6.852: Distributed Algorithms Fall, 2009

Class 9

Today's plan

- Basic asynchronous network algorithms
 - Constructing a spanning tree
 - -Breadth-first search
 - Shortest paths
 - Minimum spanning tree
- Reading: Sections 15.3-15.5, [Gallager, Humblet, Spira]
- Next lecture:
 - Synchronizers
 - Reading: Chapter 16.

Last time

- Formal model for asynchronous networks.
- Leader election algorithms for asynchronous ring networks (LCR, HS, Peterson).
- Lower bound for leader election in an asynchronous ring.
- Leader election in general asynchronous networks (didn't quite get there).

Leader election in general networks

- Undirected graphs.
- Can get asynchronous version of synchronous FloodMax algorithm:
 - Simulate rounds with counters.
 - Need to know diameter for termination.
- We'll see better asynchronous algorithms later:
 - Don't need to know diameter.
 - Lower message complexity.
- Depend on techniques such as:
 - Breadth-first search
 - Convergecast using a spanning tree
 - Synchronizers to simulate synchronous algorithms
 - Consistent global snapshots to detect termination

Spanning trees and searching

- Spanning trees are used for communication, e.g., broadcast/convergecast
- Start with the simple task of setting up some (arbitrary) spanning tree with a (given) root i₀.
- Assume:
 - Undirected, connected graph (i.e., bidirectional communication).
 - Root i₀
 - Size and diameter unknown.
 - UIDs, with comparisons.
 - Can identify in- and out-edges to same neighbor.
- Require: Each process should output its parent in tree, with a parent output action.
- Starting point: SynchBFS algorithm:
 - i₀ floods search message; parent of a node is the first node from which it receives a search message.
 - Try running the same algorithm in asynchronous network.
 - Still yields spanning tree, but not necessarily breadth-first tree.

AsynchSpanningTree, Process i

- Signature
 - *in* receive("search")_{j,i}, $j \in nbrs$
 - $-\textit{out} \texttt{send("search")}_{i,j}, j \in \texttt{nbrs}$
 - **out** parent(j)_i, $j \in nbrs$
- State
 - parent: nbrs U { null }, init null
 - reported: Boolean, init false
 - for each $j \in nbrs$:
 - send(j) ∈ { search, null }, init search if i = i₀, else null

- send("search")_{i,j}
 pre: send(j) = search
 eff: send(j) := null
- receive("search")_{j,i}
 eff: if i ≠ i₀ and parent = null then
 parent := j
 for k ∈ nbrs { j } do
 send(k) := search

```
 parent(j)<sub>i</sub>
 pre: parent = j
 reported = false
 eff: reported := true
```


- Complexity
 - -Messages: O(|E|)
 - -Time: diam (I+d) + I
- Anomaly: Paths may be longer than diameter!

 Messages may travel faster along longer paths, in asynchronous networks.

Applications of AsynchSpanningTree

- Similar to synchronous BFS
- Message broadcast: Piggyback on search message.
- Child pointers: Add responses to search messages, easy because of bidirectional communication.
- Use precomputed tree for bcast/convergecast
 - Now the timing anomaly arises.
 - O(h(l+d)) time complexity.
 - O(|E|) message complexity.
 - See book for details.

h = height of tree; may be n

More applications

- Asynchronous broadcast/convergecast:
 - Can also construct spanning tree while using it to broadcast message and also to collect responses.
 - E.g., to tell the root when the bcast is done, or to collect aggregated data.
 - See book, p. 499-500.
 - Complexity:
 - O(|E|) message complexity.
 - O(n (l+d)) time complexity, timing anomaly.
 - See book for details.
- Elect leader when nodes have no info about the network (no knowledge of n, diam, etc.; no root, no spanning tree):
 - All independently initiate AsynchBcastAck, use it to determine max, max elects itself.

Breadth-first spanning tree

- Assume (same as above):
 - Undirected, connected graph (i.e., bidirectional communication).
 - Root i₀.
 - Size and diameter unknown.
 - UIDs, with comparisons.
- Require: Each process should output its parent in a breadthfirst spanning tree.
- In asynchronous networks, modified SynchBFS does not guarantee that the spanning tree constructed is breadth-first.
 Long paths may be traversed faster than short ones.
- Can modify each process to keep track of distance, change parent when it hears of shorter path.
 - Relaxation algorithm (like Bellman-Ford).
 - Must inform neighbors of changes.
 - Eventually, tree stabilizes to a breadth-first spanning tree.

