
6.852: Distributed Algorithms
Fall, 2009

Class 13

Today’s plan
• Asynchronous shared-memory systems
• The mutual exclusion problem
• Dijkstra’s algorithm
• Peterson’s algorithms
• Lamport’s Bakery algorithm
• Reading: Chapter 9, 10.1-10.5, 10.7
• Next: Sections 10.6-10.8

Asynchronous Shared-Memory
Systems

Asynchronous Shared-Memory
systems

• We’ve covered basics of non-fault-tolerant asynchronous
network algorithms:
– How to model them.
– Basic asynchronous network protocols---broadcast, spanning trees,

leader election,…
– Synchronizers (running synchronous algorithms in asynch networks)
– Logical time
– Global snapshots

• Now consider asynchronous shared-memory systems:

p1

p2

pn

x2

x1

• Processes, interacting via shared objects,
possibly subject to some access constraints.

• Shared objects are typed, e.g.:
– Read/write (weak)
– Read-modify-write, compare-and-swap (strong)
– Queues, stacks, others (in between)

Asynch Shared-Memory systems

• Theory of ASM systems has much in common with theory
of asynchronous networks:
– Similar algorithms and impossibility results.
– Even with failures.
– Transformations from ASM model to asynch network model allow

ASM algorithms to run in asynchronous networks.
• “Distributed Shared Memory”.

• Historically, theory for ASM started first.
• Arose in study of early operating systems, in which several

processes can run on a single processor, sharing memory,
with possibly-arbitrary interleavings of steps.

• Currently, ASM models apply to multiprocessor shared-
memory systems, in which processes can run on separate
processors and share memory.

Topics
• Define the basic system model, without failures.
• Use it to study basic problems:

– Mutual exclusion.
– Other resource-allocation problems.

• Introduce process failures into the model.
• Use model with failures to study basic problems:

– Distributed consensus
– Implementing atomic objects:

• Atomic snapshot objects
• Atomic read/write registers

• Wait-free and fault-tolerant computability theory
• Modern shared-memory multiprocessors:

– Practical issues
– Algorithms
– Transactional memory

Basic ASM Model, Version 1
• Processes + objects, modeled as automata.
• Arrows:

– Represent invocations and responses for
operations on the objects.

– Modeled as input and output actions.
• Fine-granularity model, can describe:

– Delay between invocation and response.
– Concurrent (overlapping) operations:

• Object could reorder.
• Could allow them to run concurrently, interfering with

each other.

• We’ll begin with a simpler, coarser model:
– Object runs ops in invocation order, one at a time.
– In fact, collapse each operation into a single step.

• Return to the finer model later.

p1

p2

pn

x2

x1

invoke(read)

respond(v)

p1
x1

invoke(write,v)

respond()

p1
x1

Basic ASM Model, Version 2
• One big shared memory system automaton A.
• External actions at process “ports”.
• Each process i has:

– A set statesi of states.
– A subset starti,of start states.

• Each variable x has:
– A set valuesx of values it can take on.
– A subset initialx of initial values.

p1

p2

pn

x1

x2

A

• Automaton A:
– States: State for each process, a value for each variable.
– Start: Start states, initial values.
– Actions: Each action associated with one process, and some also with a

single shared variable.
– Input/output actions: At the external boundary.
– Transitions: Correspond to local process steps and variable accesses.

• Action enabling, which variable is accessed, depend only on process state.
• Changes to variable and process state depend also on variable value.
• Must respect the type of the variable.

– Tasks: One or more per process (threads).

Basic ASM Model
• Execution of A:

– By IOA fairness definition, each task gets
infinitely many chances to take steps.

– Model environment as a separate automaton,
to express restrictions on environment
behavior.

p1

p2

pn

x1

x2

A

• Commonly-used variable types:
– Read/write registers: Most basic primitive.

• Allows access using separate read and write operations.
– Read-modify-write: More powerful primitive:

• Atomically, read variable, do local computation, write to variable.
– Compare-and-swap, fetch-and-add, queues, stacks, etc.

• Different computability and complexity results hold for
different variable types.

The Mutual Exclusion Problem
• Share one resource among n user processes, U1, U2,…,Un.

– E.g., printer, portion of a database.
• Ui has four “regions”.

– Subsets of its states, described by portions of its code.
– C critical; R remainder; T trying; E exit

• Cycle:

• Architecture:
– Uis and A are IOAs, compose.

