
6.852: Distributed Algorithms

Fall, 2009

Class 15

Today’s plan

z Pragmatic issues for shared-memory multiprocessors
z Practical mutual exclusion algorithms

� Test-and-set locks

� Ticket locks

� Queue locks

z Generalized exclusion/resource allocation problems

z Reading:

� Herlihy, Shavit, Chapter 7

� Mellor-Crummey, Scott paper (Dijkstra prize winner)

� Magnussen, Landin, Hagersten paper

� Lynch, Chapter 11

z Next:

� Consensus

� Lynch, Chapter 12

Last time

•	 Mutual exclusion algorithms using read/write

shared memory:
– Dijkstra, Peterson, Lamport Bakery, Burns

•	 Mutual exclusion algorithms using
read/modify/write (RMW) shared memory:
– Trivial 1-bit Test-and-Set algorithm, Queue algorithm,

Ticket algorithm
•	 Single-level shared memory
•	 But modern shared-memory multiprocessors are

somewhat different.
•	 The difference affects the design of practical

mutex algorithms.

Shared-memory multiprocessors

P1 P2 P3 P4 P5

Shared memory

Shared-memory multiprocessors

P1 P2 P3 P4 P5

Shared memory
Network (bus)

Mem Mem Mem Mem

$ $ $ $ $

Shared-memory multiprocessors

Mem Mem Mem Mem Mem

P1 P2 P3 P4 P5$ $ $ $ $

Network (bus)

Shared-memory multiprocessors

P1 P5$ $ $

Mem Mem Mem Mem

Network (bus)

C1
1

Network (bus)

C1
2

C1
3

C1
4

Costs for shared-memory

multiprocessors

•	 Memory access costs are non-uniform:
– Next-level cache access is ~10x more expensive (time

delay).
•	 Remote memory access produces network traffic.

– Network bandwidth can be a bottleneck.
•	 Writes invalidate cache entries.

– A process that wants to read must request again.
•	 Reads typically don’t invalidate cache entries.

– Processes can share read access to an item.
•	 All memory supports multiple writers, but most is

reserved for individual processes.

Memory operations

•	 Modern shared-memory multiprocessors provide stronger

operations than just reads and writes.
•	 “Atomic” operations:

–	 Test&Set: Write 1 to the variable, return the previous value.
–	 Fetch & Increment: Increment the variable, return the previous

value.
–	 Swap: Write the submitted value to the variable, return the

previous value.

–	 Compare&Swap (CAS): If the variable’s value is equal to the first

submitted value, then reset it to the second submitted value; return
the previous value. (Alternatively, return T/F indicating whether the
swap succeeded.)

–	 Load-link (LL) and Store-conditional (SC): LL returns current value;
SC stores a new value only iff no updates have occurred since the
last LL.

Mutual exclusion in practice

•	 Uses strong, “atomic” operations, not just reads

and writes:
– Test&Set, Fetch&Increment, Swap, Compare&Swap

(CAS), LL/SC
•	 Examples:

– One-variable Test&Set algorithm
– Ticket lock algorithm: Two Fetch&Increment variables.
– Queue lock algorithms:

•	 One queue with enqueue, dequeue and head.
•	 Since multiprocessors do not support queues in hardware,

implement this using Fetch&Increment, Swap, CAS.
•	 Terminology: Critical section called a “Lock”.

Spinning vs. blocking

• What happens when a process wants a lock (critical

section) that is currently taken? Two possibilities:

•	 Spinning:

–	 The process keeps performing the trying protocol.
–	 Our theoretical algorithms do this.
–	 In practice, often keep retesting certain variables, waiting for some

“condition” to become true.
–	 Good if waiting time is expected to be short.

• Blocking:
–	 The process deschedules itself (yields the processor)
–	 OS reschedules it later, e.g., when some condition is satisfied.
–	 Monitors, conditions (See HS, Chapter 8).
–	 Better than spinning if waiting time is long.

•	 Choice of spinning vs. blocking applies to other
synchronization constructs besides locks, e.g., producer-
consumer synchronization, barrier synchronization.

Our assumptions

z Spinning, not blocking.
z Spin locks are commonly used, e.g., in OS kernels.
z Assume critical sections are very short.
z Processes usually hold only one lock at a time.

z No multiprogramming (one process per processor).

z Processes are not “swapped out” while in the critical
region, or while executing trying/exit code.

z Performance is critical.