- Signature
 - *in* receive(m)_{i,i}, m \in N, j \in nbrs
 - **out** send(m)_{i,j}, $m \in \mathbf{N}, j \in nbrs$
- State
 - **dist**: **N** U { ∞ }, init 0 if i = i₀, else ∞
 - parent: nbrs U { null }, init null
 - for each $j \in nbrs$:
 - send(j): FIFO queue of N, init (0) if i = i_0 , else \varnothing

- send(m)_{i,j} pre: m = head(send(j)) eff: remove head of send(j)
- receive(m)_{j,i} eff: if m+1 < dist then dist := m+1 parent := j for k ∈ nbrs - { j } do add dist to send(k)

Note: No parent actions---no one knows when the algorithm is done

- Complexity:
 - Messages: O(n |E|)
 - May send O(n) messages on each link (one for each distance estimate).
 - Time: O(diam n (I+d)) (taking pileups into account).
 - Can reduce complexity if know bound D on diameter:
 - Allow only distance estimates \leq D.
 - Messages: O(D |E|); Time: O(diam D (I+d))

• Termination:

- No one knows when this is done, so can't produce parent outputs.
- Can augment with acks for search messages, convergecast back to i_0 .
- $-i_0$ learns when the tree has stabilized, tells everyone else.
- A bit tricky:
 - Tree grows and shrinks.
 - Some processes may participate many times, as they learn improvements.
 - Bookkeeping needed.
 - Complexity?
Layered BFS

- Asynchrony leads to many corrections, which lead to lots of communication.
- Idea: Slow down communication, grow the tree in synchronized phases.
 - In phase k, incorporate all nodes at distance k from i_0 .
 - i_0 synchronizes between incorporating nodes at distance k and k+1.
- Phase 1:
 - i₀ sends search messages to neighbors.
 - Neighbors set dist := 1, send acks to i_0 .
- Phase k+1:
 - Assume phases 1,...,k are completed: each node at distance \leq k knows its parent, and each node at distance \leq k-1 also knows its children.
 - i₀ broadcasts newphase message along tree edges, to distance k processes.
 - Each of these sends search message to all neighbors except its parent.
 - When any non- i₀ process receives first search message, sets parent := sender and sends a positive ack; sends nacks for subsequent search msgs.
 - When distance k process receives acks/nacks for all its search messages, designates nodes that sent postive acks as its children.
 - Then distance k processes convergecast back to i₀ along depth k tree to say that they're done; include a bit saying whether new nodes were found.

Layered BFS

- Terminates: When i₀ learns, in some phase, that no new nodes were found.
- Obviously produces BFS tree.
- Complexity:
 - -Messages: O(|E| + n diam)

Each edge explored at most once in each direction by search/ack.

Each tree edge traversed at most once in each phase by newphase/convergecast.

-Time:

- Use simplified analysis:
 - Neglecting local computation time I
 - Assuming that every message in a channel is delivered in time d (ignoring congestion delays).
- O(diam² d)

LayeredBFS vs AsynchBFS

• Message complexity:

- AsynchBFS: O(diam |E|), assuming diam is known, O(n |E|) if not
- LayeredBFS: O(|E| + n diam)
- Time complexity:
 - AsynchBFS: O(diam d)
 - LayeredBFS: O(diam² d)
- Can also define "hybrid" algorithm (in book)
 - Add m layers in each phase.
 - Within each phase, layers constructed asynchronously.
 - Intermediate performance.

Shortest paths

Assumptions:

-Same as for BFS, plus edge weights.

-weight(i,j), nonnegative real, same in both directions.

- Require:
 - Output shortest distance and parent in shortest-paths tree.
- Use Bellman-Ford asynchronously
 - Used to establish routes in ARPANET 1969-1980.
 - Can augment with convergecast as for BFS, for termination.
 - -But worst-case complexity is very bad...

