
6.852: Distributed Algorithms

Fall, 2009

Class 14

Today’s plan

• Mutual exclusion with read/write memory:

– Lamport’s Bakery Algorithm
– Burns' algorithm
– Lower bound on the number of registers

• Mutual exclusion with read-modify-write operations
• Reading: Sections 10.6-10.8, 10.9

• Next: Lecture by Victor Luchangco (Sun)
– Practical mutual exclusion algorithms
– Generalized resource allocation and exclusion problems
– Reading:

• Herlihy, Shavit book, Chapter 7
• Mellor-Crummey and Scott paper (Dijkstra prize winner)
• (Optional) Magnussen, Landin, Hagersten paper
• Distributed Algorithms, Chapter 11

Last time

z Mutual exclusion with read/write memory:

– Dijkstra’s algorithm:

• Mutual exclusion + progress

– Peterson’s algorithms
• Mutual exclusion + progress + lockout-freedom

– Lamport’s Bakery algorithm (didn’t get to this)
• Mutual exclusion + progress + lockout-freedom
• No multi-writer variables.

Lamport’s Bakery Algorithm

•	 Like taking tickets in a bakery.
•	 Nice features:

–	 Uses only single-writer, multi-reader registers.
–	 Extends to even weaker registers, in which operations have

durations, and a read that overlaps a write receives an arbitrary
response.

–	 Guarantees lockout-freedom, in fact, almost-FIFO behavior.
• But:

–	 Registers are unbounded size.
–	 Algorithm can be simulated using bounded registers, but not easily

(uses bounded concurrent timestamps).

•	 Shared variables:
–	 For each process i:

•	 choosing(i), a Boolean, written by i, read by all, initially 0
•	 number(i), a natural number, written by i, read by all, initially 0

Bakery Algorithm

•	 First part, up to choosing(i) := 0 (the “Doorway”, D):

–	 Process i chooses a number number greater than all the numbers it
reads for the other processes; writes this in number(i).

–	 While doing this, keeps choosing(i) = 1.
–	 Two processes could choose the same number (unlike real bakery).
–	 Break ties with process ids.

•	 Second part:
–	 Wait to see that no others are choosing, and no one else has a

smaller number.
–	 That is, wait to see that your ticket is the smallest.
–	 Never go back to the beginning of this part---just proceed step by

step, waiting when necessary.

Code
Shared variables:
for every i � {1,…,n}:

choosing(i) � {0,1}, initially 0, writable by i, readable by all j z i
number(i), a natural number, initially 0, writable by i, readable by j z i.

tryi
choosing(i) := 1

number(i) := 1 + maxj z i number(j)

choosing(i) := 0

for j z i do

waitfor choosing(j) = 0

waitfor number(j) = 0 or (number(i), i) < (number(j), j)

criti

exiti

number(i) := 0

remi

Correctness: Mutual exclusion

•	 Key invariant: If process i is in C, and process j z i

is in (T � D) � C,

Trying region after doorway, or critical region

then (number(i),i) < (number(j),j).

•	 Proof:
– Could prove by induction.
– Instead, give argument based on events in executions.
– This argument extends to weaker registers, with

concurrent accesses.

Correctness: Mutual exclusion

•	 Invariant: If i is in C, and j z i is in (T � D) � C, then

(number(i),i) < (number(j),j).
•	 Proof:

–	 Consider a point where i is in C and j z i is in (T � D) � C.
–	 Then before i entered C, it must have read choosing(j) = 0, event S.

S: i reads choosing(j) = 0 i in C, j in (T � D) � C

–	 Case 1: j sets choosing(j) := 1 (starts choosing) after S.
•	 Then number(i) is set before j starts choosing.
•	 So j sees the “correct” number(i) and chooses something bigger.

–	 Case 2: j sets choosing(j) := 0 (finishes choosing) before S.
•	 Then when i reads number(j) in its second waitfor loop, it gets the

“correct” number(j).
•	 Since i decides to enter C anyway, it must have seen (number(i),i) <

(number(j),j).

Correctness: Mutual exclusion

•	 Invariant: If i is in C, and j z i is in (T � D) �
C, then (number(i),i) < (number(j),j).

•	 Proof of mutual exclusion:
– Apply invariant both ways.
– Contradictory requirements.

Liveness Conditions

•	 Progress:

–	 By contradiction.
–	 If not, eventually region changes stop, leaving everyone in T or R,

and at least one process in T.
–	 Everyone in T eventually finishes choosing.
–	 Then nothing blocks the smallest (number, index) process from

entering C.