� Must consider caching and contention effects.

� Unknown set of participants (adaptive).

Spin locks

• Test&Set locks
• Ticket lock
• Queue locks

– Anderson
– Graunke/Thakkar
– Mellor-Crummey/Scott (MCS)
– Craig-Landin-Hagersten (CLH)

• Adding other features
– Timeout
– Hierarchical locks
– Reader-writer locks

• Note: No formal complexity analysis here!

Test&Set Locks

• Simple T&S lock, widely used in practice.
• Test-and-Test&Set lock, reduces contention.

• T&S with backoff.

Simple Test&Set lock
lock: {0,1}; initially 0

tryi exiti
waitfor(test&set(lock) = 0) lock := 0

criti remi

z Simple.
z Low space cost (1 bit).
z But lots of network traffic if highly contended.

Many processes
waiting for lock to

become free.

Simple test&set lock

P1 P2 P3 P4 P5

1 - - - -

Network (bus)

Mem Mem Mem Mem

Simple test&set lock

P1 P2 P3 P4 P5

1 - - - -

t&s

Network (bus)

Mem Mem Mem Mem

Simple test&set lock

P1 P2 P3 P4 P5

1 - - - -

Network (bus)

Mem Mem Mem Mem

reqX

Simple test&set lock

P1 P2 P3 P4 P5

1 - - - -

Network (bus)

Mem Mem Mem Mem

reqX

Simple test&set lock

P1 P2 P3 P4 P5

- - - - -

Network (bus)

Mem Mem Mem Mem

1

Simple test&set lock

P1 P2 P3 P4 P5

- - - - -

Network (bus)

Mem Mem Mem Mem

1

Simple test&set lock

P1 P2 P3 P4 P5

- 1 - - -

Network (bus)

Mem Mem Mem Mem

Simple test&set lock

P1 P2 P3 P4 P5

- 1 - - -

t&s t&s t&s

Network (bus)

Mem Mem Mem Mem

Simple test&set lock

P1 P2 P3 P4 P5

- 1 - - -

Network (bus)

Mem Mem Mem Mem

reqX reqX reqX

Simple test&set lock

P1 P2 P3 P4 P5

- 1 - - -

Network (bus)

Mem Mem Mem Mem

reqX reqX reqX

Simple test&set lock

P1 P2 P3 P4 P5

- - 1 - -

Network (bus)

Mem Mem Mem Mem

reqX reqX

Simple test&set lock

P1 P2 P3 P4 P5

- - 1 - -

Network (bus)

Mem Mem Mem Mem

reqX reqX

Simple test&set lock

P1 P2 P3 P4 P5

- - - 1 -

Network (bus)

Mem Mem Mem Mem

reqX

Simple test&set lock

P1 P2 P3 P4 P5

t&s

- - - 1

reqX

Network (bus)

Mem Mem Mem Mem

Simple test&set lock

P1 P2 P3 P4 P5

t&s t&s t&s

- - - 1

reqX

Network (bus)

Mem Mem Mem Mem

Simple test&set lock

P1 P2 P3 P4 P5

t&s t&s

- - - 1

reqX

Network (bus)

Mem Mem Mem Mem

Simple test&set lock

P1 P2 P3 P4 P5

t&s t&s

- - - 1

reqX

Network (bus)

Mem Mem Mem Mem

Simple test&set lock

P1 P2 P3 P4 P5

- - - - 1

t&s t&s

Network (bus)

Mem Mem Mem Mem

Simple test&set lock

P1 P2 P3 P4 P5

- 1 - - -

Network (bus)

Mem Mem Mem Mem

Simple test&set lock

P1 P2 P3 P4 P5

- - - 1 -

Network (bus)

Mem Mem Mem Mem

Simple test&set lock

P1 P2 P3 P4 P5

- - 1 - -

Network (bus)

Mem Mem Mem Mem

Simple test&set lock

P1 P2 P3 P4 P5

- 1 - - -

Network (bus)

Mem Mem Mem Mem

Simple test&set lock

P1 P2 P3 P4 P5

- - - 1 -

Network (bus)

Mem Mem Mem Mem

Simple test&set lock

P1 P2 P3 P4 P5

- 1 - - -

Network (bus)

Mem Mem Mem Mem

Simple test&set lock

P1 P2 P3 P4 P5

- 1 - - -

w(0)

Network (bus)

Mem Mem Mem Mem

Simple test&set lock

P1 P2 P3 P4 P5

- 1 - - -

Network (bus)

Mem Mem Mem Mem

reqX

Simple test&set lock

P1 P2 P3 P4 P5

0 - - - -

Network (bus)

Mem Mem Mem Mem

Simple test&set lock

Mem Mem Mem Mem Mem

P1 P2 P3 P4 P5$ $ $ $ $

Network (bus)

Test-and-test&set lock

• To help cope with high contention.
• Test-and-test&set:

– First “test” (read).
– Then, if the value is favorable (0), attempt

test&set.
• Reduces network traffic (but it's still high!).