R T C E

p1

p2

pn

x1

x2

A
U1

U2

Un

Protocols for obtaining and
relinquishing the resource

The Mutual Exclusion Problem
• Actions at user interface:

– tryi, criti, exiti, remi
– Ui interacts with pi

• Correctness conditions:
– Well-formedness (Safety property):

• System obeys cyclic discipline.
• E.g., doesn’t grant resource when it wasn’t

requested.
– Mutual exclusion (Safety):

• System never grants to > 1 user
simultaneously.

• Trace safety property.
• Or, there’s no reachable system state in

which >1 user is in C at once.
– Progress (Liveness):

• From any point in a fair execution:
– If some user is in T and no user is in C then at

some later point, some user enters C.
– If some user is in E then at some later point,

some user enters R.

p1

p2

pn

x1

x2

A
U1

U2

Un

piUi

tryi

criti

exiti
remi

The Mutual Exclusion Problem
• Well-formedness (Safety):

– System obeys cyclic discipline.
• Mutual exclusion (Safety):

– System never grants to > 1 user.
• Progress (Liveness):

– From any point in a fair execution:
• If some user is in T and no user is in C then

at some later point, some user enters C.
• If some user is in E then at some later point,

some user enters R.

p1

p2

pn

x1

x2

A
U1

U2

Un

• Conditions all constrain the system automaton A, not users.
– System determines if/when users enter C and R.
– Users determine if/when users enter T and E.
– We don’t state any requirements on the users, except that they

preserve well-formedness.

The Mutual Exclusion Problem
• Well-formedness (Safety):
• Mutual exclusion (Safety):
• Progress (Liveness):

– From any point in a fair execution:
• If some user is in T and no user is in C then

at some later point, some user enters C.
• If some user is in E then at some later point,

some user enters R.

p1

p2

pn

x1

x2

A
U1

U2

Un

• Fairness assumption:
– Progress condition requires fairness assumption (all process

tasks continue to get turns to take steps).
– Needed to guarantee that some process enters C or R.
– In general, in the asynchronous model, liveness properties

require fairness assumptions.
– Contrast: Well-formedness and mutual exclusion are safety

properties, don’t depend on fairness.

One more assumption…

• No permanently active processes.
– Locally-controlled actions can be enabled only

when user is in T or E.
– No always-awake, dedicated processes.
– Motivation:

• Multiprocessor settings, where users can run
processes at any time, but are otherwise not involved
in the protocol.

• Avoid “wasting processors”.

Mutual Exclusion algorithm
[Dijkstra 65]

• Based on Dekker’s 2-process solution.
• Pseudocode, p. 265-266

– Written in traditional sequential style, must somehow translate into
more detailed state/transition description.

• Shared variables: Read/write registers.
– turn, in {1,2,…,n}, multi-writer multi-reader (mWmR), init anything.
– for each process i:

• flag(i), in {0,1,2}, single-writer multi-reader (1WmR), init 0
• Written by i, read by everyone.

• Process i’s Stage 1:
– Set flag := 1, test to see if turn = i.
– If not, and turn’s current owner is seen to be inactive, then set turn := i.
– Otherwise go back to to testing…
– When you see turn = i, move to Stage 2.

Dijkstra’s algorithm
• Stage 2:

– Set flag(i) := 2.
– Check (one at a time, any order) that no other process has flag = 2.
– If check completes successfully, go to C.
– If not, go back to beginning of Stage 1.

• Exit protocol:
– Set flag(i) := 0.

• Problem with the sequential code style:
– Unclear what constitutes an atomic step.

• E.g., need three separate steps to test turn, test flag(turn), and set turn.
– Must rewrite to make this clear:

• E.g., precondition/effect code (p. 268-269)
• E.g., sequential-style code with explicit reads and writes, one per line.

Dijkstra’s algorithm, pre/eff code
• One transition definition for each kind of atomic step.
• Explicit program counter, pc.
• E.g.: When pc is:

– set-flag-1i: Sets flag to 1 and prepares to test turn.
– test-turni: Tests turn, and either moves to Stage 2 or prepares to

test the current owner’s flag.
– test-flag(j)i: Tests j’s flag, and either goes on to set turn or goes back

to test turn again.
– …
– set-flag-2i: Sets flag to 2 and initializes set S, preparing to check all

other processes’ flags.
– check(j)i: If flag(j) = 2, go back to beginning.
– …

• S keeps track of which processes have been successfully
checked in Stage 2.

Precondition/effect code

Shared variables:
turn ∈ {1,…,n}, initially arbitrary
for every i:

flag(i) ∈ {0,1,2}, initially 0

Actions of process i:
Input: tryi, exiti
Output: criti, remi

Internal: set-flag-1i, test-turni, test-flag(j)i, set-turni, set-flag-2i,
check(j)i, reseti

Precondition/effect code,
Dijkstra process i

tryi:
Eff: pc := set-flag-1

set-flag-1i :
Pre: pc = set-flag-1
Eff: flag(i) := 1

pc := test-turn

test-turni :
Pre: pc = test-turn
Eff: if turn = i then pc := set-flag-2

else pc := test-flag(turn)

test-flag(j)i
Pre: pc = test-flag(j)
Eff: if flag(j) = 0 then pc := set-turn

else pc := test-turn

set-turni :
Pre: pc = set-turn
Eff: turn := i

pc := set-flag-2

set-flag-2i :
Pre: pc = set-flag-2
Eff: flag(i) := 2

S := {i}
pc := check

More precondition/effect code,
Dijkstra process i

check(j)i :
Pre: pc = check

j ∉ S
Eff: if flag(j) = 2 then

S := ∅
pc := set-flag-1

else
S := S ∪ {j}
if |S| = n then pc := leave-try

criti :
Pre: pc = leave-try
Eff: pc := crit

exiti
Eff: pc := reset

reseti :
Pre: pc = reset
Eff: flag(i) := 0

S := ∅
pc := leave-exit

remi :
Pre: pc = leave-exit
Eff: pc := rem

Note on code style

• Explicit pc makes atomicity clear, but looks
somewhat verbose/awkward.

• pc is often needed in invariants.
• Alternatively: Use sequential style, with explicit

reads or writes (or other operations), one per line.
• Need line numbers:

– Play same role as pc.
– Used in invariants: “If process i is at line 7 then…”

Correctness
• Well-formedness: Obvious.
• Mutual exclusion:

– Based on event order in executions, rather
than invariants.

– By contradiction: Assume Ui, Uj are ever in
C at the same time.

– Both must set-flag-2 before entering C;
consider the last time they do this.

– WLOG, suppose set-flag-2i comes first.
– Then flag(i) = 2 from that point onward (until

they are both in C).
– However, j must see flag(i) ≠ 2, in order to

enter C.
– Impossible.

Initial
state

Ui, Uj
in C

Initial
state

Ui, Uj
in C

set-flag-2i

set-flag-2j

j sees flag(i) ≠ 2

Progress
• Interesting case: Trying region.
• Proof by contradiction:

– Suppose α is a fair execution, reaches a point where
some process is in T, no process is in C, and thereafter,
no process ever enters C.

– Now start removing complications…
– Eventually, all regions changes stop and all in T keep

their flags ≥ 1.
– Then it must be that everyone is in T and R, and all in T

have flag ≥ 1.
α

α1 No region changes, everyone in T or R, all in T have flag ≥ 1.

Progress, cont’d

• Then whenever turn is reset in α1, it must be set to a
contender’s index.

• Claim: In α1, turn eventually acquires a contender’s index.
• Proof:

– Suppose not---stays non-contender forever.
– Consider any contender i.
– If it ever reaches test-turn, then it will set turn := i, since it sees an

inactive process.
– Why must process i reach test-turn?

• It’s either that, or it succeeds in reaching C.
• But we have assumed no one reaches C.

– Contradiction.

α

α1 No region changes, everyone in T or R, all in T have flag ≥ 1.

“Contenders”

Progress, cont’d
• In α1, once turn = contender’s index, it is thereafter always =

some contender’s index.
– Because contenders are the only processes that can change turn.

• May change several times.
• Eventually, turn stops changing (because tests come out

negative), stabilizes to some value, say i.
α

α1 No region changes, everyone in T or R, all in T have flag ≥ 1.

α2 turn remains = i

• Thereafter, all contenders ≠ i wind up looping in Stage 1.
– If j reaches Stage 2, it returns to Stage 1, since it doesn’t go to C.
– But then j’s tests always fail, so j stays in Stage 1.

• But then nothing stops process i from entering C.

Mutual exclusion, Proof 2
• Use invariants.
• Must show they hold after any number of steps.
• Main goal invariant: |{i : pci = crit }| ≤ 1.

• To prove by induction, need more:
1. If pci = crit (or leave-try or reset) then |Si| = n.
2. There do not exist i, j, i ≠ j, with i in Sj and j in Si.

• 1 and 2 easily imply mutual exclusion.

• Proof of 1: Easy induction
• Proof of 2:

– Needs some easy auxiliary invariants saying what S-values go with
what flag values and what pc values.

– Key step: When j gets added to Si, by check(j)i event.
• Then must have flag(j) ≠ 2.
• But then Sj = ∅ (by auxiliary invariant), so i ∉ Sj, can’t break invariant.

Running Time

• Upper bound on time from when some
process is in T until some process is in C.

• Assume upper bound of l on successive
turns for each process task (here, all steps
of each process are in one task).

• Time upper bound for [Dijkstra]: O(l n).
• Proof: LTTR

Adding fairness guarantees
[Peterson]

• Dijkstra algorithm does not guarantee fairness in granting
the resource to different users.

• Might not be important in practice, if contention is rare.
• Other algorithms add fairness guarantees.
• E.g., [Peterson]: a collection of algorithms guaranteeing

lockout-freedom.
• Lockout-freedom: In any (low-level) fair execution:

– If all users always return the resource then any user that enters T
eventually enters C.

– Any user that enters E eventually enters R.

Peterson 2-process algorithm
• Shared variables:

– turn, in {0,1}, 2W2R read/write register, initially arbitrary.
– for each process i = 0,1:

• flag(i), in {0,1}, 1W1R register, initially 0
• Written by i, read by 1-i.

• Process i’s trying protocol:
– Sets flag(i) := 1, sets turn := i.
– Waits for either flag(1-i) = 0 or turn ≠ i.

– Toggles between the two tests.

• Exit protocol:
– Sets flag(i) := 0

Other process not active. Other process has the turn variable.

Precondition/effect code

Shared variables:
turn ∈ {0,1}, initially arbitrary
for every i ∈ {0,1}:

flag(i) ∈ {0,1}, initially 0

Actions of process i:
Input: tryi, exiti
Output: criti, remi

Internal: set-flagi, set-turni, check-flagi, check-turni, reseti

Precondition/effect code,
Peterson 2P, process i

tryi:
Eff: pc := set-flag

set-flagi :
Pre: pc = set-flag
Eff: flag(i) := 1

pc := set-turn

set-turni :
Pre: pc = set-turn
Eff: turn := i

pc := check-flag

check-flagi
Pre: pc = check-flag
Eff: if flag(1-i) = 0 then pc := leave-try

else pc := check-turn

check-turni :
Pre: pc = check-turn
Eff: if turn ≠ i then pc := leave-try

else pc := check-flag

More precondition/effect code,
Peterson 2P, process i

criti :
Pre: pc = leave-try
Eff: pc := crit

exiti
Eff: pc := reset

reseti :
Pre: pc = reset
Eff: flag(i) := 0

pc := leave-exit

remi :
Pre: pc = leave-exit
Eff: pc := rem

Correctness: Mutual exclusion
• Key invariant:

– If pci∈ {leave-try, crit, reset} (essentially in C), and
– pc1-i ∈ {check-flag, check-turn, leave-try, crit, reset} (engaged in the

competition or in C),
– then turn ≠ i.

• That is:
– If i has won and 1-i is currently competing then turn is set favorably

for i---which means it is set to 1-i.

• Implies mutual exclusion: If both are in C then turn must
be set both ways, contradiction.

• Proof of invariant: All cases of inductive step are easy.
– E.g.: a successful check-turni, causing i to advance to leave-try.
– This explicitly checks that turn ≠ i, as needed.

Correctness: Progress

• By contradiction:
– Suppose someone is in T, and no one is ever

thereafter in C.
– Then the execution eventually stabilizes so no

new region changes occur.
– After stabilization:

• If exactly one process is in T, then it sees the other’s
flag = 0 and enters C.

• If both processes are in T, then turn is set favorably
to one of them, and it enters C.

Correctness: Lockout-freedom
• Argue that neither process can enter C three times while

the other stays in T, after setting its flag := 1.
• Bounded bypass.
• Proof: By contradiction.

– Suppose process i is in T and has set flag := 1, and subsequently
process (1-i) enters C three times.

– In each of the second and third times through T, process (1-i) sets
turn := 1-i but later sees turn = i.

– That means process i must set turn := i at least twice during that
time.

– But process i sets turn := i only once during its one execution of T.
– Contradiction.

• Bounded bypass + progress imply lockout-freedom.

Time complexity
• Time from when any particular process i enters T

until it enters C: c + O(l), where:
– c is an upper bound on the time any user remains in the

critical section, and
– l is an upper bound on local process step time.

• Detailed proof: See book.
• Rough idea:

– Either process i can enter immediately, or else it has to
wait for (1-i).

– But in that case, it only has to wait for one critical-
section time, since if (1-i) reenters, it will set turn
favorably for i.

Peterson n-process algorithms

• Extend 2-process algorithm for lockout-free
mutual exclusion to n-process algorithm, in
two ways:
– Using linear sequence of competitions, or
– Using binary tree of competitions.

