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Today’s plan

z Pragmatic issues for shared-memory multiprocessors 
z Practical mutual exclusion algorithms


� Test-and-set locks

� Ticket locks

� Queue locks


z Generalized exclusion/resource allocation problems 

z Reading:


� Herlihy, Shavit, Chapter 7

� Mellor-Crummey, Scott paper (Dijkstra prize winner)

� Magnussen, Landin, Hagersten paper

� Lynch, Chapter 11


z Next:

� Consensus

� Lynch, Chapter 12




Last time

•	 Mutual exclusion algorithms using read/write

shared memory: 
– Dijkstra, Peterson, Lamport Bakery, Burns 

•	 Mutual exclusion algorithms using
read/modify/write (RMW) shared memory: 
– Trivial 1-bit Test-and-Set algorithm, Queue algorithm, 

Ticket algorithm 
•	 Single-level shared memory 
•	 But modern shared-memory multiprocessors are

somewhat different. 
•	 The difference affects the design of practical

mutex algorithms. 
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Costs for shared-memory 

multiprocessors


•	 Memory access costs are non-uniform: 
– Next-level cache access is ~10x more expensive (time 

delay). 
•	 Remote memory access produces network traffic.


– Network bandwidth can be a bottleneck. 
•	 Writes invalidate cache entries. 

– A process that wants to read must request again. 
•	 Reads typically don’t invalidate cache entries. 

– Processes can share read access to an item. 
•	 All memory supports multiple writers, but most is

reserved for individual processes. 



Memory operations

•	 Modern shared-memory multiprocessors provide stronger

operations than just reads and writes. 
•	 “Atomic” operations: 

–	 Test&Set: Write 1 to the variable, return the previous value. 
–	 Fetch & Increment: Increment the variable, return the previous

value. 
–	 Swap: Write the submitted value to the variable, return the 


previous value.

–	 Compare&Swap (CAS): If the variable’s value is equal to the first

submitted value, then reset it to the second submitted value; return 
the previous value. (Alternatively, return T/F indicating whether the
swap succeeded.) 

–	 Load-link (LL) and Store-conditional (SC): LL returns current value; 
SC stores a new value only iff no updates have occurred since the
last LL. 



Mutual exclusion in practice

•	 Uses strong, “atomic” operations, not just reads

and writes: 
– Test&Set, Fetch&Increment, Swap, Compare&Swap 

(CAS), LL/SC 
•	 Examples: 

– One-variable Test&Set algorithm 
– Ticket lock algorithm: Two Fetch&Increment variables. 
– Queue lock algorithms: 

•	 One queue with enqueue, dequeue and head. 
•	 Since multiprocessors do not support queues in hardware,

implement this using Fetch&Increment, Swap, CAS. 
•	 Terminology: Critical section called a “Lock”. 



Spinning vs. blocking

• What happens when a process wants a lock (critical


section) that is currently taken? Two possibilities:

•	 Spinning: 

–	 The process keeps performing the trying protocol. 
–	 Our theoretical algorithms do this. 
–	 In practice, often keep retesting certain variables, waiting for some

“condition” to become true. 
–	 Good if waiting time is expected to be short. 

• Blocking:  
–	 The process deschedules itself (yields the processor) 
–	 OS reschedules it later, e.g., when some condition is satisfied. 
–	 Monitors, conditions (See HS, Chapter 8). 
–	 Better than spinning if waiting time is long. 

•	 Choice of spinning vs. blocking applies to other
synchronization constructs besides locks, e.g., producer-
consumer synchronization, barrier synchronization. 



Our assumptions

z Spinning, not blocking. 
z Spin locks are commonly used, e.g., in OS kernels. 
z Assume critical sections are very short. 
z Processes usually hold only one lock at a time. 

z No multiprogramming (one process per processor).

z Processes are not “swapped out” while in the critical 
region, or while executing trying/exit code. 

z Performance is critical.

� Must consider caching and contention effects.

� Unknown set of participants (adaptive).




Spin locks

• Test&Set locks 
• Ticket lock 
• Queue locks 

– Anderson 
– Graunke/Thakkar 
– Mellor-Crummey/Scott (MCS) 
– Craig-Landin-Hagersten (CLH) 

• Adding other features 
– Timeout 
– Hierarchical locks 
– Reader-writer locks 

• Note: No formal complexity analysis here!




Test&Set Locks


• Simple T&S lock, widely used in practice. 
• Test-and-Test&Set lock, reduces contention.

• T&S with backoff. 