Test-and-test&set lock

P1 P2 P3 P4 P5

1 1 1 1 1

Network (bus)

Mem Mem Mem Mem

Test-and-test&set lock

P1 P2 P3 P4 P5

w(0)

1 1 1 1 1

Network (bus)

Mem Mem Mem Mem

Test-and-test&set lock

P1 P2 P3 P4 P5

0 - - - -

Network (bus)

Mem Mem Mem Mem

Test-and-test&set lock

P1 P2 P3 P4 P5

read read read read

0 - - -

Network (bus)

Mem Mem Mem Mem

Test-and-test&set lock

P1 P2 P3 P4 P5

t&s t&s t&s t&s

0 0 0 0 0

Network (bus)

Mem Mem Mem Mem

Simple Test&Set lock with

backoff

• More help coping with high contention.
• Recall: Test-and-test&set

– Read before attempting Test&Set
– Reduces network traffic.
– But it’s still high---especially when a cascade of

requests arrives just after the lock is released.

• Test&Set with backoff

– If Test&Set “fails” (returns 1), wait before trying again.
• Makes success more likely.
• Reduces network traffic (both read and write).

– Exponential backoff seems to work best.
– Obviates need for Test-and-test&set.

Ticket lock
next: integer; initially 0

granted: integer; initially 0

tryi exiti
ticket := f&i(next) f&i(granted)
waitfor(granted = ticket) remi

criti
•	 Simple, low space cost, no bypass.
•	 Network traffic similar to Test-and-test&set (why?)

–	 Not quite as bad, though.
•	 Can augment with backoff.

–	 Proportional backoff seems best: delay depends on difference
between ticket and granted.

–	 Could introduce extra delays.

Queue Locks

•	 Processes form a FIFO queue.
– Provides first-come first-serve fairness.

•	 Each process learns if its turn has arrived by
checking whether its predecessor has
finished.
– Predecessor can notify the process when to

check.
– Improves utilization of the critical section.

•	 Each process spins on a different location.
– Reduces invalidation traffic.

Several queue locks

• Array-based:
– Anderson’s lock.
– Graunke and Thakkar’s lock (skip this).

• Link-list-based:
– Mellor-Crummey and Scott
– Craig, Landin, Hagensten

Anderson’s array lock
slots: array[0..N-1] of { front, not_front };

initially (front, not_front, not_front,..., not_front)
next_slot: integer; initially 0

tryi	 exiti
my_slot := f&i(next_slot)	 slots[my_slot] := not_front
waitfor(slots[my_slot] = front) slots[my_slot+1] := front

criti remi

•	 Entries are either “front” or “not-front” (of queue).
– Exactly one “front” (except for short interval in exit region).

•	 Tail of queue indicated by next_slot.
–	 Queue is empty if next_slot contains front.

•	 Each process spins on its own slot, reducing invalidation
traffic.

Anderson’s array lock

slots: array[0..N-1] of { front, not_front };

initially (front, not_front, not_front,..., not_front)
next_slot: integer; initially 0

tryi	 exiti
my_slot := f&i(next_slot)	 slots[my_slot] := not_front
waitfor(slots[my_slot] = front) slots[my_slot+1] := front

criti remi

•	 Each process spins on its own slot, reducing
invalidation traffic.

•	 Technicality: Separate slots should use different
cache lines, to avoid “false sharing”.

•	 This code allows only N competitors ever. But
Anderson allows wraparound:

Anderson’s array lock
slots: array[0..N-1] of { front, not_front };

initially (front, not_front, not_front,..., not_front)
next_slot: integer; initially 0

tryi exiti
my_slot := f&i(next_slot) slots[my_slot] := not_front
if my_slot mod N = 0 slots[my_slot+1 mod N] :=
atomic_add(next_slot, -N) front

my_slot := my_slot mod N remi

waitfor(slots[my_slot] = front)

criti

• Wraps around to allow reuse of array entries.
• Still only N of competing processes at one time.
• High space cost: One location per lock per process.