AsynchBellmanFord

- Signature
 - *in* receive(w)_{j,i}, m ∈ R^{≥0}, j ∈ nbrs
 - $\textit{out} \text{ send(w)}_{i,j}, m \in \mathbf{R}^{\geq 0}, j \in nbrs$
- State
 - dist: $\mathbb{R}^{\geq 0}$ U { ∞ }, init 0 if i = i₀, else ∞
 - parent: nbrs U { null }, init null
 - for each $j \in nbrs$:
 - send(j): FIFO queue of R^{≥0};
 init (0) if i = i₀, else empty

- Transitions
 - send(w)_{i,j} pre: m = head(send(j))
 eff: remove head of send(j)
 - receive(w)_{j,i} eff: if w + weight(j,i) < dist then
 dist := w + weight(j,i)
 parent := j for k ∈ nbrs - { j } do add dist to send(k)

AsynchBellmanFord

- Termination:
 - Use convergecast (as for AsynchBFS).
- Complexity:
 - O(n!) simple paths from i_0 to any other node, which is O(nⁿ).
 - So the number of messages sent on any channel is O(nⁿ).
 - So message complexity = $O(n^n |E|)$, time complexity = $O(n^n n (I+d))$.
 - Q: Are the message and time complexity really exponential in n?
 - A: Yes: In some execution of network below, i_k sends 2^k messages to i_{k+1} , so message complexity is $\Omega(2^{n/2})$ and time complexity is $\Omega(2^{n/2} d)$.

Exponential time/message complexity

- i_k sends 2^k messages to i_{k+1} , so message complexity is $\Omega(2^{n/2})$ and time complexity is $\Omega(2^{n/2} d)$.
- Possible distance estimates for i_k are $2^k 1$, $2^k 2$,...,0.
- Moreover, i_k can take on all these estimates in sequence:
 - First, messages traverse upper links, $2^k 1$.
 - Then last lower message arrives at i^k , $2^k 2$.
 - Then lower message i_k -2 $\rightarrow i_k$ -1 arrives, reduces i_k -1's estimate by 2, message i_k -1 $\rightarrow i_k$ arrives on upper links, $2^k 3$.
 - Etc. Count down in binary.
 - If this happens quickly, get pileup of 2^k search messages in $C_{k,k+1}$.

Shortest Paths

- Moral: Unrestrained asynchrony can cause problems.
- Return to this problem after we have better synchronization methods.

• Now, another good illustration of the problems introduced by asynchrony:

Minimum spanning tree

• Assumptions:

- -G = (V,E) connected, undirected.
- Weighted edges, weights known to endpoint processes, weights distinct.

– UIDs

- Processes don't know n, diam.
- Can identify in- and out-edges to same neighbor.
- Input: wakeup actions, occurring at any time at one or more nodes.
- Process wakes up when it first receives either a wakeup input or a protocol message.

• Requires:

- Produce MST, where each process knows which of its incident edges belong to the tree.
- Guaranteed to be unique, because of unique weights.
- Gallager-Humblet-Spira algorithm: Read this paper!

Recall synchronous algorithm

- Proceeds in phases (levels).
- After each phase, we have a spanning forest, in which each component tree has a leader.
- In each phase, each component finds min weight outgoing edge (MWOE), then components merge using all MWOEs to get components for next phase.
- In more detail:
 - Each node is initially in component by itself (level 0 components).
 - Phase 1 (produces level 1 components):
 - Each node uses its min weight edge as the component MWOE.
 - Send connect message across MWOE.
 - There is a unique edge that is the MWOE of two components.
 - Leader of new component is higher-id endpoint of this unique edge.
 - Phase k+1 (produces level k+1 components):

Synchronous algorithm

- Phase 1 (produces level 1 components):
 - Each node uses its min weight edge as the component MWOE.
 - Send connect across MWOE.
 - There is a unique edge that is the MWOE of two components.
 - Leader of new component is higher-id endpoint of this unique edge.
- Phase k+1 (produces level k+1 components):
 - Leader of each component initiates search for MWOE (broadcast initiate on tree edges).
 - Each node finds its mwoe:
 - Send test on potential edges, wait for accept (different component) or reject (same component).
 - Test edges one at a time in order of weight.
 - Report to leader (convergecast report); remember direction of best edge.
 - Leader picks MWOE for fragment.
 - Send change-root to MWOE's endpoint, using remembered best edges.
 - Send connect across MWOE.
 - There is a unique edge that is the MWOE of two components.
 - Leader of new component is higher-id endpoint of this unique edge.
 - Wait sufficient time for phase to end.