•	 Lockout-freedom:
–	 Consider any i that enters T
–	 Eventually it finishes the doorway.
–	 Thereafter, any newly-entering process picks a bigger number.
–	 Progress implies that processes continue to enter C, as long as i is

still in T.
–	 In fact, this must happen infinitely many times!
–	 But those with bigger numbers can’t get past i, contradiction.

FIFO Condition

•	 Not really FIFO (oT vs. oC), but almost:

–	 FIFO after the doorway: if j leaves D before i oT, then j oC before
i oC.

•	 But the “doorway” is an artifact of this algorithm, so this isn’t
a meaningful way to evaluate the algorithm!

•	 Maybe say “there exists a doorway such that”…
•	 But then we could take D to be the entire trying region,

making the property trivial.
•	 To make the property nontrivial:

–	 Require D to be “wait-free”: a process is guaranteed to complete D
it if it keeps taking steps, regardless of what other processes do.

–	 D in the Bakery Algorithm is wait-free.
•	 The algorithm is FIFO after a wait-free doorway.

Impact of Bakery Algorithm

• Originated important ideas:
– Wait-freedom

• Fundamental notion for theory of fault-tolerant
asynchronous distributed algorithms.

– Weakly coherent memories
• Beginning of formal study: definitions, and some

algorithmic strategies for coping with them.

Space and memory considerations

z All mutual exclusion algorithms use more
than n variables.
�Bakery algorithm could use just n variables.
(Why?)

z All but Bakery use multi-writer variables.
�These can be expensive to implement

z Bakery uses infinite-size variables
�Difficult (but possible) to adapt to use finite-size
variables.

z Q: Can we do better?

Burns’ Algorithm

Burns' algorithm

z Uses just n single-writer Boolean read/write
variables.

z Simple.
z Guarantees safety (mutual exclusion) and
progress.
�But not lockout-freedom!

Code
Shared variables:
for every i � {1,…,n}:

flag(i) � {0,1}, initially 0, writable by i, readable by all j z i

Process i:
tryi	 exiti

L:	 flag(i) := 0 flag(i) := 0
for j � {1,…,i-1} do

if flag(j) = 1 then go to L

flag(i) := 1

remi

for j � {1,…,i-1} do

if flag(j) = 1 then go to L

M: for j � {i+1,…,n} do
if flag(j) = 1 then go to M

criti

That is,…

•	 Each process goes through 3

loops, sequentially:
1.	 Check flags of processes with L

smaller indices.
2.	 Check flags of processes with

smaller indices.

3.	 Check flags of processes with

larger indices. M

•	 If it passes all tests, o C.
•	 Otherwise, drops back:

Correctness of Burns’ algorithm

•	 Mutual exclusion + progress
•	 Mutual exclusion:
�	 Like the proof for Dijkstra’s algorithm, but now with flags

set to 1 rather than 2.
�	 If processes i and j are ever in C simultaneously, both

must have set their flags := 1.
�	 Assume WLOG that process i sets flag(i) := 1 (for the last

time) first.
�	 Keeps flag(i) = 1 until process i leaves C.
�	 After flag(i) := 1, must have flag(j) := 1, then j must see

flag(i) = 0, before j o C.
�	 Impossible!

Progress for Burns’ algorithm

z Consider fair execution D (each process keeps taking steps).
z Assume for contradiction that, after some point in D, some

process is in T, no one is in C, and no one o C later.
z WLOG, we can assume that every process is in T or R, and

no region changes occur after that point in D.
z Call the processes in T the contenders.
z Divide the contenders into two sets:

z P, the contenders that reach label M, and
z Q, the contenders that never reach M.

z After some point in D, all contenders in P have reached M;
they never drop back thereafter to before M.

D

Dc: All processes in T or R; someone in T; no region changes,
all processes in P in final loop.

Progress for Burns’ algorithm
z P, the contenders that reach label M, and
z Q, the contenders that never reach M.

D

Dc: All processes in T or R; someone in T; no region changes,
all processes in P in final loop.

z Claim P contains at least one process:
z Process with the lowest index among all the contenders is not blocked from

reaching M.
z Let i = largest index of a process in P.
z Claim process i eventually o C: All others with larger indices eventually

see a smaller-index contender and drop back to L, setting their flags := 0
(and these stay = 0).

z So i eventually sees all these = 0 and o C.
z Contradiction.

