
6.852: Distributed Algorithms
Fall, 2009

Class 21

Today’s plan
• Wait-free synchronization.
• The wait-free consensus hierarchy
• Universality of consensus
• Reading:

– [Herlihy, Wait-free synchronization] (Another Dijkstra Prize paper)
– (Optional) [Attiya, Welch, Chapter 15]

• Next time:
– More on wait-free computability
– Wait-free vs. f-fault-tolerant computability
– Reading:

• [Borowsky, Gafni, Lynch, Rajsbaum]
• (Optional) [Chandra, Hadzilacos, Jayanti, Toueg]
• [Attie, Guerraoui, Kouznetsov, Lynch]

Overview
• General goal of this work:

– Classify atomic object types: Which types can be used to implement
which others, for which numbers of processes and failures?

– A theory of relative computability, for objects in distributed systems.
• Herlihy considers wait-free termination only (n-1 failures).
• Considers specific object types:

– Primitives used in multiprocessor memories: test-and-set, fetch-and-
add, compare-and-swap.

– Standard programming data types: counters, queues, stacks.
– Consensus, k-consensus.

• Defines a hierarchy of types, with:
– Read/write registers at the bottom, level 1
– Consensus (viewed as an atomic object) at the top, level ∞.
– Others in between.

• Universality result: Consensus for n processes can be used
to implement (wait-free) any object for n processes.

Herlihy’s Hierarchy
• Defines hierarchy in terms of:

– How many processes can solve consensus using only objects of
the given type, plus registers (thrown in for free).

• Shows that no object type at one “level” of the hierarchy
can implement any object at a higher level.

• Shows:
– Read/write registers are at level 1.
– Stacks, queues, fetch-and-add, test-and-set are at level 2.
– Consensus, compare-and-swap are at “level ∞”.

• Hierarchy has limitations:
– All of the interesting types are at level 1, 2 or ∞.
– Gives no information about relative computability of objects at the

same level.
– Lacks some basic, desirable “robustness” properties.

• Yields some interesting classification results.
• But doesn’t give a complete story---more work is needed.

Basic definitions

The Model
• Concurrent system:

– Processes + atomic objects
• Modelled using I/O automata.

– Herlihy claims he doesn’t need tasks,
but essentially uses a special case, to
define fair executions.

– We’ll just use tasks, as usual.

P1

AmA1

P2 Pn

invoke,
respond

• Sequential specification = variable type
• Use a concurrent system to implement an atomic object of

a specified type.
• Warning: Herlihy’s definition of implementation is

formulated as if only one object R is used, but the results
allow many objects (of one type) to be used.

Consensus as an atomic object
• Consensus variable type (X, x0, invs, resps, δ):

– V = consensus domain, X = V ∪ { ⊥ }.
– x0 = ⊥
– invs = { init(v) | v ∈ V }
– resps = { decide(v) | v ∈ V }
– δ(init(v), ⊥) = (decide(v), v), for any v in V
– δ(init(w), v) = (decide(v), v), for any v, w in V

• That is, first value provided in an init() operation is everyone’s decision.

• Herlihy’s consensus object is simply a wait-free atomic object for the
consensus variable type.

• Lets him consider atomic objects everywhere:
– For high-level objects being implemented, and
– For low-level objects used in the implementations.

• But, usually treats low-level objects as shared variables (as we do).

Herlihy’s consensus object vs. our
consensus definition

• Herlihy’s consensus atomic object is “almost the
same” as our notion of consensus:
– Satisfies well-formedness, agreement, strong validity

(every decision is someone’s initial value).
– Wait-free termination.

• Every init() on a non-failing port eventually receives a decide()
response.

– Doesn’t add any constraints.
• Some (unimportant) differences:

– Allows repeated operations on the same port; but all get
the same value v.

– Inputs needn’t arrive everywhere; equivalent
requirement (Exercise 12.1).

