting angles.

Now, you may not have learned it this way. You probably learned about rules for
cosines of sums of things and cosines of differences of things. If you take these two
expansions, add them together, lots of things cancel, and you end up just being left

with cosine a times cosine b with a module a factor of 2.

So in our situation, we have this crazy thing. Let me write down another one-- x to
the seventh times y squared plus whatever, maybe times 6 here. Well, | know what
x and y are. | just expand them. | can just plug in this thing involving cosine alpha
and cosine beta into x, and plug in this thing involving cosine of alpha minus pi/2
and so on into y. Multiply all that stuff out. What you end up doing is multiplying
cosines times cosines. And here's how we do it. To multiply two cosines, | absorb
things and turn it into cosines of sums of angles and differences of angles. And |

brought an example for you.

I'm from Waterloo, so | use Maple. You could use Mathematica, whatever you want,
because doing this algebra is a pain. But at the top there, it says substitute x equal
that crazy thing and y equal that crazy thing. Here | didn't bother rewriting in terms
of cosines because Maple's smarter than | am, so | don't need to do that. And |
have some crazy equation at the top there, which is x cubed times y minus 5 times x
times y squared equals 0, but I'm ignoring the equals 0 part. So | just plug that in,
and the first time, the first answer there, it doesn't do anything. It just plugs it in.
Then | say expand that, and it does all this crazy stuff. It multiplies all those things
out, uses binomial theorem or whatever. You get various new coefficients out there,

but you get various powers of cosines and sines of alphas and betas.

And then | use the magic operation Combine Using Trig Formulas. And combine
means when you have a product of two things, try to make it one thing. And that's
just a way of telling Maple to apply this formula, but it does it for the sine case also--
both cosines and sines. And then you get this pretty equation, or pretty left-hand

side | guess. You get sines. It's written it as sines and cosines. In our situation,

15

we're only going to get cosines because | was very reductionist here. And it'll always
be cosines of various integer multiples of alpha plus some integer multiple of beta.
And then there'll be some power of r out there. It's no biggie. In fact, we're told what
ris. We don't have to think very hard. We can construct r to the seventh power. It's
not a big deal. In fact, all of these coefficients are not a big deal. We can just say 15

over 32 times r cubed. We can just make an edge that's that length.

The hard part is making these things because alpha, beta are variables. They're not
a fixed thing. As this thing moves, we want to be able to compute twice alpha plus
beta, and then take the cosine of that thing. Now taking the cosine of a thing is
easy. It's just the x-coordinate. If | have a segment that's going in direction theta,
then the x-coordinate of this thing with respect to that thing is cos theta. This is what
I've been using all the time. The y-coordinate is sine theta, but x-coordinate is
cosine theta. So if we can construct something at an angle of twice alpha plus beta,

then we just project onto the x-axis. This length is cosine theta. Done.

So all we need is to be able to take an angle, multiply it by some integer like 27, and

we need to be able to add two angles together. And that's what Kempe does.

So he does it with this crazy thing called a contraparallelogram. A parallelogram
looks like this. You see the parallelogram. So it's a little more general than a
rhombus, but not much more. And then the contraparallelogram is you take this
diagonal, a,y | guess it's called here, and you reflect one side down. And so the blue
thing is the contraparallelogram. How does it work? What does it do? Well, I'm
assuming the left point there is pinned. Actually, I'm assuming both x and y are

pinned. And it just moves around. It's kind of cool.

It has this great feature that the angle at a here between the two blue segments is
the same as the angle at y. And the angle at x is the same as the angle at b. You
can see that throughout the motion. So it's basically an angle copier. Angle copier
sounds good because if | want to multiply an angle by 2, I'd like two copies of it and

then stick them together.

So we're just going to take this contraparallelogram and combine a bunch of them.
16

So if we're going to multiply by 2-- it's a little harder to see right on blue. So | have
one contraparallelogram here, and then | make a similar-- you just scale it up--
contraparallelogram that lies along that one. So there's two contraparallelograms.
And as | said before, this angle is going to be equal to this angle. That's going to be
our input alpha. And we're trying to compute twice alpha, which will be here. And
because this contraparallelogram is similar to this one, the angles are the same. It's
just a blowing up of it. So that means these angles, which are equal to each other
because it's contraparallelogram, will be equal to these angles because it's the
same contraparallelogram scaled up. Therefore, we have two copies of the angle

right there.

I'll just show you that it works. A little hard to see on a digital screen with pixels.
Here. When we get 90 degrees, we're going to get the twice of it is exactly 180.
Here's 45. Here's two 30s make 60, and so on. It works basically all the time. Wow,
cool. It's hard to see in some cases. | guess there, twice 180 is making 360, and so

on. That's how you multiply an angle by 2.

But then you can extend that and just repeat this construction. | take one
contraparallelogram, | attach it to another similar contraparallelogram, | attach that
to another similar contraparallelogram, | get three copies of the angle. Amazing.
Here's trisecting 180 degree angle. | get three 60s. Wow, that looks crazy. But it

works. This is sort of a proof that it works. It exists in all the states.

Great. This is an angle trisector, which was a big deal in the late 1800s. You could
build a linkage where if-- instead of thinking of this as being your input, or this,
whatever-- any one of these three could be the input, and the output is three times
that. That's what we want. You could turn it around and say, if I'm given some
angle, I line up these two bars to be equal to that, and then I'll get three trisections
of the angle. You can use this to quintisect an angle. You can divide into any integer
number parts using this crazy linkage. Fun stuff. And we can use it to multiply an
angle by some constant. | should write, we do this, we expand, and we will get a

bunch of terms.

17

We will get that our function phi here is a sum of a bunch of terms that look like
some constant, which we can compute ahead of time nothing's changing, times
cosine of some integer, what do | call it, it's to match minutes here, r sub i times
alpha, plus s sub i times beta, plus some magic number delta, and delta is 0, or plus
or minus pi over 2. So that's not a big deal. That's just saying whether we're using
sign or cosine. What we need is to construct, and these are both integers could be
positive or negative, negative's not such a big deal, it's just you look at the angle the
other way. So we need some integer times alpha, some integer times beta, we can

now do that. Then we need to add them together.

How do we do that? We use the Kempe Additor. There he is drawing it. we drew a

slightly more detailed diagram, looks like this. Now, this is a little more confusing so
had to label the thing. We've got the x-axis, | like that part. The idea is we have two
inputs. Here's input one, defining one angle to the x-axis. Here's input two, another
angle to the x-axis, here is about 90 degrees. | want to add them together and that

will be this output over here.

Our idea, | think | should draw this separately, not our idea this is Kempe's idea,
here's 0 here's input one, and input two. Both of these are measured as angles to
the x-axis. All we need to do is sort of rotate this angle to be here, and then this guy
will be the sum. How do we figure that out when all we know how to do is multiply
angles by two or divide them in half let's say? | told you that. You think about it for a
while, you realize, oh well let's instead think of it as taking this angle the smaller
one, doesn't really matter but it's easier to think about copying that angle over here.
| want to copy that angle over here, and I'm an origamist | think reflection. | would
really like to reflect along the bisector. Now what is it a bisector of? It's a bisector of
this angle, which hasn't been marked here. But if this a, this is b, then this would be
b minus a. So | want to bisect that angle. Really | want to bisect the angle between
this edge and this edge. How do | do that? | use a Kempe multiplicator, value of two,

apply it to this angle, then | figure out that bisector.

How do | copy this thing over to here? Well | take this angle and | double it, I'll get

that, actually that. So I just used two Kempe doublers, one to have been one to

18

double. And | can we possibly see it here? | have this line marked middle. That is
the bisector between the input two line and the input one line. How is it found? Well

it's here.

That's one part of the Kempe halfer, doubler, whatever. And it's attached to one
over there, similar one. So it's attached on one side to input two and on the other
side to input one. And so therefore it actually takes that angle and it cuts it in half
there. That's what it does. So now | have that middle line and | have another Kempe
doubler which is attached to the output thing, and the middle, and it's attached to
the x-axis to ground it. So now we're taking this angle and doubling it and that gives
us the output. And you do it, and magically thanks to Cinderella, it does the right
thing. So as | move, here I'm changing input one, and I'm moving the output and
also this middle line, it's staying a bisector there, when they both get to 90 it'll be
180, and so on. And | can change and put two as well. And once you build it it's kind

of clear that it will work.

There's a special case of doubling, but | can add any two angles | want. And what's
fun is it also works, | set it up for input one being smaller input two, but it works just
as fine the other way around. | don't want to go too big because | get out of the
screen. There's 0 adding 0 to something. Cool, huh? Like magic. So Kempe was
really smart. He knew about these linkages. He wrote that book How to Draw a
Straight Line. But he knew a lot more about then how to draw a straight line. He

could use, he could add two angles, man. Very cool.

All right, what's left. Basically done, for Kempe's proof. | haven't told you what's
wrong with this proof yet. Maybe you've been thinking about it. Then you just have
to put all these gadgets together. We have a schematic of it in the textbook. So we
started at the top with our rhombus. Not really drawn like a rhombus there, but
pretend it's a rhombus, this guy. | guess this is simplified since we drew this figure.
So all the edge links are the same. We've got that point p at the top, that's the one
we care about. We've got the o in the bottom left, it's pinned to the table. And
there's one gadget | didn't talk about, translators which is copies, angles around, not

too big a deal.

19

Then we, in this case say, we take alpha, it's right there, we multiply it by two, get
two alpha, take beta maybe add those two together, we'll get twice alpha plus beta.
And that is some angle we want to measure the x-coordinate of the segment with
that angle. So we just make this thing have the right length. What length should it
have? Well we have this cosine of whatever of our angle in our formula here. And
there's some constant in front of it. And for whatever reason we have this constant
3a squared times b, something that we know how to compute. So we just make this
edge have that length, that's a scale marker, and measure the projected x length of

that thing.

Well, in fact in general we have a whole bunch of these terms. We need to add
them together. We have a whole bunch of these things you saw on the maple, had |
don't know, 20 of those. So we just string them together. That's our thing we start at
some point, which we call 0. In fact, it will be the same as that o, let's say. It should
be the same as that 0. We're going to measure relative to the center of the disk say,
wherever 0 0 is. And then we want to measure how long this thing gets in x. Some

of these terms might actually be negative, some are positive.

But we're effectively adding up all of these weighted sums of cosines of our angles
which we compute through these crazy things. At the end we want this to be 0. So
our goal is to make the sum of all these things, which is the sum of all these things
rewritten, equal to O That was the definition of our curve. How do we force it to be
07? Well the actual value is the x-coordinate here. And I'm going to force this to lie on
x equals 0 using a peaucellier linkage, because it forces points to line a line. In the

way we drew it, it would force it to be on a vertical line.

So you have to imagine this picture a little differently, because in fact this should be
at x equals 0, which is normally right here. So this thing actually goes over to the
right and we'll get positive and negative values and it should lie along the vertical
line there. And that's how you force, now this point p prime has nothing to do with
them, is not the same as p. But we computed it based on all these things in terms of
alpha and beta. So this is a constraint on p in the end, because p determined all

these things. And either this thing will be on the line or not. And we add this one
20

equality constraint which would be exactly this constraint. It will constrain p to lie on

that curve, and that's Kempe's construction. Questions?

Three cool, just slightly wrong. Any ideas what's wrong? Has nothing do with this
picture. It has everything to do with the gadgets. And actually it really has to do with
all this business about the square. I've lost my diagram of the configuration space to
the square. We had this thing that when the square was flat, it could fold in a new
way. And you saw | couldn't even do that in Cinderella. Cinderella is designed to find

sort of one primary arc of this thing. But there are these branch points, these guys.

And this construction is perfect if you always stay on your track. But in a real
linkage, you can diverge at any point and go to some other track, and you can walk
around this space. When you have these branch points where there's more than
two curves coming together, you have a choice. So you're not supposed to have a
choice here, supposed to always do this thing. And sadly there's one gadget, really
two gadgets, the parallelogram and the contra-parallelogram. The parallelogram
we're using here. It's also used in the copy gadget which | didn't show you. What
don't | tell you, a copy gadget looks like this. It's like a lamp, you know like the Pixar

lamp.

So if you have an angle here it gets copied here, right. These are just two identical
parallelograms. So if you need multiple copies of an angle, you can make multiple
copies that way. | don't think you really need this, but Kempe used it. It feels good to
be able to copy an angel. And it's a parallelogram. And we used a lot, the contra-
parallelogram. The trouble is they are the same linkage. If you forget about the
configuration, you just look at the linkage which is who's pinned, what are the edge
links, what is the graph connectivity, it looks like this, just these numbers are not all
the same, and only one of these vertices is pinned. Other than that it's exactly this
diagram. You know, It's a square, it's a quadrilateral, has some lengths. Opposite

pairs are equal.

But you can't really distinguish from the two kinds of configurations. There's one

track which is the parallelogram. There's another track which is the contra-

21

parallelogram. And you can do this. Let me show you in animation, give you some
intuition. So here | drew both, oh sorry, not supposed to move that. Here | drew
both of them, got the green contra-parallelogram. And there's the, sorry green, the
blue contra-parallelogram. And then we've got the black and blue parallelogram on
the outside. And ignore this diagonal, it should be a different color. And when we're
flat, that's the same thing. And so we've got this one cycle that goes around and
that's the blue picture. Then at this point you can switch into the black picture and
follow the parallelogram around until it's flat. And that point you could also switch
back to blue or not. So | think this is two circles joined to two points. If I'm not
mistaken, the configuration space would look like this. So one of these tracks, say
this one, is a contra-parallelogram. This one is a parallelogram. They meet at the
two extremes, both flat cases. And in Kempe's construction he wants each of the
things that we call the parallelogram like this one, to stay on one, the parallelogram
track. And he wants the contra-parallelograms to stay on the contra-parallelograms
track. But how do you force that? He didn't force it, and so technically he did not
solve this problem. He solved, that solved this problem, which is that you would get
exactly the trajectory of a vertex. He solved the slightly weaker problem, which is his
point can travel along that curve. It can also travel on other curves. But it's going to
be one dimensional because it is constrained. But there are these other tracks you
might conceivably be able to go on. In particular, you can follow this track. There
might be other things. And we'd like to get rid of that. It turns out you can get rid of
that pretty easily.

This problem was first noticed by Kapovitch and Millson in like 2002 | think. Yeah.
Well that's when it finally got published. | think it was around for a few years before
that. And they observed that for parallelograms you can fix it pretty easily like in this
picture. You have the parallelogram a-b-c-d. You construct the midpoints of a and b
and the midpoints of d and c. How do you actually do this? | want that point x to stay
on the middle of that bar. You can do that by making, if you want to construct a
point in the middle of a bar, you just add a tiny triangle, where it's forced to be that
way, where a b equals, | mean the sum of a and b equals a plus b. And if you want,

do we need this? I think you could just construct those three bars. This makes a

22

little bit more rigid, but | don't think we actually need that here. So you can force a

vertex to be along the midpoint there by making a tiny triangle, a zero area triangle.

And when you do that, | don;t actually have a picture of it, we can look at the
countra-parallelogram | guess, it forces the thing to work. So for example, suppose
we go from the midpoint here to the midpoint there. That's going to stay parallel to
this segment and this segment. It's like two parallelograms joined together. Okay,
and if you went here, and then you tried to go off into the contra-parallelogram
state, what would that do? Well you'd have like from the midpoint of this segment to
the midpoint of this segment. Holy cow. It's like they're right on top of each other. So
that's not going to have the right length. Right now it's supposed to be this length,
same as the length a x. So if you try to jump tracks you can't. It's really easy to force

to stay on the parallelogram track.

And then six years ago in this class | posed, hey can we do the same thing for the
contra-parallelogram. Kapovich and Millson gave some other very complicated
solution. Turns out there's also pretty easy way to fix the contra-parallelogram,
which is you add this pinpoint set up to be--- So these midpoints will all be aligned
because it's a contra-parallelogram. You take the middle and you bisect, you put x
far away, it would be very far down there. And you just make these lengths be what
they should be. And it's not so obvious but you can prove that as the contra-
parallelogram moves, these edges will all have the same length. It works. Whereas
if you try to go into the parallelogram state, and you measure these links, they're
going to be really tiny. Here they're really large. Am | doing that right? What am |
measuring? No, the point is it's not about those links. These guys have to be co-
linear in the contra-parallelogram case, but they are not collinear in the
parallelogram case, and this is essentially forcing that co-linearity. So | don't want to
go into the details of how that's proved, it's in the textbook. But this bracing will force
it to say contra-parallelogram, that bracing will force it to be a parallelogram, and
then we actually have proofed Kempe's universality theorem, with just a slight tweak

to his proof. So that's the bug and the fix.

Let me tell you some generalizations, some open problems, some applications.

23

Maybe start with the obvious stuff which is something called Weierstrass
approximation theorem, which is that if you have any continuous function, | should
say let's think of it as a curve, has an epsilon approximation as a polynomial. OK, so
in particular what this tells us is if we have some crazy curve we want to make, like
signature, then you can approximate it by a polynomial of the form that we
analyzed, this [INAUDIBLE] of x y equals 0. And the polynomial will actually look like
this, It's a little bit ugly, if you've ever seen these constructions. But it will be always
within an epsilon thickness of Eric, always Eric, never any other curve. All right so
you can apply this to make your signature or make whatever crazy curve you have
in mind. That's kind of nice. So this is why you can sign your name using

polynomials. So that's an easy application.

Some generalizations. All right. You can do curves in d dimensions. We talked about
two dimensions. You can generalize that. You can also do surfaces in d dimensions.
Basically if you want to specify a curve in three dimensions, you need two equations
to constrain it down to a one dimensional thing. Generally you start with d
dimensions and you can remove however many dimensions you want. You'll get
some subsurface in there. Just add a bunch of polynomial constraints. You can do

that.