Synchronous algorithm

- Complexity is good:
 - Messages: O(n log n + |E|)
 - Time (rounds): O(n log n)
- Low message complexity depends on the way nodes test their incident edges, in order of weight, not retesting same edge once it's rejected.

• Q: How to run this algorithm asynchronously?

Running the algorithm asynchronously

• Problems arise:

- Inaccurate information about outgoing edges:
 - In synchronous algorithm, when a node tests its edges, it knows that its neighbors are already up to the same level, and have up-to-date information about their component.
 - In asynchronous version, neighbors could lag behind; they might be in same component but not yet know this.

- Less "balanced" combination of components:

- In synchronous algorithm, level k components have $\geq 2^k$ nodes, and level k+1 components are constructed from at least two level k components.
- In asynchronous version, components at different levels could be combined.
- Can lead to more messages overall.
- Example: One component could keep merging with level 0 single-node components. After each merge, the number of messages sent in the tree is proportional to the component's size. Leads to $\Omega(n^2)$ messages overall.

Running the algorithm asynchronously

- Problems arise:
 - Inaccurate information about outgoing edges.
 - Less "balanced" combination of components:

- Concurrent overlapping searches/convergecasts:
 - When nodes are out of synch, concurrent searches for MWOEs could interfere with each other (we'll see this).
- Time bound:
 - These problems result from nodes being out-of-synch, at different levels.
 - We could try to synchronize levels, but this must be done carefully, so as not to hurt the time complexity too much.

GHS algorithm

- Same basic ideas as before:
 - Form components, combine along MWOEs.
 - Within any component, processes cooperate to find component MWOE.
 - Broadcast from leader, convergecast, etc.
- Introduce synchronization to prevent nodes from getting too far ahead of their neighbors.
 - Associate a "level" with each component, as before.
 - Number of nodes in a level k component $\geq 2^k$.
 - Now, each level k+1 component will be (initially) formed from exactly two level k components.
 - Level numbers are used for synchronization, and in determining who is in the same component.
- Complexity:
 - Messages: O(|E| + n log n)
 - Time: $O(n \log n (d + I))$

GHS algorithm

- Combine pairs of components in two ways, merging and absorbing.
- Merging:

- C and C' have same level k, and have a common MWOE.
- Result is a new merged component C'', with level k+1.

GHS algorithm

- level(C) < level(C'), and C's MWOE leads to C'.
- Result is to absorb C into C'.
- Not creating a new component---just adding C to existing C'.
- C "catches up" with the more advanced C'.
- Absorbing is cheap, local.
- Merging and absorbing ensure that the number of nodes in any level k component $\ge 2^k$.
- Merging and absorbing are both allowable operations in finding MST, because they are allowed by the general theory for MSTs.

Liveness

- Q: Why are merging and absorbing sufficient to ensure that the construction is eventually completed?
- Lemma: After any allowable finite sequence of merges and absorbs, either the forest consists of one tree (so we're done), or some merge or absorb is enabled.
- Proof:
 - Consider the current "component digraph":
 - Nodes = components
 - Directed edges correspond to MWOEs
 - Then there must be some pair C, C' whose MWOEs point to each other. (Why?)
 - These MWOEs must be the same edge. (Why?)
 - Can combine, using either merge or absorb:
 - If same level, merge, else absorb.
- So, merging and absorbing are enough.
- Now, how to implement them with a distributed algorithm?

Component names and leaders

- For every component with level ≥ 1, define the core edge of the component's tree.
- Defined in terms of the merge and absorb operations used to construct the component:
 - After merge: Use the common MWOE.
 - After absorb: Keep the old core edge of the higher-level component.
- "The edge along which the most recent merge occurred."

- Component name: (core, level)
- Leader: Endpoint of core edge with higher id.

Determining if an edge is outgoing

- Suppose i wants to know if the edge (i,j) is outgoing from i's current component.
- At that point, i's component name info is up-to-date:
 - Component is in "search mode".
 - i has received initiate message from the leader, which carried component name.
- So i sends j a test message.
- Three cases:
 - If j's current (core, level) is the same as i's, then j knows that j is in the same component as i.
 - If j's (core, level) is different from i's and j's level is \geq i's, then j knows that j is in a different component from i.
 - Component has only one core per level.
 - No one in the same component currently has a higher level than i does, since the component is still searching for its MWOE.
 - If j's level is < i's, then j doesn't know if it is in the same or a different component. So it doesn't yet respond---waits to catch up to i's level.

