
6.851 Advanced Data Structures (Spring’12) 

Prof. Erik Demaine 

Problem 1 Sample solution 

Creationist successor data structure. The data structure is a balanced BST, such as an AVL 
tree or red black tree, augmented with the following fields augmented to each node x: 

•	 td : The time at which x is deleted 

•	 tm : The maximal deletion time among x’s subtree 

Operations. The three operations are done as following: 

•	 Insert(−∞, “insert(k)”): The key k is inserted into the BST, with its deletion time set to 
∞. We also set all its ancestors’ maximal deletion time to ∞. Rotations are done to balance 
the tree. During rotation, the property that each note’s tm stores its subtree’s maximal 
deletion time is preserved. This is easy because we only need to update the maximal deletion 
times of the nodes being rotated. The insertion, the update for ancestors, and the rotations 
each takes O(log n) time, where n is the number of elements in tree. 

•	 Insert(t, “delete(k)”): The key k is deleted at time t. Locate k in the BST. Its deletion 
time td should be greater than t. Change its deletion time td to t, and walk back to the root, 
updating the maximal deletion time of all nodes on path. Both the locating and updating 
takes O(log n) time. 

•	 Delete(−∞, “insert(k)”): Delete the key k from the BST. We then update all of the maximal 
deletion times of the ancestors of k. Both the deletion and the update take O(log n) time. 

•	 Delete(t, “delete(k)”): Locate k in the BST. Increase its deletion time to ∞, and set it 
and all of its ancestors’ maximal deletion times to ∞. Both the locating and updating take 
O(log n) time. 

•	 Query(t, “successor(k)”): We will essentially perform the standard successor search, except 
that we will use the tm’s to only walk over the elements of the tree where the keys have not 
been deleted. Specifically, we will start by finding key k’s successor k' in the tree. If k'’s 
deletion time is greater than t, then return k', otherwise do the following. Walk up the tree, 
until the first right subtree whose maximal deletion time is greater than t. Walk down that 
subtree, avoiding all subtrees whose maximal deletion time is smaller or equal than t, and 
find the smallest element (at time t). This is k’s successor at t. The walking up and down 
takes O(log n) time. 

Analysis of operation time. This data structure has O(log n) for all operations, where n is 
the number of elements in tree. We have n ≤ m, where m is the total number of updates. Therefore 
the data structure has operation time O(log m) (for all operations.) 

1 



MIT OpenCourseWare
http://ocw.mit.edu

6.851 Advanced Data Structures
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu



