6.852: Distributed Algorithms
Fall, 2009

Class 14

Today’s plan

Mutual exclusion with read/write memory:
— Lamport’s Bakery Algorithm

— Burns' algorithm

— Lower bound on the number of registers

Mutual exclusion with read-modify-write operations
Reading: Sections 10.6-10.8, 10.9

Next: Lecture by Victor Luchangco (Sun)

— Practical mutual exclusion algorithms

— Generalized resource allocation and exclusion problems

— Reading:
* Herliny, Shavit book, Chapter 7
* Mellor-Crummey and Scott paper (Dijkstra prize winner)
* (Optional) Magnussen, Landin, Hagersten paper
 Distributed Algorithms, Chapter 11

Last time

« Mutual exclusion with read/write memory:

— Dijkstra’s algorithm:
e Mutual exclusion + progress
— Peterson’s algorithms
* Mutual exclusion + progress + lockout-freedom
— Lamport’s Bakery algorithm (didn’t get to this)
e Mutual exclusion + progress + lockout-freedom
e No multi-writer variables.

Lamport’s Bakery Algorithm

Like taking tickets in a bakery.

Nice features:
— Uses only single-writer, multi-reader registers.

— Extends to even weaker registers, in which operations have
durations, and a read that overlaps a write receives an arbitrary
response.

— Guarantees lockout-freedom, in fact, almost-FIFO behavior.

But:

— Registers are unbounded size.

— Algorithm can be simulated using bounded registers, but not easily
(uses bounded concurrent timestamps).

Shared variables:
— For each processii:
« choosing(i), a Boolean, written by I, read by all, initially O
* number(i), a natural number, written by i, read by all, initially O

Bakery Algorithm

o First part, up to choosing(i) := 0 (the “Doorway”, D):
— Process | chooses a number number greater than all the numbers it
reads for the other processes; writes this in number(i).
— While doing this, keeps choosing(i) = 1.
— Two processes could choose the same number (unlike real bakery).
— Break ties with process ids.

e Second part:

— Walit to see that no others are choosing, and no one else has a
smaller number.

— That is, wait to see that your ticket is the smallest.

— Never go back to the beginning of this part---just proceed step by
step, waiting when necessary.

Code

Shared variables:

for every i € {1,...,n}:
choosing(i) € {0,1}, initially O, writable by i, readable by all j # i
number(i), a natural number, initially O, writable by i, readable by | # I.

try.
choosing(i) :=1
number(i) := 1 + max;_,; number(j)
choosing(i) := 0
forj=ido
waitfor choosing(j) =0
waitfor number(j) = 0 or (number(i), i) < (number()), j)
Crit;

exit,
number(i) ;=0

rem,

Correctness: Mutual exclusion

e Key invariant: If processiisin C, and process | # |
Isin (T-D)u C,
_ %

Trying region after doorway, or critical region

then (number(i),i) < (number()),)).

* Proof:
— Could prove by induction.
— Instead, give argument based on events in executions.

— This argument extends to weaker registers, with
concurrent accesses.

Correctness: Mutual exclusion

o [nvariant: If1isinC,andj=1isin (T - D) u C, then
(number(i),i) < (number(j),).

* Proof:
— Consider a pointwhereiisinCandj=iisin (T - D) v C.
— Then before | entered C, it must have read choosing(j) = O, event .

n. I reads choosing(j) =0 1inC,jin(T-D)uC

— Case 1. | sets choosing(j) := 1 (starts choosing) after m.
 Then number(i) is set before | starts choosing.
* S0 j sees the “correct” number(i) and chooses something bigger.

— Case 2: j sets choosing(j) := 0 (finishes choosing) before .

 Then when i reads number(j) in its second waitfor loop, it gets the
“correct” number(j).

« Since i decides to enter C anyway, it must have seen (number(i),i) <
(number()),)).

Correctness: Mutual exclusion

e Invariant: IfrisinC,andj=1isin (T —-D) v
C, then (number(i),)) < (number(j),)).

e Proof of mutual exclusion:
— Apply Invariant both ways.
— Contradictory requirements.

Liveness Conditions

 Progress:

By contradiction.

If not, eventually region changes stop, leaving everyone in T or R,
and at least one process in T.

Everyone in T eventually finishes choosing.

Then nothing blocks the smallest (number, index) process from
entering C.

e Lockout-freedom:

Consider any i that enters T
Eventually it finishes the doorway.
Thereafter, any newly-entering process picks a bigger number.

Progress implies that processes continue to enter C, aslong as i is
still in T.

In fact, this must happen infinitely many times!
But those with bigger numbers can’t get past i, contradiction.

FIFO Condition

Not really FIFO (T vs. -»C), but almost:

— FIFO after the doorway: If j leaves D before i —»T, then | ->C before
| —>C.

But the “doorway” Iis an artifact of this algorithm, so this isn’t

a meaningful way to evaluate the algorithm!

Maybe say “there exists a doorway such that”...

But then we could take D to be the entire trying region,
making the property trivial.
To make the property nontrivial:

— Require D to be “wait-free”. a process is guaranteed to complete D
it if it keeps taking steps, regardless of what other processes do.

— D in the Bakery Algorithm is wait-free.
The algorithm is FIFO after a wait-free doorway.

Impact of Bakery Algorithm

e Originated important ideas:

— Wait-freedom

 Fundamental notion for theory of fault-tolerant
asynchronous distributed algorithms.

— Weakly coherent memories

e Beginning of formal study: definitions, and some
algorithmic strategies for coping with them.

Space and memory considerations

o All mutual exclusion algorithms use more
than n variables.

-Bakery algorithm could use just n variables.
(Why?)

o All but Bakery use multi-writer variables.
-These can be expensive to implement

« Bakery uses infinite-size variables

~Difficult (but possible) to adapt to use finite-size
variables.

« Q: Can we do better?

Burns’ Algorithm

Burns' algorithm

« Uses just n single-writer Boolean read/write
variables.

« SIMple.

« Guarantees safety (mutual exclusion) and
progress.

_But not lockout-freedom!

Code

Shared variables:
forevery i € {1,...,n}:
flag(i) € {0,1}, initially O, writable by i, readable by all | # |

Process I
try, exit,
L: ﬂag(|) =0 fl) =0
forj e {1,...,i-1} do 200
If flag(J) =1thengotoL rem.

flag(i) := 1 !
forj e {1,...,1-1} do
if flag(})) =1 thengoto L
M: for j € {i+1,...,n} do
If flag(j)) =1 thengoto M

Crit;

That Is,...

« Each process goes through 3
loops, sequentially:

1. Check flags of processes with
smaller indices.

2. Check flags of processes with
smaller indices.

3. Check flags of processes with
larger indices.

 Ifit passes all tests, > C.
 Otherwise, drops back:

Correctness of Burns’ algorithm

 Mutual exclusion + progress
e Mutual exclusion:

Like the proof for Dijkstra’s algorithm, but now with flags
set to 1 rather than 2.

If processes | and | are ever in C simultaneously, both
must have set their flags := 1.

Assume WLOG that process i sets flag(i) := 1 (for the last
time) first.

Keeps flag(i) = 1 until process | leaves C.

After flag(i) := 1, must have flag(j) := 1, then | must see
flag(i) = O, before | —» C.

Impossible!

Progress for Burns’ algorithm

Consider fair execution o (each process keeps taking steps).

Assume for contradiction that, after some point in o, Ssome
processis in T, nooneis in C, and no one — C later.

WLOG, we can assume that every processisin T or R, and
no region changes occur after that point in a.

Call the processes in T the contenders.

Divide the contenders into two sets:
. P, the contenders that reach label M, and
. Q, the contenders that never reach M.

After some point in o, all contenders in P have reached M,;
they never drop back thereafter to before M.

0

o': All processes in T or R; someone in T; no region changes,
all processes in P in final loop.

Progress for Burns’ algorithm

P, the contenders that reach label M, and
Q, the contenders that never reach M.

a

o’. All processes in T or R; someone in T, no region changes,
all processes in P in final loop.

Claim P contains at least one process:

« Process with the lowest index among all the contenders is not blocked from
reaching M.

Let | = largest index of a process in P.

Claim process i eventually — C: All others with larger indices eventually
see a smaller-index contender and drop back to L, setting their flags :=0
(and these stay = 0).

So i eventually sees all these =0 and —» C.
Contradiction.

Lower Bound on the Number of
Registers

Lower Bound on the Number of
Registers

All the mutual exclusion algorithms we’ve studied:
— Use read/write shared memory, and
— Use at least n read/write shared variables.

That’s one variable per potential contender.

Q: Can we use fewer than n r/w shared
variables?

Not single-writer. (Why?)
Not even multi-writer!

Lower bound on number of registers

 Lower bound of n holds even If:

— We require only mutual exclusion + progress (no stronger liveness
properties).

— The variables can be any size.

— Variables can be read and written by all processes.

o Start with basic facts about any mutex algorithm A using r/w
shared variables.

 Lemma 1: If sis a reachable, idle system state (meaning all
processes are in R), and if process | runs alone from s, then
eventually 1 —» C.

« Proof: By the progress requirement.

« Corollary: If i runs alone from a system state s’ that Is
iIndistinguishable from s by I, s’ ~' s, then eventually 1 —» C.

 Indistinguishable: Same state of i and same shared
variable values.

Lower bound on registers

« Lemma 2: Suppose that s is a reachable system state in which |
e R. Suppose process i — C on its own, from s. Then along the
way, process | writes to some shared variable.

e Proof:

— By contradiction; suppose it doesn't.

— Then: o. 1runs alone, no writes

s, 1INR s, 1inC

— Thens' ~I's for everyj#i.

— Then there is some execution fragment from s in which process i takes no
steps, and in which some other process j —» C.

» By repeated use of the progress requirement.

I\oc: | runs alone, no writes

. N . .
s,IINR no | s, 1inC

jinC

Lower bound on registers

« Lemma 2: Suppose that s is a reachable system state in which |
e R. Suppose process i — C on its own, from s. Then along the
way, process | writes to some shared variable.

 Proof, cont'd:

— There is some execution fragment from s in which process |
takes no steps, and in which some other process | — C.

I\a: | runs alone, no writes

. N
S, 1INR

NO |

g iin O

jinC

— Then there is also such a fragment from s’.

— Yields a counterexample execution:

NO |

ijinC

« System gets to s, then i alone takes it to s’, then others get j in C.
« Contradiction because i,j are in C at the same time.

Lower bound on registers

 Back to showing > n shared variables needed...

e Special case: 2 processes and 1 variable:

— Suppose A is a 2-processes mutex algorithm using 1 r/w
shared variable x.

— Start in initial (idle) state s.

— Run process 1 alone, —» C, writes x on the way.
« By Lemmas 1 and 2.

— Consider the point where process 1 is just about to write X,
l.e., covers X, for the first time.

1 covers X 1inC

1 runs alone

s, idle S/

— Note that s’ ~2 s, because 1 doesn’t write between s and s'.

— S0 process 2 can reach C on its own from s'.
By Corollary to Lemma 1.

2 processes, 1 variable

e Process 2 can reach C on its own from s’:

1 runs alone

1 covers x

1inC

s, idle

SI

2 runs alone

« Counterexample execution:

— Run 1 until it covers x, then let 2 reach C.

2inC

— Then resume 1, letting it write x and then — C.

— When it writes X, it overwrites anything 2 might have written
there on its way to C; so 1 never sees any evidence of 2.

1 runs alone

1 covers x

1inC

s, idle

s\ms alone

21in C

N

1,2inC

Another special case:
3 processes, 2 variables

Processes 1, 2, 3; variables x,y.
Similar construction, with a couple of twists.
Start in initial (idle) state s.

Run processes 1 and 2 until:
— Each covers one of x,y---both variables covered.
— Resulting state is indistinguishable by 3 from a reachable idle state.

Q: How to do this?
— For now, assume we can.

Then run 3 alone, — C.

Then let 1 and 2 take one step each, overwriting both
variables, and obliterating all traces of 3.

Continue running 1 and 2; they run as if 3 were still in R.
By progress requirement, one eventually — C.
Contradicts mutual exclusion.

3 processes, 2 variables

e |t remains to show how to maneuver 1 and 2 so that:
— Each covers one of x,y.
— Resulting state is indistinguishable by 3 from a reachable idle state.
o Firsttry:
— Run 1 alone until it first covers a shared variable, say x.
— Then run 2 alone until - C.
— Claim: Alone the way, it must write the other shared variable y.