Mellor-Crummey/Scott queue lock

•	 “…probably the most influential practical mutual
exclusion algorithm of all time.” ---2006 Dijkstra
Prize citation

•	 Each process has its own “node”.
– Spins only on its own node, locally.
– Others may write its node.

•	 Small space requirements.
– Can “reuse” nodes for different locks.
– Space overhead: O(L+N), for L locks and N processes,

assuming each process accesses only one lock at a
time.

– Can allocate nodes as needed (typically upon process
creation).

•	 May spin on exit.

Mellor-Crummey/Scott lock

node: array[1..N] of [next: 0..N, wait: Boolean]; initially arbitrary
tail: 0..N; initially 0
tryi exiti

node[i].next := 0 if node[i].next = 0

pred := swap(tail,i) if CAS(tail,i,0) return

if pred � 0 waitfor(node[i].next � 0)

node[i].wait := true node[node[i].next].wait := false
node[pred].next := i remi
waitfor(¬node[i].wait)

criti

z Use array to model nodes.
z CAS: Change value, return true if expected value

found.

Mellor-Crummey/Scott lock

tryi exiti
node[i].next := 0 if node[i].next = 0
pred := swap(tail,i) if CAS(tail,i,0) return
if pred � 0 waitfor(node[i].next � 0)
node[i].wait := true node[node[i].next].wait := false
node[pred].next := i remi
waitfor(¬node[i].wait)

criti
tail

Mellor-Crummey/Scott lock

tryi
node[i].next := 0
pred := swap(tail,i)
if pred � 0
node[i].wait := true
node[pred].next := i
waitfor(¬node[i].wait)

criti
tail

node[1]
? ?

exiti
if node[i].next = 0

if CAS(tail,i,0) return

waitfor(node[i].next � 0)

node[node[i].next].wait := false
remi

Mellor-Crummey/Scott lock

tryi
node[i].next := 0
pred := swap(tail,i)
if pred � 0
node[i].wait := true
node[pred].next := i
waitfor(¬node[i].wait)

criti
tail

node[1]
?

exiti
if node[i].next = 0

if CAS(tail,i,0) return

waitfor(node[i].next � 0)

node[node[i].next].wait := false
remi

Mellor-Crummey/Scott lock

tryi
node[i].next := 0
pred := swap(tail,i)
if pred � 0
node[i].wait := true
node[pred].next := i
waitfor(¬node[i].wait)

criti
tail

node[1]
?

exiti
if node[i].next = 0

if CAS(tail,i,0) return

waitfor(node[i].next � 0)

node[node[i].next].wait := false
remi

Mellor-Crummey/Scott lock

tryi
node[i].next := 0
pred := swap(tail,i)
if pred � 0
node[i].wait := true
node[pred].next := i
waitfor(¬node[i].wait)

criti
tail

node[1]
?

exiti
if node[i].next = 0

if CAS(tail,i,0) return

waitfor(node[i].next � 0)

node[node[i].next].wait := false
remi

P1 in C

Mellor-Crummey/Scott lock

tryi
node[i].next := 0
pred := swap(tail,i)
if pred � 0
node[i].wait := true
node[pred].next := i
waitfor(¬node[i].wait)

criti
tail

exiti
if node[i].next = 0

if CAS(tail,i,0) return

waitfor(node[i].next � 0)

node[node[i].next].wait := false
remi

node[1]
?

node[4]
? ?

P1 in C

Mellor-Crummey/Scott lock

tryi exiti
node[i].next := 0 if node[i].next = 0
pred := swap(tail,i) if CAS(tail,i,0) return
if pred � 0 waitfor(node[i].next � 0)
node[i].wait := true node[node[i].next].wait := false
node[pred].next := i remi
waitfor(¬node[i].wait)

criti
tail

node[1] node[4]

? ?

P1 in C

Mellor-Crummey/Scott lock

tryi
node[i].next := 0
pred := swap(tail,i)
if pred � 0
node[i].wait := true
node[pred].next := i
waitfor(¬node[i].wait)

criti
tail

exiti
if node[i].next = 0

if CAS(tail,i,0) return

waitfor(node[i].next � 0)

node[node[i].next].wait := false
remi

node[1] node[4]
? ?