Lower Bound on the Number of

Registers

Lower Bound on the Number of

Registers

•	 All the mutual exclusion algorithms we’ve studied:

–	Use read/write shared memory, and
–	Use at least n read/write shared variables.

•	 That’s one variable per potential contender.

• Q: 	Can we use fewer than n r/w shared
variables?

•	 Not single-writer. (Why?)
•	 Not even multi-writer!

Lower bound on number of registers

•	 Lower bound of n holds even if:

–	 We require only mutual exclusion + progress (no stronger liveness
properties).

–	 The variables can be any size.
–	 Variables can be read and written by all processes.

•	 Start with basic facts about any mutex algorithm A using r/w
shared variables.

• Lemma 1: 	If s is a reachable, idle system state (meaning all
processes are in R), and if process i runs alone from s, then
eventually i o C.

•	 Proof: By the progress requirement.
•	 Corollary: If i runs alone from a system state sc that is

indistinguishable from s by i, sc ~i s, then eventually i o C.
•	 Indistinguishable: Same state of i and same shared

variable values.

Lower bound on registers

•	 Lemma 2: Suppose that s is a reachable system state in which i
� R. Suppose process i o C on its own, from s. Then along the
way, process i writes to some shared variable.

•	 Proof:
– By contradiction; suppose it doesn’t.
– Then: D: i runs alone, no writes

s, i in R sc, i in C

–	 Then sc ~j s for every j z i.
–	 Then there is some execution fragment from s in which process i takes no

steps, and in which some other process j o C.
•	 By repeated use of the progress requirement.

D: i runs alone, no writes

s, i in R sc, i in Cno i

j in C

Lower bound on registers

• Lemma 2: Suppose that s is a reachable system state in which i
� R. Suppose process i o C on its own, from s. Then along the
way, process i writes to some shared variable.

• Proof, cont’d:
– There is some execution fragment from s in which process i

takes no steps, and in which some other process j o C.

D: i runs alone, no writes

s, i in R sc, i in Cno i

j in C

no i

i,j in C

– Then there is also such a fragment from sc.
– Yields a counterexample execution:

• System gets to s, then i alone takes it to sc, then others get j in C.
• Contradiction because i,j are in C at the same time.

Lower bound on registers
•	 Back to showing t n shared variables needed…
•	 Special case: 2 processes and 1 variable:

–	 Suppose A is a 2-processes mutex algorithm using 1 r/w
shared variable x.

–	 Start in initial (idle) state s.
–	 Run process 1 alone, o C, writes x on the way.

•	 By Lemmas 1 and 2.
–	 Consider the point where process 1 is just about to write x,

i.e., covers x, for the first time.
1 runs alone

s, idle

1 in C1 covers x

sc

–	 Note that sc ~2 s, because 1 doesn’t write between s and sc.
–	 So process 2 can reach C on its own from sc.

•	 By Corollary to Lemma 1.

2 processes, 1 variable
•	 Process 2 can reach C on its own from sc:

Counterexample execution:

1 runs alone

s, idle

1 in C1 covers x

sc 2 runs alone

2 in C•

1 runs alone

s, idle

1 in C1 covers x

sc 2 runs alone

2 in C

1,2 in C

–	 Run 1 until it covers x, then let 2 reach C.
–	 Then resume 1, letting it write x and then o C.
–	 When it writes x, it overwrites anything 2 might have written

there on its way to C; so 1 never sees any evidence of 2.

Another special case:

3 processes, 2 variables

•	 Processes 1, 2, 3; variables x,y.
•	 Similar construction, with a couple of twists.
•	 Start in initial (idle) state s.
•	 Run processes 1 and 2 until:

–	 Each covers one of x,y---both variables covered.
–	 Resulting state is indistinguishable by 3 from a reachable idle state.

• Q: How to do this?
–	 For now, assume we can.

•	 Then run 3 alone, o C.
•	 Then let 1 and 2 take one step each, overwriting both

variables, and obliterating all traces of 3.
•	 Continue running 1 and 2; they run as if 3 were still in R.
•	 By progress requirement, one eventually o C.
•	 Contradicts mutual exclusion.

3 processes, 2 variables

• It remains to show how to maneuver 1 and 2 so that:

– Each covers one of x,y.
– Resulting state is indistinguishable by 3 from a reachable idle state.