Liveness, again

- Q: Can the extra delays imposed here affect the progress argument?
- No:
 - We can redo the progress argument, this time considering only those components with the lowest current level k.
 - All processes in these components must succeed in determining their mwoes, so these components succeed in determining the component MWOE.
 - If any of these level k components' MWOEs leads to a higher level, can absorb.
 - If not then all lead to other level k components, so as before, we must have two components that point to each other; so can merge.

Interference among concurrent MWOE searches

 Suppose C gets absorbed into C' via an edge from i to j, while C' is working on determining its MWOE.

- Two cases:
 - j has not yet reported its local mwoe when the absorb occurs.
 - Then it's not too late to include C in the search for the MWOE of C'. So j forwards the initiate message into C.
 - j has already reported its local mwoe.
 - Then it's too late to include C in the search.
 - But it doesn't matter: the MWOE for the combined component can't be outgoing from a node in C anyhow!

Interference among concurrent MWOE searches

- Suppose j has already reported its local mwoe.
- Show that the MWOE for the combined component can't be outgoing from a node in C.
- Claim 1: Reported mwoe(j) cannot be the edge (j,i).
- Proof:
 - Since mwoe(j) has already been reported, it must lead to \bullet a node with level \ge level(C').
 - But the level of i is still < level(C'), when the absorb occurs.
 - So mwoe(j) is a different edge, one whose weight < weight(i,j).

Claim 2: MWOE for combined component is not outgoing from a node in C.

Proof:

- (i,j) is the MWOE of C, so there are no edges outgoing from C with weight < weight(i,j).
- So no edges outgoing from C with weight < already-reported mwoe(j).
- So MWOE of combined component isn't outgoing from C.

A few details

- Specific messages:
 - initiate: Broadcast from leader to find MWOE; piggybacks component name.
 - report: Convergecast MWOE responses back to leader.
 - test: Asks whether an edge is outgoing from the component.
 - accept/reject: Answers.
 - changeroot: Sent from leader to endpoint of MWOE.
 - connect: Sent across the MWOE, to connect components.
 - We say merge occurs when connect message has been sent both ways on the edge (2 nodes must have same level).
 - We say absorb occurs when connect message has been sent on the edge from a lower-level to a higher-level node.

Test-Accept-Reject Protocol

- Bookkeeping: Each process i keeps a list of incident edges in order of weight, classified as:
 - branch (in the MST),
 - rejected (leads to same component), or
 - unknown (not yet classified).
- Process i tests only unknown edges, sequentially in order of weight:
 - Sends test message, with (core, level); recipient j compares.
 - If same (core, level), j sends reject (same component), and i reclassifies edge as rejected.
 - If (core, level) pairs are unequal and level(j) ≥ level(i) then j sends accept (different component). i does not reclassify the edge.
 - If level(j) < level(i) then j delays responding, until $level(j) \ge level(i)$.
- Retesting is possible, for accepted edges.
- Reclassify edge as branch as a result of changeroot message.

Complexity

- As for synchronous version.
- Messages: O(|E| + n log n)
 - 4|E| for test-reject msgs (one pair for each direction of every edge)
 - n initiate messages per level (broadcast: only sent on tree edges)
 - n report messages per level (convergecast)
 - 2n test-accept messages per level (one pair per node)
 - n change-root/connect messages per level (core to MWOE path)
 - log n levels
 - Total: 4|E| + 5n log n
- Time: O(n log n (l + d))

Proving Correctness

- GHS MST is hard to prove, because it's complex.
- GHS paper includes informal arguments.
 - Pretty convincing, but not formal.
 - Also simulated the algorithm extensively.
- Many successful attempts to formalize, all complicated
 - Many invariants because many variables and actions.
 - Some use simulation relations.
 - Recent proof by Moses and Shimony.

Minimum spanning tree

- Application to leader election:
 - Convergecast from leaves until messages meet at node or edge.
 - -Works with any spanning tree, not just MST.
 - E.g., in asynchronous ring, this yields O(n log n) messages for leader election.
- Lower bounds on message complexity:
 - $-\Omega(n \log n)$, from leader election lower bound and the reduction above.

Next time

- Synchronizers
- Reading: Chapter 16

6.852J / 18.437J Distributed Algorithms Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.