Simple Test&Set lock 
lock: {0,1}; initially 0 

tryi exiti 
waitfor(test&set(lock) = 0) lock := 0 

criti remi 

z Simple. 
z Low space cost (1 bit). 
z But lots of network traffic if highly contended.


Many processes 
waiting for lock to 

become free. 
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Test-and-test&set lock


• To help cope with high contention. 
• Test-and-test&set: 

– First “test” (read). 
– Then, if the value is favorable (0), attempt 

test&set. 
• Reduces network traffic (but it's still high!).
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Test-and-test&set lock
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Simple Test&Set lock with 

backoff


• More help coping with high contention. 
• Recall: Test-and-test&set 

– Read before attempting Test&Set 
– Reduces network traffic. 
– But it’s still high---especially when a cascade of 


requests arrives just after the lock is released.

• Test&Set with backoff 

– If Test&Set “fails” (returns 1), wait before trying again. 
• Makes success more likely. 
• Reduces network traffic (both read and write). 

– Exponential backoff seems to work best. 
– Obviates need for Test-and-test&set. 



Ticket lock 
next: integer; initially 0

granted: integer; initially 0


tryi exiti 
ticket := f&i(next) f&i(granted) 
waitfor(granted = ticket) remi 

criti 
•	 Simple, low space cost, no bypass. 
•	 Network traffic similar to Test-and-test&set (why?) 

–	 Not quite as bad, though. 
•	 Can augment with backoff. 

–	 Proportional backoff seems best: delay depends on difference
between ticket and granted. 

–	 Could introduce extra delays. 



Queue Locks


•	 Processes form a FIFO queue. 
– Provides first-come first-serve fairness. 

•	 Each process learns if its turn has arrived by
checking whether its predecessor has
finished. 
– Predecessor can notify the process when to 

check. 
– Improves utilization of the critical section. 

•	 Each process spins on a different location. 
– Reduces invalidation traffic. 



Several queue locks 

• Array-based: 
– Anderson’s lock. 
– Graunke and Thakkar’s lock (skip this). 

• Link-list-based: 
– Mellor-Crummey and Scott 
– Craig, Landin, Hagensten 



Anderson’s array lock 
slots: array[0..N-1] of { front, not_front }; 

initially (front, not_front, not_front,..., not_front) 
next_slot: integer; initially 0 

tryi	 exiti 
my_slot := f&i(next_slot)	 slots[my_slot] := not_front 
waitfor(slots[my_slot] = front) slots[my_slot+1] := front 

criti remi 

•	 Entries are either “front” or “not-front” (of queue). 
– Exactly one “front” (except for short interval in exit region). 

•	 Tail of queue indicated by next_slot. 
–	 Queue is empty if next_slot contains front. 

•	 Each process spins on its own slot, reducing invalidation
traffic. 



Anderson’s array lock

slots: array[0..N-1] of { front, not_front }; 

initially (front, not_front, not_front,..., not_front) 
next_slot: integer; initially 0 

tryi	 exiti 
my_slot := f&i(next_slot)	 slots[my_slot] := not_front 
waitfor(slots[my_slot] = front) slots[my_slot+1] := front 

criti remi 

•	 Each process spins on its own slot, reducing
invalidation traffic. 

•	 Technicality: Separate slots should use different
cache lines, to avoid “false sharing”. 

•	 This code allows only N competitors ever. But
Anderson allows wraparound: 



Anderson’s array lock 
slots: array[0..N-1] of { front, not_front }; 

initially (front, not_front, not_front,..., not_front) 
next_slot: integer; initially 0 

tryi exiti 
my_slot := f&i(next_slot) slots[my_slot] := not_front 
if my_slot mod N = 0 slots[my_slot+1 mod N] := 
atomic_add(next_slot, -N) front


my_slot := my_slot mod N remi

waitfor(slots[my_slot] = front)


criti 

• Wraps around to allow reuse of array entries. 
• Still only N of competing processes at one time. 
• High space cost: One location per lock per process. 



Mellor-Crummey/Scott queue lock


•	 “…probably the most influential practical mutual
exclusion algorithm of all time.” ---2006 Dijkstra
Prize citation 

•	 Each process has its own “node”. 
– Spins only on its own node, locally. 
– Others may write its node. 

•	 Small space requirements. 
– Can “reuse” nodes for different locks. 
– Space overhead: O(L+N), for L locks and N processes, 

assuming each process accesses only one lock at a
time. 

– Can allocate nodes as needed (typically upon process 
creation). 

•	 May spin on exit. 