* If not, then after 2 — C, 1 could take one step, overwriting
anything 2 wrote to x, and thus obliterating all traces of 2.

 Then 1 continues — C, violating mutual exclusion.
— Stop 2 just when it first covers y; then 1 and 2 cover x and y.

1 covers x 1inC

1 runs alone
s, idle 9\ 2 runs alone

2 covers 'y \
2inC

3 processes, 2 variables

e Maneuver 1 and 2 so that:
— Each covers one of x,y.

— Resulting state Is indistinguishable by 3 from a
reachable idle state.

1 covers X 1inC

1 runs alone
s, idle S\ 2 runs alone

2 coversy \
2inC

e But this is not quite right... resulting state might
not be indistinguishable by 3 from an idle state.

e 2 could have written x before writing y.

3 processes, 2 variables

e Maneuver 1 and 2 so that:

e Second (successful) try:

— Each covers one of x,y.

— Resulting state is indistinguishable by 3 from a reachable idle state.

— Run 1 alone until it first covers a shared variable.
— Continue running 1, through C, E, R, back in T, until it again first

covers a variable.
— And once again.

1 covers var

1 runs alone

C,ER T

1 covers var

C,ER T

1 covers var

s, idle

— In two of the three covering states, 1 must cover the same variable.
— E.g., suppose in first two states, 1 covers x (other cases

analogous).

3 processes, 2 variables

o Counterexample execution:
— Run 1 until it covers x the first time.
— Then run 2 until it first covers y (must do so).

1 covers X 1 covers X 1 covers var
1 runs alone C.E.R T C.E.R, T
s, idle 2 runs alone
1 covers X
C,E,R, T
2 coversy AN

— Then let 1 write x and continue until it covers x again.

— Now both variables are (again) covered.

— This time, the final state is indistinguishable by 3 from an idle state.
— As needed.

General case:
n processes, n-1 variables

Extends 3-process 2-variable case, using
iInduction.

Need strengthened version of Lemma 2.

Lemma 2". Suppose that s is a reachable system
state in which | e R. Suppose process i — C on its
own, from s. Then along the way, process | writes to
some shared variable that is not covered (in s) by any
other process.

Proof:

— Similar to Lemma 2.

— Contradictory execution fragment begins by overwriting all
the covered variables, obliterating any evidence of |.

n processes, n-1 variables

e Definition: s'Is k-reachable from s if there Is
an execution fragment from s to s’ involving
only steps by processes 1 to k.

N processes, n-1 variables

Now suppose (for contradiction) that A solves mutual exclusion
for n processes, with n-1 shared variables.

Main Lemma: For any k € {1,...,n-1} and from any idle state,
there is a k-reachable state in which processes 1,...,k cover k
distinct shared variables, and that is indistinguishable by
processes k+1,...,n from some k-reachable idle state.

Proof: In a minute...
Now assume we have this, for k = n-1.

Then run n alone, — C.
— Can do this, by Corollary to Lemma 1.

Along the way, it must write some variable that isn’t covered by
1,...,n-1.

— By Lemma 2'.

But all n-1 variables are covered, contradiction.

It remains to prove the Main Lemma...

Proof of the Main Lemma

« Main Lemma: Forany k € {1,...,n-1} and from any idle
state, there is a k-reachable state in which processes 1
to k cover k distinct shared variables, and that is
Indistinguishable by processes k+1 to n from some k-
reachable idle state.

e Proof: Induction on k.

- Base case (k=1):
« Run process 1 alone until just before it first writes a shared
variable.

« 1-reachable state, process 1 covers a shared variable,
indistinguishable by the other processes from initial state.

— Inductive step (Assume for k < n-2, show for k+1):

« By inductive hypothesis, get a k-reachable state t, in which
processes 1,...,k cover k variables, and that is indllstinguishable
by processes k+1,...,n from some k-reachable idle state.

Proof of the Main Lemma

Main Lemma: For any k € {1,...,n-1} and from any idle state,
there is a k-reachable state in which processes 1 to k cover k
distinct shared variables, and that is indistinguishable by
processes k+1 to n from some k-reachable idle state.

Proof: Inductive step (Assume for k < n-2, show for k+1):

By I.H., get a k-reachable state t, in which 1,...,k cover k variables, and
that is indistinguishable by k+1,...,n from some k-reachable idle state.