P1 in C pred4

Mellor-Crummey/Scott lock

tryi
node[i].next := 0
pred := swap(tail,i)
if pred � 0
node[i].wait := true
node[pred].next := i
waitfor(¬node[i].wait)

criti
tail

exiti
if node[i].next = 0

if CAS(tail,i,0) return

waitfor(node[i].next � 0)

node[node[i].next].wait := false
remi

node[1] node[4]
? T

P1 in C pred4

Mellor-Crummey/Scott lock

tryi
node[i].next := 0
pred := swap(tail,i)
if pred � 0
node[i].wait := true
node[pred].next := i
waitfor(¬node[i].wait)

criti
tail

exiti
if node[i].next = 0

if CAS(tail,i,0) return

waitfor(node[i].next � 0)

node[node[i].next].wait := false
remi

node[1] node[4]
? T

P1 in C pred4

Mellor-Crummey/Scott lock

tryi
node[i].next := 0
pred := swap(tail,i)
if pred � 0
node[i].wait := true
node[pred].next := i
waitfor(¬node[i].wait)

criti
tail

exiti
if node[i].next = 0

if CAS(tail,i,0) return

waitfor(node[i].next � 0)

node[node[i].next].wait := false
remi

node[1]
?

node[4]
T

P1 in C P4 waiting

Mellor-Crummey/Scott lock

tryi
node[i].next := 0
pred := swap(tail,i)
if pred � 0
node[i].wait := true
node[pred].next := i
waitfor(¬node[i].wait)

criti
tail

exiti
if node[i].next = 0

if CAS(tail,i,0) return

waitfor(node[i].next � 0)

node[node[i].next].wait := false
remi

node[1]
?

node[4]
T

node[3]
T

P1 in C P4 waiting P3 waiting

Mellor-Crummey/Scott lock

tryi
node[i].next := 0
pred := swap(tail,i)
if pred � 0
node[i].wait := true
node[pred].next := i
waitfor(¬node[i].wait)

criti
tail

exiti
if node[i].next = 0
if CAS(tail,i,0) return
waitfor(node[i].next � 0)

node[node[i].next].wait := false
remi

node[4] node[3]node[1]
T T?

P4 waiting P3 waiting

Mellor-Crummey/Scott lock

tryi
node[i].next := 0
pred := swap(tail,i)
if pred � 0
node[i].wait := true
node[pred].next := i
waitfor(¬node[i].wait)

criti
tail

exiti
if node[i].next = 0

if CAS(tail,i,0) return

waitfor(node[i].next � 0)

node[node[i].next].wait := false
remi

node[4] node[3]node[1]
F T?

P4 waiting P3 waiting

Mellor-Crummey/Scott lock

tryi
node[i].next := 0
pred := swap(tail,i)
if pred � 0
node[i].wait := true
node[pred].next := i
waitfor(¬node[i].wait)

criti
tail

exiti
if node[i].next = 0

if CAS(tail,i,0) return

waitfor(node[i].next � 0)

node[node[i].next].wait := false
remi

node[4] node[3]node[1]
F T?

P4 waiting P3 waiting

Mellor-Crummey/Scott lock

tryi exiti
node[i].next := 0 if node[i].next = 0
pred := swap(tail,i) if CAS(tail,i,0) return
if pred � 0 waitfor(node[i].next � 0)
node[i].wait := true node[node[i].next].wait := false
node[pred].next := i remi
waitfor(¬node[i].wait)

criti
tail

node[4]node[1] node[3]

? F T

P4 in C P3 waiting

Craig/Landin/Hagersten lock

node: array[0..N] of {wait,done}; initially all done

tail: 0..N; initially 0

local to i: my_node: 0..N; initially i
tryi exiti
node[my_node] := wait node[my_node] := done
pred := my_node := pred

swap(tail,my_node) remi
waitfor(node[pred] = done)

criti
•	 Even simpler than MCS.
•	 Has same nice properties, plus eliminates spinning on exit.

•	 Not as good on cacheless architectures, since nodes spin

on locations that could be remote.

Craig/Landin/Hagersten lock

node: array[0..N] of {wait,done}; initially all done

tail: 0..N; initially 0

local to i: my_node: 0..N; initially i
tryi exiti

node[my_node] := wait node[my_node] := done

pred := my_node := pred

swap(tail,my_node) remi

waitfor(node[pred] = done)

criti

•	 Queue structure information now distributed, not in shared

memory.
•	 List is linked implicitly, via local pred pointers.
•	 Upon exit, processes acquire new node id (specifically, from

predecessor).