Mellor-Crummey/Scott lock

node: array[1..N] of [next: 0..N, wait: Boolean]; initially arbitrary 
tail: 0..N; initially 0 
tryi exiti

node[i].next := 0 if node[i].next = 0

pred := swap(tail,i) if CAS(tail,i,0) return

if pred � 0 waitfor(node[i].next � 0)

node[i].wait := true node[node[i].next].wait := false 
node[pred].next := i remi 
waitfor(¬node[i].wait) 

criti 

z Use array to model nodes. 
z CAS: Change value, return true if expected value

found. 



Mellor-Crummey/Scott lock

tryi exiti 
node[i].next := 0 if node[i].next = 0 
pred := swap(tail,i) if CAS(tail,i,0) return 
if pred � 0 waitfor(node[i].next � 0) 
node[i].wait := true node[node[i].next].wait := false 
node[pred].next := i remi 
waitfor(¬node[i].wait) 

criti 
tail 
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remi 
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tryi 
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Mellor-Crummey/Scott lock

tryi exiti 
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waitfor(¬node[i].wait) 

criti 
tail 

node[1] node[4]

? ?


P1 in C




Mellor-Crummey/Scott lock

tryi 
node[i].next := 0 
pred := swap(tail,i) 
if pred � 0 
node[i].wait := true 
node[pred].next := i 
waitfor(¬node[i].wait) 

criti 
tail 

exiti 
if node[i].next = 0

if CAS(tail,i,0) return

waitfor(node[i].next � 0)


node[node[i].next].wait := false 
remi 

node[1] node[4] 
? ? 

P1 in C pred4 



Mellor-Crummey/Scott lock

tryi 
node[i].next := 0 
pred := swap(tail,i) 
if pred � 0 
node[i].wait := true 
node[pred].next := i 
waitfor(¬node[i].wait) 

criti 
tail 

exiti 
if node[i].next = 0

if CAS(tail,i,0) return

waitfor(node[i].next � 0)


node[node[i].next].wait := false 
remi 

node[1] node[4] 
? T 

P1 in C pred4 



Mellor-Crummey/Scott lock

tryi 
node[i].next := 0 
pred := swap(tail,i) 
if pred � 0 
node[i].wait := true 
node[pred].next := i 
waitfor(¬node[i].wait) 

criti 
tail 

exiti 
if node[i].next = 0

if CAS(tail,i,0) return

waitfor(node[i].next � 0)


node[node[i].next].wait := false 
remi 

node[1] node[4] 
? T 

P1 in C pred4 



Mellor-Crummey/Scott lock

tryi 
node[i].next := 0 
pred := swap(tail,i) 
if pred � 0 
node[i].wait := true 
node[pred].next := i 
waitfor(¬node[i].wait) 

criti 
tail 

exiti 
if node[i].next = 0

if CAS(tail,i,0) return

waitfor(node[i].next � 0)


node[node[i].next].wait := false 
remi 

node[1] 
? 

node[4] 
T 

P1 in C P4 waiting




Mellor-Crummey/Scott lock

tryi 
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Mellor-Crummey/Scott lock

tryi 
node[i].next := 0 
pred := swap(tail,i) 
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Mellor-Crummey/Scott lock

tryi 
node[i].next := 0 
pred := swap(tail,i) 
if pred � 0 
node[i].wait := true 
node[pred].next := i 
waitfor(¬node[i].wait) 

criti 
tail 

exiti 
if node[i].next = 0
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Mellor-Crummey/Scott lock

tryi exiti 
node[i].next := 0 if node[i].next = 0 
pred := swap(tail,i) if CAS(tail,i,0) return 
if pred � 0 waitfor(node[i].next � 0) 
node[i].wait := true node[node[i].next].wait := false 
node[pred].next := i remi 
waitfor(¬node[i].wait) 

criti 
tail 

node[4]node[1] node[3]

? F T
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Craig/Landin/Hagersten lock

node: array[0..N] of {wait,done}; initially all done

tail: 0..N; initially 0


local to i: my_node: 0..N; initially i 
tryi exiti 
node[my_node] := wait node[my_node] := done 
pred := my_node := pred 

swap(tail,my_node) remi 
waitfor(node[pred] = done) 

criti 
•	 Even simpler than MCS. 
•	 Has same nice properties, plus eliminates spinning on exit.

•	 Not as good on cacheless architectures, since nodes spin

on locations that could be remote. 



Craig/Landin/Hagersten lock

node: array[0..N] of {wait,done}; initially all done

tail: 0..N; initially 0


local to i: my_node: 0..N; initially i 
tryi exiti

node[my_node] := wait node[my_node] := done

pred := my_node := pred


swap(tail,my_node) remi

waitfor(node[pred] = done)


criti

•	 Queue structure information now distributed, not in shared 

memory. 
•	 List is linked implicitly, via local pred pointers. 
•	 Upon exit, processes acquire new node id (specifically, from

predecessor). 