Other fun facts. The number of edges you need is about n to the d. This is being
careful about reusing structure. In the plane you can deal with n squared edges.
And that's optimal. You can show you need n squared edges to construct certain
polynomials in the plane. In three dimensions you're going to need more, turns out.
Basically, because the constructions we used want to work in a plane, and if you live
in d dimensions, you have to add lots of edges to force it to live in two dimensions.

So you can do the computation, add the numbers, and so on.

What other good things? All right, for the mathematicians, you can make any
compact semi algebraic set. It's basically a fancy way to say you can add polynomial
constraints, but you can also take unions of solution sets. So | could take the union
of five curves that | like, or | can take the intersection of five curves that | like. Bunch

of things you can do, that's the meaning of semi algebraic set, polynomials and

24

union and intersection. These are all proved in paper with Tim Avit and Reid Barton
from this class six years ago. Another fun fact from that paper is that it's coNP-hard

to test rigidity.

Rigidity is the topic of next class. You're given a linkage, does it move it all? And you
can use these constructions to mean, to show that something will move at all if and
only if all these polynomials have a solution. And that turns out to be really hard.
And it's something called coNP-hard, which is almost the same as NP-hard. it's just
for rigidity, it's really easy to prove that something is not rigid, you just move it. It's a
little harder to show that it can't move in any way. So that's for those who know

coNP, it's coNP, not NP. Cool. Those are various generalizations.

Big open problem here is what if you forbid the edges from crossing. This actually
came up in lecture one. Someone asked it. It was first posed that | know from Don
Shimamoto in 2004, | was giving a talk. And all these constructions, especially the
contra-parallelogram, need to have edges that cross each other. Next class will also
be about the case where edges cross each other but soon we are going to enter the
case where edges are not allowed to cross. Can you do any of this stuff, construct

any interesting polynomials? Even constructing a straight line, | think is open.

The peaucellier linkage definitely doesn't work. Maybe there are some other
linkages, we'd have to check them. But definitely Kempe's universality result is open
for non-crossing edges. | have some fun projects like it'd be fun to implement this
algorithm and see this thing run. You could build a sculpture out of Kempe linkages.
They're a little bit tedious | would say to make interesting curves, but there's some
cool ones. Like in the notes | have a link to the letter C made out of a linkage. You
could do a whole alphabet, be kind of fun. Have these things cranking around and

spelling all sorts of, actually spelling names would be the idea.

Another fun application that | thought | would just throw in. If you are, back to
origami. Origami can in some sense simulate linkages. And the motivation for this is
you've, you know you've designed, you just design all these awesome tree maker

diagrams for your problem set. And you realize, oh man, there's points all over the

25

place on this piece of paper. How the heck am | going to find, if | had to make
origami diagrams, first | say, oh you do this step, then this step, then this step. How
am | going to tell someone oh, just fold to root 3 over 7 comma root 5 plus root 7

over 4,

Which you could figure out in some sense from those geometries what all those
coordinates are. How do you tell someone to fold there? Well, you could use a
polynomial. Could say oh, you've got to construct root 5. Or what's a tough one?
Let's say you want to compute the fifth root of 103. Is that prime? | think so. So
some nasty thing like this. You say oh well, | would really like x to the fifth to equal
103. If | could solve this polynomial, then | could construct this number. How do |
solve that polynomial? Well I'm all about solving polynomials using linkages. | could

build a crazy linkage device out of my piece of paper. Don't try this at home, please.

But in theory, you could come up with these n really long bars, fold them around,
and think of them as linkages. And you tell people, oh well you just need to align
these dots, you may make little pinches on at the ends of these things, those
simulate the edges of your linkage. And then you just tell people to move these
creases around until this point lies on some line. And then you've solved your
polynomial. And this is a natural generalization in some sense to something called
origami axioms, which we will probably talk about at some point. Usually you think
about doing one fold at a time. You want to make one fold so that this point maps

onto this line, and this point maps onto this line.

That's the typical origami axiom. It's pretty good. It can trisect angles and it can do
fun things. But it can really only solve degree four equations. You want to solve a
degree five equation, you need some higher level techniques. And one way to do
that is with Kempe's universality. It's pretty impractical, but at least in theory you can
do anything, you can locate any point you want, any algebraic point, which are the
things you'd want from tree maker, using this technique, little crazy. There are other
ways to do it, too. But this one way to do it, as mentioned in the textbook.

Questions. All right. That's how to sign your name.

26

Next time we'll talk about rigidity and other fun linkage problems.

27