Let each of 1,...,k take one step, overwriting covered variables.
Run 1,...,k until all are back in R; resulting state is idle.

By I.H. get another k-reachable state t, in which 1,..., k cover k variables,
and that is indistinguishable by k+1,...,n from some k-reachable idle state.

Repeat, getting t;, t,,..., until we get t. and t (i <)) that cover the same set
X of variables. (Why is this guaranteed to happen?)

Run k+1 alone from t. until it first covers a variable not in X.
Thenrun 1,...,k as if fromt. to t (they can't tell the difference).
Now processes 1,...,k+1 cover k+1 different variables.

And result is indistinguishable by k+2,...,n from an idle state.

Discussion

o Bell Labs research failure:

. At Bell Labs (many years ago), Gadl
Taubenfeld found out that the Unix group was
trying to develop an asynchronous mutual
exclusion algorithm for many processes that
used only a few r/w shared registers.

. He told them it was impossible.

Discussion

« New research direction:

« Develop “space-adaptive” algorithms that
potentially use many variables, but are
guaranteed to use only a few if only a few
processes are contending.

 Also “time-adaptive” algorithms.

« See work by [Moir, Anderson], [Attiya,
Friedman]

. Time-adaptive and space-adaptive algorithms
often yield better performance, lower overhead,
In practice.

Mutual Exclusion with Read-
Modify-Write Shared Variables

Mutual exclusion with RMW
shared variables

Stronger memory primitives (synchronization primitives):

- Test-and-set, fetch-and-increment, swap, compare-and-swap, load-
linked/store-conditional, ...

All modern computer architectures provide one or more of
these, in addition to read/write registers.

Generally support reads and writes, as well as more
powerful operations.

More expensive (cost of hardware, time to access) than
variables supporting just reads and writes.

Not all the same strength; we’ll come back to this later.

Q: Do such stronger memory primitives enable better
algorithms, e.g., for mutual exclusion?

Mutual exclusion with RMW:
Test-and-set algorithm

. test-and-set operation: Sets value to 1, returns previous
value.

— Usually for binary variables.

. Test-and-set mutual exclusion algorithm (trivial):

- One shared binary variable x, 0 when no one has been granted the
resource (initial state), 1 when someone has.

- Trying protocol: Repeatedly test-and-set x until get O.
- Exit protocol: Set x :=0.

try. exit
waitfor(test-and-set(x) = 0) x:=0
crit rem.

« Guarantees mutual exclusion + progress.

« No fairness. To get fairness, we can use a more expensive
gueue-based algorithm:

Mutual exclusion with RMW:
Queue-based algorithm

gueue shared variable
— Supports enqueue, degqueue, head operations.
— Can be quite large!

Queue mutual exclusion algorithm:
—- One shared variable Q: FIFO queue.

- Trying protocol: Add self to Q, wait until you're at the head.
- Exit protocol: Remove self from Q.

try. '
enqueue(Q,i) e)d(léi ueue(Q)
waitfor(head(Q) = i !

crit. o

Fairness: Guarantees bounded bypass (indeed, no bypass
= 1-bounded bypass).

Mutual exclusion with RMW:
Ticket-based algorithm

e Modular fetch-and-increment operation, f&i_
— Variable values are integers mod n.
— Increments variable mod n, returns the previous value.

* Ticket mutual exclusion algorithm:
- Like Bakery algorithm: Take a number, wait till it's your turn.
- Guarantees bounded bypass (no bypass).

- Shared variables: next, granted: integers mod n, initially O
« Support modular fetch-and-increment.

- Trying protocol: Increment next, wait till granted.
- Exit protocol: Increment granted.

try, | exit
ticket := f&i (next) f&i (granted)
waitfor(granted = ticket) rem

crit |

Ticket-based algorithm

- Space complexity:
- Each shared variable takes on at most n values.
— Total number of variable values: n?
- Total size of variables in bits: 2 log n

- Compare with queue:
- Total number of variable values:
n! + (n choose (n-1)) (n-1)! + (n ch (n-2)) (n-2)! +...+ (nch 1) 1!
=n!(1+1/1'+ 1/2' + 1/3! +...+ 1/(n-1)))
< nle=0(n"
— Size of variable in bits: O(n log n)

try; .
ticket := f&i_(next) ExIt
waitfor(granted = ticket) f&in(granted)

crit. rem.