Craig/Landin/Hagersten lock 
node: array[0..N] of {wait,done}; initially all done 
tail: 0..N; initially 0 

local to i: my_node: 0..N; initially i 
tryi exiti 
node[my_node] := wait node[my_node] := done 
pred := my_node := pred 

swap(tail,my_node) remi 
waitfor(node[pred] = done) 

criti tail 

node[0]

d




Craig/Landin/Hagersten lock 
node: array[0..N] of {wait,done}; initially all done 
tail: 0..N; initially 0 

local to i: my_node: 0..N; initially i 
tryi exiti 
node[my_node] := wait node[my_node] := done 
pred := my_node := pred 

swap(tail,my_node) remi 
waitfor(node[pred] = done) 

criti tail 

d 
node[0] node[1] 

? 



Craig/Landin/Hagersten lock 
node: array[0..N] of {wait,done}; initially all done 
tail: 0..N; initially 0 

local to i: my_node: 0..N; initially i 
tryi exiti 
node[my_node] := wait node[my_node] := done 
pred := my_node := pred 

swap(tail,my_node) remi 
waitfor(node[pred] = done) 

criti tail 

d 
node[0] node[1] 

w 



Craig/Landin/Hagersten lock 
node: array[0..N] of {wait,done}; initially all done 
tail: 0..N; initially 0 

local to i: my_node: 0..N; initially i 
tryi exiti 
node[my_node] := wait node[my_node] := done 
pred := my_node := pred 

swap(tail,my_node) remi 
waitfor(node[pred] = done) 

criti tail 

d 
node[0] 

w 
node[1] 

pred1 



Craig/Landin/Hagersten lock 
node: array[0..N] of {wait,done}; initially all done 
tail: 0..N; initially 0 

local to i: my_node: 0..N; initially i 
tryi exiti 
node[my_node] := wait node[my_node] := done 
pred := my_node := pred 

swap(tail,my_node) remi 
waitfor(node[pred] = done) 

criti tail 

d 
node[0] 

w 
node[1] 

pred1 
P1 in C




Craig/Landin/Hagersten lock 
node: array[0..N] of {wait,done}; initially all done 
tail: 0..N; initially 0 

local to i: my_node: 0..N; initially i 
tryi exiti 
node[my_node] := wait node[my_node] := done 
pred := my_node := pred 

swap(tail,my_node) remi 
waitfor(node[pred] = done) 

criti tail 

node[0] node[1] node[4] 
d pred1 w pred4 w 

P1 in C P4 waiting 



Craig/Landin/Hagersten lock 
node: array[0..N] of {wait,done}; initially all done 
tail: 0..N; initially 0 

local to i: my_node: 0..N; initially i 
tryi exiti 
node[my_node] := wait node[my_node] := done 
pred := my_node := pred 

swap(tail,my_node) remi 
waitfor(node[pred] = done) 

criti tail 

node[0] node[1] node[4] 
d pred1 d pred4 w 

P4 waiting 



Craig/Landin/Hagersten lock 
node: array[0..N] of {wait,done}; initially all done 
tail: 0..N; initially 0 

local to i: my_node: 0..N; initially i 
tryi exiti 
node[my_node] := wait node[my_node] := done 
pred := my_node := pred 

swap(tail,my_node) remi 
waitfor(node[pred] = done) 

criti tail 

node[1] node[4] 
d pred4 w 

P4 waiting 



Craig/Landin/Hagersten lock 
node: array[0..N] of {wait,done}; initially all done 
tail: 0..N; initially 0 

local to i: my_node: 0..N; initially i 
tryi exiti 
node[my_node] := wait node[my_node] := done 
pred := my_node := pred 

swap(tail,my_node) remi 
waitfor(node[pred] = done) 

criti tail 

node[1] node[4] 
d pred4 w 

P4 waiting 



Craig/Landin/Hagersten lock 
node: array[0..N] of {wait,done}; initially all done 
tail: 0..N; initially 0 

local to i: my_node: 0..N; initially i 
tryi exiti 
node[my_node] := wait node[my_node] := done 
pred := my_node := pred 

swap(tail,my_node) remi 
waitfor(node[pred] = done) 

criti tail 

node[1] node[4] 
d pred4 w 

P4 in C 



Craig/Landin/Hagersten lock 
node: array[0..N] of {wait,done}; initially all done 
tail: 0..N; initially 0 

local to i: my_node: 0..N; initially i 
tryi exiti 
node[my_node] := wait node[my_node] := done 
pred := my_node := pred 

swap(tail,my_node) remi 
waitfor(node[pred] = done) 

criti tail P1 using node[0] 

node[1] node[4] node[0] 
pred1 w 

P4 in C P1 waiting 
d pred4 w 



Additional lock features

z Timeout (of waiting for lock)

� Well-formedness implies you are stuck once you start trying.