• First try:
– Run 1 alone until it first covers a shared variable, say x.
– Then run 2 alone until o C.
– Claim: Alone the way, it must write the other shared variable y.

• If not, then after 2 o C, 1 could take one step, overwriting
anything 2 wrote to x, and thus obliterating all traces of 2.

• Then 1 continues o C, violating mutual exclusion.
– Stop 2 just when it first covers y; then 1 and 2 cover x and y.

1 runs alone

s, idle

1 in C1 covers x

sc 2 runs alone

2 in C
2 covers y

3 processes, 2 variables

•	 Maneuver 1 and 2 so that:

– Each covers one of x,y.
– Resulting state is indistinguishable by 3 from a

reachable idle state.

1 runs alone

s, idle

1 in C1 covers x

sc 2 runs alone

2 in C
2 covers y

•	 But this is not quite right… resulting state might
not be indistinguishable by 3 from an idle state.

•	 2 could have written x before writing y.

3 processes, 2 variables

•	 Maneuver 1 and 2 so that:

–	 Each covers one of x,y.
–	 Resulting state is indistinguishable by 3 from a reachable idle state.

•	 Second (successful) try:
–	 Run 1 alone until it first covers a shared variable.
–	 Continue running 1, through C, E, R, back in T, until it again first

covers a variable.
–	 And once again.

1 runs alone

s, idle

1 covers var1 covers var 1 covers var
C, E, R, T C, E, R, T

–	 In two of the three covering states, 1 must cover the same variable.
–	 E.g., suppose in first two states, 1 covers x (other cases

analogous).

3 processes, 2 variables

• Counterexample execution:

– Run 1 until it covers x the first time.
– Then run 2 until it first covers y (must do so).

1 runs alone

s, idle

1 covers x1 covers x 1 covers var
C, E, R, T C, E, R, T

2 runs alone

2 covers y

1 covers x
C, E, R, T

– Then let 1 write x and continue until it covers x again.
– Now both variables are (again) covered.
– This time, the final state is indistinguishable by 3 from an idle state.
– As needed.

General case:

n processes, n-1 variables

•	 Extends 3-process 2-variable case, using
induction.

•	 Need strengthened version of Lemma 2:
•	 Lemma 2c: Suppose that s is a reachable system

state in which i � R. Suppose process i o C on its
own, from s. Then along the way, process i writes to
some shared variable that is not covered (in s) by any
other process.

•	 Proof:
–	 Similar to Lemma 2.
– Contradictory execution fragment begins by overwriting all

the covered variables, obliterating any evidence of i.

n processes, n-1 variables

•	 Definition: sc is k-reachable from s if there is
an execution fragment from s to sc involving
only steps by processes 1 to k.

n processes, n-1 variables

•	 Now suppose (for contradiction) that A solves mutual exclusion

for n processes, with n-1 shared variables.
•	 Main Lemma: For any k � {1,…,n-1} and from any idle state,

there is a k-reachable state in which processes 1,…,k cover k
distinct shared variables, and that is indistinguishable by
processes k+1,…,n from some k-reachable idle state.

•	 Proof: In a minute…
•	 Now assume we have this, for k = n-1.
•	 Then run n alone, o C.

–	 Can do this, by Corollary to Lemma 1.
•	 Along the way, it must write some variable that isn’t covered by

1,…,n-1.
–	 By Lemma 2c.

•	 But all n-1 variables are covered, contradiction.

•	 It remains to prove the Main Lemma…

Proof of the Main Lemma

•	 Main Lemma: For any k � {1,…,n-1} and from any idle

state, there is a k-reachable state in which processes 1
to k cover k distinct shared variables, and that is
indistinguishable by processes k+1 to n from some k-
reachable idle state.

•	 Proof: Induction on k.
� Base case (k=1):

z Run process 1 alone until just before it first writes a shared
variable.

z 1-reachable state, process 1 covers a shared variable,
indistinguishable by the other processes from initial state.

� Inductive step (Assume for k d n-2, show for k+1):
z By inductive hypothesis, get a k-reachable state t1 in which

processes 1,…,k cover k variables, and that is indistinguishable
by processes k+1,…,n from some k-reachable idle state.

Proof of the Main Lemma

•	 Main Lemma: For any k � {1,…,n-1} and from any idle state,

there is a k-reachable state in which processes 1 to k cover k
distinct shared variables, and that is indistinguishable by
processes k+1 to n from some k-reachable idle state.

•	 Proof: Inductive step (Assume for k d n-2, show for k+1):
–	 By I.H., get a k-reachable state t1 in which 1,…,k cover k variables, and

that is indistinguishable by k+1,…,n from some k-reachable idle state.
–	 Let each of 1,…,k take one step, overwriting covered variables.
–	 Run 1,…,k until all are back in R; resulting state is idle.
–	 By I.H. get another k-reachable state t2 in which 1,…, k cover k variables,

and that is indistinguishable by k+1,…,n from some k-reachable idle state.
–	 Repeat, getting t3, t4,…, until we get ti and tj (i < j) that cover the same set

X of variables. (Why is this guaranteed to happen?)
–	 Run k+1 alone from ti until it first covers a variable not in X.
–	 Then run 1,…,k as if from ti to tj (they can't tell the difference).
–	 Now processes 1,…,k+1 cover k+1 different variables.
–	 And result is indistinguishable by k+2,…,n from an idle state.

Discussion

z Bell Labs research failure:
z At Bell Labs (many years ago), Gadi

Taubenfeld found out that the Unix group was
trying to develop an asynchronous mutual
exclusion algorithm for many processes that
used only a few r/w shared registers.

z He told them it was impossible.

Discussion

z New research direction:
z Develop “space-adaptive” algorithms that

potentially use many variables, but are
guaranteed to use only a few if only a few
processes are contending.

z Also “time-adaptive” algorithms.
z See work by [Moir, Anderson], [Attiya,

Friedman]

z Time-adaptive and space-adaptive algorithms

often yield better performance, lower overhead,
in practice.

Mutual Exclusion with Read-

Modify-Write Shared Variables

Mutual exclusion with RMW

shared variables

z Stronger memory primitives (synchronization primitives):

�	 Test-and-set, fetch-and-increment, swap, compare-and-swap, load-

linked/store-conditional,…
z All modern computer architectures provide one or more of

these, in addition to read/write registers.
z Generally support reads and writes, as well as more

powerful operations.
z More expensive (cost of hardware, time to access) than

variables supporting just reads and writes.
z Not all the same strength; we’ll come back to this later.

z Q: Do such stronger memory primitives enable better

algorithms, e.g., for mutual exclusion?

Mutual exclusion with RMW:

Test-and-set algorithm

z test-and-set operation: Sets value to 1, returns previous
value.
� Usually for binary variables.

z Test-and-set mutual exclusion algorithm (trivial):
� One shared binary variable x, 0 when no one has been granted the

resource (initial state), 1 when someone has.
� Trying protocol: Repeatedly test-and-set x until get 0.
� Exit protocol: Set x := 0.

tryi
exiti

waitfor(test-and-set(x) = 0) x := 0
criti remi

z Guarantees mutual exclusion + progress.
z No fairness. To get fairness, we can use a more expensive

queue-based algorithm:

Mutual exclusion with RMW:

Queue-based algorithm

•	 queue shared variable
–	 Supports enqueue, dequeue, head operations.
–	 Can be quite large!

•	 Queue mutual exclusion algorithm:
� One shared variable Q: FIFO queue.

� Trying protocol: Add self to Q, wait until you're at the head.

� Exit protocol: Remove self from Q.

tryi

enqueue(Q,i) exiti

waitfor(head(Q) = i) dequeue(Q)

criti	
remi

�	 Fairness: Guarantees bounded bypass (indeed, no bypass
= 1-bounded bypass).

Mutual exclusion with RMW:

Ticket-based algorithm

• Modular fetch-and-increment operation, f&in
– Variable values are integers mod n.
– Increments variable mod n, returns the previous value.

• Ticket mutual exclusion algorithm:
� Like Bakery algorithm: Take a number, wait till it's your turn.

� Guarantees bounded bypass (no bypass).

� Shared variables: next, granted: integers mod n, initially 0

z Support modular fetch-and-increment.

� Trying protocol: Increment next, wait till granted.

� Exit protocol: Increment granted.

tryi exititicket := f&in(next) f&i (granted)n
waitfor(granted = ticket) remi
criti

Ticket-based algorithm
� Space complexity:

� Each shared variable takes on at most n values.

� Total number of variable values: n2

� Total size of variables in bits: 2 log n

� Compare with queue:

� Total number of variable values:
n! + (n choose (n-1)) (n-1)! + (n ch (n-2)) (n-2)! +…+ (n ch 1) 1!