Binary vs. arbitrary consensus
• Herlihy’s paper talks about “implementing

consensus”, without specifying the domain.
• Doesn’t matter:
• Theorem: Let T be the consensus type with

domain { 0,1 }, and T′ the consensus type with
some other finite value domain V.
Then there is a wait-free implementation of an n-
process atomic object of type T′ from n-process
shared variables of type T and read/write
registers.

Binary vs. arbitrary consensus:
Algorithm

• Shared variables:
– Boolean consensus objects, Cons(1), …, Cons(k), where k is the

length of a bit string representation for elements of V.
– Registers Init(1), …, Init(n) over V ∪ { ⊥ }, where V is the

consensus domain, initially all ⊥.
• Process i:

– Post initial value in Init(i), as a bit string.
– Maintain a current preferred value locally, initialized to initial value.
– For l = 1 to k do:

• Engage in binary consensus on Cons(l), with l-order bit of your current
preference as input.

• If your bit loses, then:
– Read all Init(j) registers to find some value whose first l-1 bits agree with

your current preference, and whose l’th bit is the winning bit from Cons(l).
– Reset your preference to this value.

– Return your final preference.

What about an infinite set V?
• Theorem: Let T be the consensus type with domain { 0,1 },

T′ the consensus type with any value domain V.
Then there is a wait-free implementation of an n-process
atomic object of type T′ from n-process shared variables of
type T and read/write registers.

• Proof:
– Similar algorithm.
– But now reach consensus on index j for some active process,

rather than value (active means that it writes Init(j)).
– Then return that j’s initial value, read from Init(j).

• Moral: When we talk about “solving consensus”, we
needn’t specify V.

Consensus Numbers
• Definition: The consensus number of a variable type T is

the largest number n such that shared variables of type T
and read/write registers can be used to implement an n-
process wait-free atomic consensus object.

• That is, T + registers solve n-process consensus.

• Note that registers are thrown in for free.
– Convenient in writing algorithms.
– Reasonable because they are at the bottom of the hierarchy,

consensus number 1. Why?
– Follows from [Loui, Abu-Amara]: can’t be used to solve even 2-

process consensus.

• Definition: If T + registers solve n-process consensus for
every n, then we say that T has consensus number ∞.

Consensus Numbers
• Consensus numbers yield a way of showing that

one variable type T cannot be used (by itself, plus
registers) to implement another type T′, for certain
numbers of processes.

• Theorem 1: Suppose cons-number(T) = m, and
cons-number(T′) > m. Then there is no (wait-free)
implementation of an atomic object of type T′ for n
> m processes, from shared variables of type T
and registers.

• Proof:

Consensus Numbers
• Theorem 1: Suppose cons-number(T) = m, and cons-

number(T′) > m. Then there is no (wait-free)
implementation of an atomic object of type T′ for n > m
processes, from shared variables of type T and registers.

• Proof:
– Enough to show for n = m+1.
– By contradiction. Suppose there is an (m+1)-process

implementation of an atomic object of type T′ from T + registers.
– Since cons-number(T′) > m, there is an (m+1)-process consensus

algorithm C using T′ + registers.
– Replace the T′ shared variables in C with the assumed

implementation of T′ from T + registers.
– By our composition theorem for shared-memory algorithms, this

yields an (m+1)-process consensus algorithm using T + registers.
– Contradicts assumption that cons-number(T) = m.

Example: Read/write register types

• Theorem 2: Any read/write register type, for any value
domain V and any initial value v0, has consensus number 1.

• Proof:
– Clearly, can be used to solve 1-process consensus (trivial).
– Cannot solve 2-process consensus [Book, Theorem 12.6].

• Corollary 3: Suppose cons-number(T′) > 1. Then there is
no (wait-free) implementation of an atomic object of type T′
for n > 1 processes, from registers only.

• Proof:
– By Theorems 1 and 2.

Example: Snapshot types
• Corollary 3: Suppose cons-number(T′) > 1. Then there is

no (wait-free) implementation of an atomic object of type T′
for n > 1 processes, from registers only.

• Theorem 4: Any snapshot type, for any underlying domain
(W,w0), has consensus number 1.

• Proof:
– By contradiction.
– Suppose there is a snapshot type T′ with cons-number(T′) > 1.

• Thus, it can be used to solve 2-process consensus.
– Then by Corollary 3, there is no wait-free implementation of an

atomic object of type T′ for > 1 processes, from registers only.
– Contradicts known implementation of snapshots from registers.

Queue Types

Queue types
• FIFO queue type queue(V,q0):

– V is some value domain.
– q0 is a finite sequence giving the initial queue contents.
– Operations:

• enqueue(v), v in V: Add v to end of queue, return ack.
• dequeue(): Return head of queue if nonempty, else ⊥.

• Most commonly: q0 = λ, empty sequence.

• Theorem 5: There is a queue type T with cons-
number(T) ≥ 2.

• Proof:

Queue types
• Theorem 5: There is a queue type T with cons-

number(T) ≥ 2.
• Proof:

– Construct a 2-process consensus algorithm for an
arbitrary domain V.

– Shared variables:
• One queue of integers, initially = sequence consisting of one

element, 0.
• Registers Init(1) and Init(2) over X = V ∪ { ⊥ }, initially ⊥.

– Process i:
• Post initial value in Init(i).
• Perform dequeue().
• If you get 0, then return your initial value.
• Else (you get ⊥), read and return Init(j), for the other process j.

– First dequeuer wins.

Queue types
• Theorem 5: There is a queue type T with cons-number(T)

≥ 2.
• Corollary 6: There is no wait-free implementation of an n-

process atomic object of the above queue type using
registers only, for any n ≥ 2.

• Proof:
– By Corollary 3.
– Essentially: Suppose there is. Plug it into the above 2-process

consensus algorithm and get a 2-process consensus algorithm
using registers only, contradiction.

• Q: What about queues with other initial values q0?
• E.g., initially-empty queues?

– Claim there’s an algorithm, but more complicated. Exercise?
• What about other, known initial values?

Queue lower bound

• Theorem 7: Every queue type T has cons-
number(T) ≤ 2.

• More strongly: No combination of queue
variables, with any queue types, initalized in any
way, plus registers, can implement 3-process
consensus.

α

1 3
2

bivalent

univalent

• Proof:
– Suppose such an algorithm, A, exists.
– As for the register-only case, we can

show that A has a bivalent initialization.
– Furthermore, we can maneuver as

before to a decider configuration:

Queue impossibility
• Suppose WLOG that process 1 yields 0-

valence, process 2 yields 1-valence.
• Consider what p1 and p2 can do in their

steps.
• If they access different variables, or both

access the same register, we get
contradictions as in the pure read/write case.

• So assume they both access the same queue
q; consider cases based on type of operation.

• Case 1: p1 and p2 both dequeue:
– Then resulting states look the same to p3.
– Running p3 alone after both yields a contradiction.

α

1 3
2

bivalent

0-valent
1-valent

1
2

0 0

0-valent 1-valent
p3 only p3 only

Case 2
• Case 2: p1 enqueues and p2 dequeues:

– If the queue is nonempty after α, the two steps
commute---same system state after p1 p2 or p2 p1,
yielding a contradiction.

– If the queue is empty after α, then the states after p1
and p2 p1 look the same to all but p2 (and the queue is
the same).

– Running p3 (or p1) alone after both yields a
contradiction.

• Case 3: p1 dequeues and p2 enqueues:
– Symmetric.

Case 4

• Case 4: p1 and p2 both
enqueue:
– Consider two possible orders:

p1 enqueues a1 p2 enqueues a2

0-valent 1-valent

p1 enqueues a1p2 enqueues a2

– We will construct two executions:
• After p1 p2, p1 runs alone until it dequeues a1, then p2 runs alone

until it dequeues a2.
• After p2 p1, p1 runs alone until it dequeues a2, then p2 runs alone

until it dequeues a1.
– These two executions are indistinguishable by p3, leading to the

usual sort of contradiction.

– But how do we construct these two executions?
• Q: What is different after p1 p2 and p2 p1?
• Only the queue q, which contains a1 a2 in first case, a2 a1 in second.
• States of all processes, values of other objects, are the same in both.

p1 alone p1 alone

0-valent 1-valent

0-valent 1-valent

p1 dequeues a1 p1 dequeues a2

Constructing the executions
• Run p1 alone after p1 p2 and

after p2 p1.
• Must eventually decide,

differently in these two
situations.

• But p1 can’t distinguish until it
dequeues from q, so it must
eventually do so.

• So we can run p1 alone just
until it dequeues from q.

p1 enqueues a1 p2 enqueues a2

p1 enqueues a1p2 enqueues a2

• Q: Now what is different?
• q contains just a2 on left branch, just a1 on right branch
• States of all other objects are the same.
• States of p2 and p3 are the same, but p1 may be different.

Constructing the executions
• Now run p2 alone after both

branches.
• Must decide differently in the

two executions.
• But p2 can’t distinguish until it

dequeues from q, so it must
eventually do so.

• So run p2 alone just until it
dequeues from q.

p1 alone p1 alone

0-valent 1-valent

p1 dequeues a1 p1 dequeues a2

p1 enqueues a1 p2 enqueues a2

p1 enqueues a1p2 enqueues a2

• Q: Now what is different?
• All objects, including q, are same.
• State of p3 is the same, though p1

and p2 may be different.
p2 alone p2 alone

0-valent 1-valent

p2 dequeues a2 p2 dequeues a1

Constructing the executions
• This gives the needed

executions:
– After p1 p2, p1 runs alone

until it dequeues a1, then
p2 runs alone until it
dequeues a2.

– After p2 p1, p1 runs alone
until it dequeues a2, then
p2 runs alone until it
dequeues a1.

• As described earlier, just
run p3 alone after both to
get the contradiction.

p1 alone p1 alone

p1 dequeues a1 p1 dequeues a2

p1 enqueues a1 p2 enqueues a2

p1 enqueues a1p2 enqueues a2

p2 alone p2 alone

0-valent 1-valent

p2 dequeues a2 p2 dequeues a1

Queue types: Recap
• We just showed:

– Theorem 7: Every queue type T has cons-number(T) ≤
2.

– In fact, all queue types together can’t solve 3-process
consensus.

– So cons-number(T) definition doesn’t tell the entire
story.

• Also:
– Theorem 5: There is a queue type T with cons-

number(T) ≥ 2.
• Gives quite a bit of information about the power of

queue types.

Compare-and-Swap (CAS)
Types

Compare-and-swap types
• Compare-and-swap type:

– V, the value domain.
– v0, initial value.
– invs = { compare-and-swap(u,v) | u, v in V }
– resps = V
– δ(compare-and-swap(u,v), w) =

• (w, v) if u = w,
• (w, w) if not.

• That is, if the variable value is equal to the first
argument, change it to the second argument;
otherwise leave the variable alone.

• In either case, return the former value of the
variable.

Compare-and-swap types
• Theorem 8: Let T be the consensus type with value

domain V. Then there is a compare-and-swap type T′
that can be used to implement an n-process consensus
object with type T, for any n.

• That is, T′ can be used to solve n-process consensus for
any n; so cons-number(T′) = ∞.

• Proof:
– Use just a single C&S shared variable, value domain = V ∪ { ⊥ },

initial value = ⊥.
– Process i:

• If initial value = v, then access the C&S shared variable with
compare-and-swap(⊥, v), obtain the previous value w.

• If w = ⊥ then decide v. (You are first).
• Otherwise, decide w. (Someone else was first and proposed w.)

Compare-and-swap types
• Corollary 9: It is impossible to implement an atomic object

of this C&S type T′ (from Theorem 8) for n ≥ 3 processes
using just queues and read/write registers.

• Proof: Like proof of Theorem 1.
– Enough to show for n = 3.
– By contradiction. Suppose there is a 3-process implementation of

an atomic object of type T′ using queues + registers.
– By Theorem 8, there is a 3-process consensus algorithm C using

just T′ + registers.
– Replace the T′ shared variables in C with the assumed

implementation of T′ from queues + registers.
– Yields a 3-process consensus algorithm using just queues +

registers.
– Contradicts (the stronger version of) Theorem 7.

• [Herlihy] classifies other data types similarly, LTTR.

Universality of Consensus

Universality of consensus
• Consensus variables and registers can implement a wait-

free n-process atomic object of any variable type, for any
number n.

• Algorithm in [Herlihy] combines:
– A basic unfair, non-wait-free algorithm.
– A fairness mechanism, to ensure that every operation is completed.
– Optimizations, to reuse memory, save time.

• [Attiya, Welch, Chapter 15] separate these three aspects.
• Here, we’ll simplify by forgetting the optimizations.

• Assume arbitrary data type T = (V, v0, invs, resps, δ).
• Fix n.

1. Non-wait-free algorithm
• Shared variables:

– An infinite sequence of n-process consensus variables, Cons(1),
Cons(2), …

– Each consensus variable’s domain is { (i, k, a) such that
• i is a process id, 1 ≤ i ≤ n,
• k is a positive integer, a local sequence number,
• a ∈ invs, the set of invocations for the T object }

• Cons(j) is used to decide which proposed invocation on the
implemented object is the jth one to be performed.

• The consensus objects explicitly decide on the sequence
of invocations, and it’s consistently observed everywhere.

• Process i:
– Participates in consensus executions in order 1,2,3,…
– Keeps track locally of the decision values for all consensus

variables; these are triples (j,k,a).
– Knowing the sequences of decisions allows process i to “run” the

sequence and compute the new states and responses for the
implemented object.

Non-wait-free algorithm, process i

• When new invocation a arrives:
– Record it in local variable current-inv, as a triple (i, k, a),

where k is the first unused local sequence number.
– For each Cons(j), starting from the first one that i hasn’t

yet participated in:
• Invoke init(current-inv) on Cons(j).
• Record decision in local variable decision(j).
• If decision(j) = current-inv then

– Run the sequence of invocations in decision(1), …, decision(j) to
compute the response.

– Return response to the user (and become idle).
• Else continue on to j+1.

Algorithm properties

• Well-formed: Yes
• Atomic: Yes

– Everyone sees a consistent sequence of operations.
– Serialization point for an operation can be the point

where it wins at some consensus shared variable
Cons(j).

• Wait-free: No
– Process i could submit the same operation to infinitely

many Cons variables, and it could always lose.

2. Wait-free algorithm
• Add a priority mechanism to ensure that each operation

completes.
• For Cons(j), j ≡ i mod n, any current invocation of process i

gets priority.
• Priority is managed outside the consensus variables:

– A process i sometimes “helps” another process j, by invoking
consensus objects with j’s invocation instead of i’s own.

• Additional shared variables:
– announce(i), for each process i, a single-writer multi-reader

register, written by i, read by everyone
• Value domain: { (i, k, a) as above } ∪ { ⊥ }.
• Initial value: ⊥

Wait-free algorithm, process i
• When new invocation a arrives:

– Record it in local variable current-inv as before, as triple
(i, k, a).

– Write value of current-inv into announce(i).
– Then proceed as in the non-wait-free algorithm, except:

• Before participating in Cons(j), read announce(j′), where j ≡ j′
mod n.

• If announce(j′) contains a triple inv (not ⊥), and inv has not
already won any of Cons(1), Cons(2), …, Cons(j-1), then invoke
init(inv) on Cons(j).

• Otherwise, invoke init(current-inv) on Cons(j), as before.
– Handle decisions as before.
– Just before returning value to the user, reset

announce(i) := ⊥.

Algorithm properties
• Well-formed, Atomic: Yes, as before.
• Wait-free: Yes:

– Claim every operation eventually completes.
– If not, then consider some (i,k,a) that gets stuck.
– Then after announce(i) is set to (i,k,a), it keeps this value forever.
– Process i participates in infinitely many consensus executions on

behalf of this (i,k,a), losing all of them.
– Choose any j such that:

• j ≡ i mod n, and
• j is sufficiently large so that no process accesses Cons(j), or even

reads announce(i) in preparation for accessing Cons(j), before
announce(i) is set to (i,k,a).

– Then for this j, everyone who participates will choose to help i by
submitting (i,k,a) as input.

– At least one process participates (i itself).
– So the decision must be (i,k,a).

Complexity
• Shared-memory size:

– Infinitely many shared variables, each of unbounded size.
• Time:

– Unbounded, because:
• A process i may start with a Cons(j) that is far out of date, and have to

access Cons(j), Cons(j+1),…to catch up.

• Herlihy:
– Formulates the algorithm somewhat differently, in terms of a linked

list of operations, so it’s hard to compare.
– Time:

• Claims a nice O(n) bound.
• Avoids the catch-up time by allowing processes to survey others for

recent information.
– Shared memory:

• Still uses unbounded sequence numbers.
• Still needs infinitely many consensus objects---seems unavoidable

since each is good for only one decision.
• “Garbage-collects” to reclaim space taken by old objects.

Robustness
• [Jayanti] defined a robustness property for the hierarchy:

– Robustness: If T is a type at level n, and S is a set of types, all at
levels < n, then T has no implementation from S for n processes.

• But did not determine whether the hierarchy is robust.
• Herlihy’s results don’t imply this; they do imply:

– If T is a type at level n, and S is a single type at a level < n, then T
has no implementation from S and registers.

• But it’s still possible that combining low-consensus-number
types could allow implementation of a higher-consensus-
number type.

• Later papers give both positive and negative results.
– Based on technical issues.

Summary
• Work is still needed to achieve our original goals:

– Determine which types of objects can be used to implement which
other types, for which numbers of processes and failures.

– A comprehensive theory of relative computability, for objects in
distributed systems.

Next time…
• More on wait-free computability
• Wait-free vs. f-fault-tolerant computability
• Reading:

– [Borowsky, Gafni, Lynch, Rajsbaum]
– [Chandra, Hadzilacos, Jayanti, Toueg]
– [Attie, Guerraoui, Kouznetsov, Lynch]

MIT OpenCourseWare
http://ocw.mit.edu

6.852J / 18.437J Distributed Algorithms
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

	6.852: Distributed Algorithms�Fall, 2009
	Today’s plan
	Overview
	Herlihy’s Hierarchy
	Basic definitions
	The Model
	Consensus as an atomic object
	Herlihy’s consensus object vs. our consensus definition
	Binary vs. arbitrary consensus
	Binary vs. arbitrary consensus:�Algorithm
	What about an infinite set V?
	Consensus Numbers
	Consensus Numbers
	Consensus Numbers
	Example: Read/write register types
	Example: Snapshot types
	Queue Types
	Queue types
	Queue types
	Queue types
	Queue lower bound
	Queue impossibility
	Case 2
	Case 4
	Constructing the executions
	Constructing the executions
	Constructing the executions
	Queue types: Recap
	Compare-and-Swap (CAS) Types
	Compare-and-swap types
	Compare-and-swap types
	Compare-and-swap types
	Universality of Consensus
	Universality of consensus
	1. Non-wait-free algorithm
	Non-wait-free algorithm, process i
	Algorithm properties
	2. Wait-free algorithm
	Wait-free algorithm, process i
	Algorithm properties
	Complexity
	Robustness
	Summary
	Next time…