Craig/Landin/Hagersten lock
node: array[0..N] of {wait,done}; initially all done
tail: 0..N; initially 0

local to i: my_node: 0..N; initially i
tryi exiti
node[my_node] := wait node[my_node] := done
pred := my_node := pred

swap(tail,my_node) remi
waitfor(node[pred] = done)

criti tail

node[0]

d

Craig/Landin/Hagersten lock
node: array[0..N] of {wait,done}; initially all done
tail: 0..N; initially 0

local to i: my_node: 0..N; initially i
tryi exiti
node[my_node] := wait node[my_node] := done
pred := my_node := pred

swap(tail,my_node) remi
waitfor(node[pred] = done)

criti tail

d
node[0] node[1]

?

Craig/Landin/Hagersten lock
node: array[0..N] of {wait,done}; initially all done
tail: 0..N; initially 0

local to i: my_node: 0..N; initially i
tryi exiti
node[my_node] := wait node[my_node] := done
pred := my_node := pred

swap(tail,my_node) remi
waitfor(node[pred] = done)

criti tail

d
node[0] node[1]

w

Craig/Landin/Hagersten lock
node: array[0..N] of {wait,done}; initially all done
tail: 0..N; initially 0

local to i: my_node: 0..N; initially i
tryi exiti
node[my_node] := wait node[my_node] := done
pred := my_node := pred

swap(tail,my_node) remi
waitfor(node[pred] = done)

criti tail

d
node[0]

w
node[1]

pred1

Craig/Landin/Hagersten lock
node: array[0..N] of {wait,done}; initially all done
tail: 0..N; initially 0

local to i: my_node: 0..N; initially i
tryi exiti
node[my_node] := wait node[my_node] := done
pred := my_node := pred

swap(tail,my_node) remi
waitfor(node[pred] = done)

criti tail

d
node[0]

w
node[1]

pred1
P1 in C

Craig/Landin/Hagersten lock
node: array[0..N] of {wait,done}; initially all done
tail: 0..N; initially 0

local to i: my_node: 0..N; initially i
tryi exiti
node[my_node] := wait node[my_node] := done
pred := my_node := pred

swap(tail,my_node) remi
waitfor(node[pred] = done)

criti tail

node[0] node[1] node[4]
d pred1 w pred4 w

P1 in C P4 waiting

Craig/Landin/Hagersten lock
node: array[0..N] of {wait,done}; initially all done
tail: 0..N; initially 0

local to i: my_node: 0..N; initially i
tryi exiti
node[my_node] := wait node[my_node] := done
pred := my_node := pred

swap(tail,my_node) remi
waitfor(node[pred] = done)

criti tail

node[0] node[1] node[4]
d pred1 d pred4 w

P4 waiting

Craig/Landin/Hagersten lock
node: array[0..N] of {wait,done}; initially all done
tail: 0..N; initially 0

local to i: my_node: 0..N; initially i
tryi exiti
node[my_node] := wait node[my_node] := done
pred := my_node := pred

swap(tail,my_node) remi
waitfor(node[pred] = done)

criti tail

node[1] node[4]
d pred4 w

P4 waiting

Craig/Landin/Hagersten lock
node: array[0..N] of {wait,done}; initially all done
tail: 0..N; initially 0

local to i: my_node: 0..N; initially i
tryi exiti
node[my_node] := wait node[my_node] := done
pred := my_node := pred

swap(tail,my_node) remi
waitfor(node[pred] = done)

criti tail

node[1] node[4]
d pred4 w

P4 waiting

Craig/Landin/Hagersten lock
node: array[0..N] of {wait,done}; initially all done
tail: 0..N; initially 0

local to i: my_node: 0..N; initially i
tryi exiti
node[my_node] := wait node[my_node] := done
pred := my_node := pred

swap(tail,my_node) remi
waitfor(node[pred] = done)

criti tail

node[1] node[4]
d pred4 w

P4 in C

Craig/Landin/Hagersten lock
node: array[0..N] of {wait,done}; initially all done
tail: 0..N; initially 0

local to i: my_node: 0..N; initially i
tryi exiti
node[my_node] := wait node[my_node] := done
pred := my_node := pred

swap(tail,my_node) remi
waitfor(node[pred] = done)

criti tail P1 using node[0]

node[1] node[4] node[0]
pred1 w

P4 in C P1 waiting
d pred4 w

Additional lock features

z Timeout (of waiting for lock)

� Well-formedness implies you are stuck once you start trying.

� May want to bow out (to reduce contention?) if taking too long.

� How could we do this?

z Easy for test&set locks; harder for queue locks (and ticket lock).
z Hierarchical locks
� If machine is hierarchical, and critical section protects data, it may be

better to schedule “nearby” processes consecutively.
z Reader/writer locks

� Readers don't conflict, so many readers can be “critical” together

� Especially important for “long” critical sections.

Generalized Resource Allocation

• A very quick tour
• Lynch, Chapter 11

Generalized resource allocation

z Mutual exclusion: Problem of allocating a single non-sharable resource.
z Can generalize to more resources, some sharing.
z Exclusion specification E (for a given set of users):

z Any collection of sets of users, closed under superset.
z Expresses which users are incompatible, can’t coexist in the critical section.

z Example: k-exclusion (any k users are okay, but not k+1)
E = { E : |E| > k }

z Example: Reader-writer locks
z Relies on classification of users as readers vs. writers.

E = { E : |E| > 1 and E contains a writer }

z Example: Dining Philosophers (Dijkstra)
E = { E : E includes a pair of neighbors }

Resource specifications

•	 Some exclusion specs can be described conveniently in

terms of requirements for concrete resources.
•	 Resource spec: Different users need different subsets of

resources
– Can't share: Users with intersecting sets exclude each other.

z Example: Dining Philosophers (Dijkstra)
E = { E : E includes a pair of neighbors }

Forks (resources) between adjacent

philosophers; each needs both adjacent forks

in order to eat.

Only one can hold a particular fork at a time,

so adjacent philosophers must exclude each other.

•	 Not every exclusion problem can be expressed in this way.

–	 k-exclusion cannot.

Resource allocation problem, for a

given exclusion spec E

• Same shared-memory architecture as for mutual exclusion

(processes and shared variables, no buses, no caches).

•	 Well-formedness, as before.
•	 Exclusion: No reachable state in which the set of users in C

is a set in E.
•	 Progress: As before.
•	 Lockout-freedom: As before.
•	 But these don’t capture concurrency requirements.

–	 Any lockout-free mutual exclusion algorithm also satisfies E
(provided that E doesn’t contain any singleton sets).

•	 Can add concurrency conditions, e.g.:
–	 Independent progress: If i �T and every j that could conflict with i

remains in R, then eventually i o C. (LTTR)
–	 Time bound: Obtain better bounds from i o T to i o C, even in the

presence of conflicts, than we can for mutual exclusion.

Dining Philosophers
•	 Dijkstra’s paper posed the problem, gave a

solution using strong shared-memory model.
–	 Globally-shared variables, atomic access to all of shared memory.
–	 Not very distributed.

•	 More distributed version: Assume the only shared variables
are on the edges between adjacent philosophers.
–	 Correspond to forks.
–	 Use RMW shared variables.

•	 Impossibility result: If all processes are identical and refer
to forks by local names “left” and “right”, and all shared
variables have the same initial values, then we can’t
guarantee DP exclusion + progress.

•	 Proof: Show we can’t break symmetry:
–	 Consider subset of executions that work in synchronous rounds,

prove by induction on rounds that symmetry is preserved.
Then by progress, someone o C.

So all do, violating DP exclusion.

Dining Philosophers
• Example: 	Simple symmetric algorithm where

all wait for R fork first, then L fork.
–	 Guarantees DP exclusion, because processes wait for both forks.
–	 But progress fails---all might get R, then deadlock.

•	 So we need something to break symmetry.
•	 Solutions:

–	 Number forks around the table, pick up smaller numbered fork first.
–	 Right/left algorithm (Burns):

•	 Classify processes as R or L (need at least one of each).
•	 R processes pick up right fork first, L processes pick up left fork first.
•	 Yields DP exclusion, progress, lockout freedom, independent

progress, and good time bound (constant, for alternating R and L).
z Generalize to solve any resource problem

� Nodes represent resources.

� Edge between resources if some user needs both.

� Color graph; order colors.

� All processes acquire resources in order of colors.

Next time

z Impossibility of consensus in the presence of
failures.

z Reading: Lynch, Chapter 12

MIT OpenCourseWare
http://ocw.mit.edu

6.852J / 18.437J Distributed Algorithms
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