= n! (1 + 1/1! + 1/2! + 1/3! +…+ 1/(n-1)!)
d n! e = O(nn)

� Size of variable in bits: O(n log n)

tryi
ticket := f&in(next) exiti
waitfor(granted = ticket) f&in(granted)

criti remi

Variable Size for

Mutual Exclusion with RMW

• Q: How small could we make the RMW variable?
•	 1 bit, for just mutual exclusion + progress (simple test and set

algorithm).
•	 With fairness guarantees?
•	 O(n) values (O(log n) bits) for bounded bypass.

z Can get n+k values, for small k.

In practice, on a real shared-memory multiprocessor,

we want a few variables of size O(log n).

So ticket algorithm is pretty good (in terms of space).

z Theoretical lower bounds:
z :(n) values needed for bounded bypass, :(�n) for lockout-

freedom.

Variable Size for

Mutual Exclusion with RMW

z Theoretical lower bound:
z :(n) values needed for bounded bypass, :(�n) for

lockout-freedom.

• Significance:
– Achieving mutual exclusion + lockout freedom is not

trivial, even though we assume that the processes get
fair access to the shared variables.

– Thus, fair access to the shared variables does not
immediately translate into fair access to higher-level
critical sections.

• For example, consider bounded bypass:…

Lower bound on variable size for

mutual exclusion + bounded bypass

z Theorem: In any mutual exclusion algorithm
guaranteeing progress and bounded bypass, using a
single RMW shared variable, the variable must be able
to take on at least n distinct values.

z Essentially, need enough space to keep a process
index, or a counter of the number of active processes,
in shared memory.

z General RMW shared variable: Allows read, arbitrary
computation, and write, all in one step.

z Proof: By contradiction.
z Suppose Algorithm A achieves mutual exclusion + progress +

k-bounded bypass, using one RMW variable with < n values.
z Construct a bad execution, which violates k-bounded bypass:

Lower bound on variable size for

mutual exclusion + bounded bypass

z Theorem: In any mutual exclusion algorithm guaranteeing
progress and bounded bypass, using a single RMW shared
variable, the variable must be able to take on at least n distinct
values.

z Proof: By contradiction.
z Suppose Algorithm A achieves mutual exclusion + progress +

k-bounded bypass, using one RMW variable with < n values.
z Run process 1 from initial state, until o C, execution D1:

D1

z Run process 2 until it accesses the variable, D2:

D2

z Continue by running each of 3, 4,…,n, obtaining D3, D4, …, Dn.

Lower bound on variable size for

mutual exclusion + bounded bypass

z Theorem: In any mutual exclusion algorithm guaranteeing bounded bypass,
using a single RMW shared variable, the variable must be able to take on at
least n distinct values.

z Proof, cont’d:
z Since the variable takes on < n values, there must be two processes, i

and j, i < j, for which Di and Dj leave the variable with the same value v.
z Now extend Di so that 1,…,i exit, then 1 reenters repeatedly, o C infinitely

many times.
z Possible since progress is required in a fair execution.

Di Dj

1 o C infinitely many times

Lower bound on variable size for

mutual exclusion + bounded bypass

z Theorem: In any mutual exclusion algorithm guaranteeing bounded bypass,
using a single RMW shared variable, the variable must be able to take on at
least n distinct values.

z Proof, cont’d:
z Now apply the same steps after Dj.
z Result is an execution in which process 1 o C infinitely many times, while

process j remains in T.
z Violates bounded bypass.

Di Dj

1 o C infinitely many times

z Note: The extension of Dj isn’t a fair execution; this is OK since fairness
isn’t required to violate bounded bypass.

Mutual exclusion + lockout-freedom

• Can solve with O(n) values.
– Actually, can achieve n/2 + k, small constant k.

z Lower bound of :(¥n) values.
– Actually, about ¥n.
– Uses a more complicated version of the

construction for the bounded bypass lower
bound.

Next time:

•	 More practical mutual exclusion algorithms
•	 Reading:

–	Herlihy, Shavit book, Chapter 7
–	Mellor-Crummey and Scott paper (Dijkstra prize winner)
–	 (Optional) Magnussen, Landin, Hagersten paper

•	 Generalized resource allocation and exclusion
problems

•	 Reading:
–	Distributed Algorithms, Chapter 11

MIT OpenCourseWare
http://ocw.mit.edu

6.852J / 18.437JDistributed Algorithms
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