Variable Size for
Mutual Exclusion with RMW

Q: How small could we make the RMW variable?

1 bit, for just mutual exclusion + progress (simple test and set
algorithm).
With fairness guarantees?

O(n) values (O(log n) bits) for bounded bypass.
. Can get n+k values, for small k.

In practice, on a real shared-memory multiprocessor,
we want a few variables of size O(log n).
So ticket algorithm is pretty good (in terms of space).

Theoretical lower bounds:

. Q(n) values needed for bounded bypass, Q(vVn) for lockout-
freedom.

Variable Size for
Mutual Exclusion with RMW

. Theoretical lower bound:
. Q(n) values needed for bounded bypass, Q(Vn) for
lockout-freedom.
e Significance:
— Achieving mutual exclusion + lockout freedom Is not

trivial, even though we assume that the processes get
fair access to the shared variables.

— Thus, fair access to the shared variables does not
Immediately translate into fair access to higher-level
critical sections.

 For example, consider bounded bypass:...

Lower bound on variable size for
mutual exclusion + bounded bypass

Theorem: In any mutual exclusion algorithm
guaranteeing progress and bounded bypass, using a
single RMW shared variable, the variable must be able
to take on at least n distinct values.

Essentially, need enough space to keep a process
Index, or a counter of the number of active processes,
In shared memory.

General RMW shared variable: Allows read, arbitrary
computation, and write, all in one step.

Proof. By contradiction.

« Suppose Algorithm A achieves mutual exclusion + progress +
k-bounded bypass, using one RMW variable with < n values.

« Construct a bad execution, which violates k-bounded bypass:

Lower bound on variable size for
mutual exclusion + bounded bypass

Theorem: In any mutual exclusion algorithm guaranteeing
progress and bounded bypass, using a single RMW shared
variable, the variable must be able to take on at least n distinct
values.

Proof: By contradiction.

« Suppose Algorithm A achieves mutual exclusion + progress +
k-bounded bypass, using one RMW variable with < n values.

- Run process 1 from initial state, until - C, execution a;:
a
| ! |

« Run process 2 until it accesses the variable, o.:

Ol

. Continue by running each of 3, 4,...,n, obtaining o, ay, ..., o,

| ower bound on variable size for

mutual exclusion + bounded bypass

« Theorem: In any mutual exclusion algorithm guaranteeing bounded bypass,
using a single RMW shared variable, the variable must be able to take on at
least n distinct values.

o Proof, cont'd:

Since the variable takes on < n values, there must be two processes, |
and |, I <}, for which a;and o, leave the variable with the same value v.

Now extend o, so that 1,...,i exit, then 1 reenters repeatedly, — C infinitely
many times.

. Possible since progress is required in a fair execution.

| I |

1 — C infinitely many times

Lower bound on variable size for
mutual exclusion + bounded bypass

« Theorem: In any mutual exclusion algorithm guaranteeing bounded bypass,
using a single RMW shared variable, the variable must be able to take on at
least n distinct values.

« Proof, cont'd:

« Now apply the same steps after o

« Result is an execution in which process 1 — C infinitely many times, while
process jremainsin T.

. Violates bounded bypass.

1 — C infinitely many times

« Note: The extension of o;isn’t a fair execution; this is OK since fairness
Isn’t required to violate bounded bypass.

Mutual exclusion + lockout-freedom

e Can solve with O(n) values.
— Actually, can achieve n/2 + k, small constant k.

. Lower bound of Q(\n) values.
— Actually, about n.

— Uses a more complicated version of the
construction for the bounded bypass lower
bound.

Next time:

More practical mutual exclusion algorithms
Reading:
— Herlihy, Shavit book, Chapter 7

— Mellor-Crummey and Scott paper (Dijkstra prize winner)
— (Optional) Magnussen, Landin, Hagersten paper

Generalized resource allocation and exclusion
problems

Reading:
— Distributed Algorithms, Chapter 11

MIT OpenCourseWare
|http://ocw.mit.edu

6.852J / 18.437JDistributed Algorithms
Fall 2009

For information about citing these materials or our Terms of Use, visit: |http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