� May want to bow out (to reduce contention?) if taking too long.

� How could we do this?


z Easy for test&set locks; harder for queue locks (and ticket lock). 
z Hierarchical locks 
� If machine is hierarchical, and critical section protects data, it may be

better to schedule “nearby” processes consecutively. 
z Reader/writer locks

� Readers don't conflict, so many readers can be “critical” together

� Especially important for “long” critical sections.




Generalized Resource Allocation


• A very quick tour 
• Lynch, Chapter 11




Generalized resource allocation

z Mutual exclusion: Problem of allocating a single non-sharable resource. 
z Can generalize to more resources, some sharing. 
z Exclusion specification E (for a given set of users): 

z Any collection of sets of users, closed under superset. 
z Expresses which users are incompatible, can’t coexist in the critical section. 

z Example: k-exclusion (any k users are okay, but not k+1) 
E = { E : |E| > k } 

z Example: Reader-writer locks 
z Relies on classification of users as readers vs. writers.

E = { E : |E| > 1 and E contains a writer }


z Example: Dining Philosophers (Dijkstra) 
E = { E : E includes a pair of neighbors } 



Resource specifications

•	 Some exclusion specs can be described conveniently in

terms of requirements for concrete resources. 
•	 Resource spec: Different users need different subsets of 

resources 
– Can't share: Users with intersecting sets exclude each other. 

z Example: Dining Philosophers (Dijkstra) 
E = { E : E includes a pair of neighbors }

Forks (resources) between adjacent 

philosophers; each needs both adjacent forks

in order to eat.

Only one can hold a particular fork at a time,

so adjacent philosophers must exclude each other.


•	 Not every exclusion problem can be expressed in this way.

–	 k-exclusion cannot. 



Resource allocation problem, for a 

given exclusion spec E


• Same shared-memory architecture as for mutual exclusion 

(processes and shared variables, no buses, no caches).


•	 Well-formedness, as before. 
•	 Exclusion: No reachable state in which the set of users in C 

is a set in E. 
•	 Progress: As before. 
•	 Lockout-freedom: As before. 
•	 But these don’t capture concurrency requirements. 

–	 Any lockout-free mutual exclusion algorithm also satisfies E 
(provided that E doesn’t contain any singleton sets). 

•	 Can add concurrency conditions, e.g.: 
–	 Independent progress: If i �T and every j that could conflict with i

remains in R, then eventually i o C. (LTTR) 
–	 Time bound: Obtain better bounds from i o T to i o C, even in the

presence of conflicts, than we can for mutual exclusion. 



Dining Philosophers 
•	 Dijkstra’s paper posed the problem, gave a

solution using strong shared-memory model. 
–	 Globally-shared variables, atomic access to all of shared memory. 
–	 Not very distributed. 

•	 More distributed version: Assume the only shared variables 
are on the edges between adjacent philosophers. 
–	 Correspond to forks. 
–	 Use RMW shared variables. 

•	 Impossibility result: If all processes are identical and refer
to forks by local names “left” and “right”, and all shared 
variables have the same initial values, then we can’t
guarantee DP exclusion + progress. 

•	 Proof: Show we can’t break symmetry: 
–	 Consider subset of executions that work in synchronous rounds,

prove by induction on rounds that symmetry is preserved. 
Then by progress, someone o C.

So all do, violating DP exclusion.




Dining Philosophers 
• Example: 	Simple symmetric algorithm where

all wait for R fork first, then L fork. 
–	 Guarantees DP exclusion, because processes wait for both forks. 
–	 But progress fails---all might get R, then deadlock. 

•	 So we need something to break symmetry. 
•	 Solutions: 

–	 Number forks around the table, pick up smaller numbered fork first. 
–	 Right/left algorithm (Burns): 

•	 Classify processes as R or L (need at least one of each). 
•	 R processes pick up right fork first, L processes pick up left fork first. 
•	 Yields DP exclusion, progress, lockout freedom, independent 

progress, and good time bound (constant, for alternating R and L). 
z Generalize to solve any resource problem


� Nodes represent resources.

� Edge between resources if some user needs both.

� Color graph; order colors.

� All processes acquire resources in order of colors.




Next time

z Impossibility of consensus in the presence of 
failures. 

z Reading: Lynch, Chapter 12 
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