Sequence of competitions
• Competitions 1,2,…,n-1.
• Competition k has one loser, up to n-k winners.
• Thus, only one can win in competition n-1, implying mutual exclusion.

• Shared vars:
– For each competition k in {1,2,…,n-1}:

• turn(k) in {1,2,…n}, mWmR register, written and read by all, initially arbitrary.
– For i in {1,2,…n}:

• flag(i) in {0,1,2,…,n-1}, 1WmR register, written by i and read by all, initially 0.

• Process i trying protocol:
– For each level k:

• Set flag(i) := k, indicating i is competing at level k.
• Set turn(k) := i.
• Wait for either turn(k) ≠ i, or everyone else’s flag < k (check flags one at a time).

• Exit protocol:
– Set flag(i) := 0

Correctness: Mutual exclusion
• Definition: Process i is a winner at level k if either:

– leveli > k, or
– leveli = k and pci ∈ {leave-try, crit, reset}.

• Definition: Process i is a competitor at level k if either:
– Process i is a winner at level k, or
– leveli = k and pci∈ {check-flag, check-turn}.

• Invariant 1: If process i is a winner at level k, and process
j ≠ i is a competitor at level k, then turn(k) ≠ i.

• Proof: By induction, similar to 2-process case.
– Complication: More steps to consider.
– Now have many flags, checked in many steps.
– Need auxiliary invariants saying something about what is true in

the middle of checking a set of flags.

Correctness: Mutual exclusion
• Invariant 2: For any k, 1 ≤ k ≤ n-1, there are at most n-k

winners at level k.

• Proof: By induction, on level number, for a particular
reachable state (not induction on number of steps).
– Basis: k = 1:

• Suppose false, for contradiction.
• Then all n processes are winners at level 1.
• Then Invariant 1 implies that turn(1) is unequal to all indices,

contradiction.
– Inductive step: …

Correctness: Mutual exclusion
• Invariant 2: For any k, 1 ≤ k ≤ n-1, there are at most n - k

winners at level k.
• Inductive step: Assume for k, 1 ≤ k ≤ n-2, show for k+1.

– Suppose false, for contradiction.
– Then more than n – (k + 1) processes, that is, at least n – k

processes, are winners at level k + 1: | Wink+1 | ≥ n - k.
– Every level k+1 winner is also a level k winner: Wink+1 ⊆ Wink.
– By inductive hypothesis, | Wink | ≤ n-k.
– So Wink+1 = Wink, and | Wink+1 | = | Wink | = n - k.
– Q: What is the value of turn(k+1) ?

• Can’t be the index of any process in Wink+1, by Invariant 1.
• Must be the index of some competitor at level k+1 (Invariant, LTTR).
• But every competitor at level k+1 is a winner at level k, so is in Wink.
• Contradiction, since Wink+1 = Wink.

Progress, Lockout-freedom
• Lockout-freedom proof idea:

– Let k be the highest level at which some process i gets stuck.
– Then turn(k) must remain = i.
– That means no one else ever reenters the competition at level k.
– Eventually, winners from level k will finish, since k is the highest level at

which anyone gets stuck.
– Then all other flags will be < k, so i advances.

• Alternatively, prove lockout-freedom by showing a time bound for each
process, from →T until →C. (See book)
– Define T(0) = maximum time from when a process →T until →C.
– Define T(k), 1 ≤ k ≤ n-1 = max time from when a process wins at level k

until →C.
– T(n-1) ≤ l.
– T(k) ≤ 2 T(k+1) + c + (3n+2) l, by detailed analysis.
– Solve recurrences, get exponential bound, good enough for showing

lockout-freedom.

Peterson Tournament Algorithm
• Assume n = 2h.
• Processes = leaves of binary tree of height h.
• Competitions = internal nodes, labeled by binary

strings.
• Each process engages in log n competitions,

following path up to root.

0 1 2 3 54 6 7

00 111001

λ

10

• Each process i has:
– A unique competition x at each

level k.
– A unique role in x (0 = left, 1 = right).
– A set of potential opponents in x.

Peterson Tournament Algorithm
• Shared variables:

– For each process i, flag(i) in {0,…,h}, indicating level, initially 0
– For each competition x, turn(x), a Boolean, initially arbitrary.

• Process i’s trying protocol: For each level k:
– Set flag(i) := k.
– Set turn(x) := b, where:

• x is i’s level k competition,
• b is i’s “role”, 0 or 1

– Wait for either:
• turn(x) = opposite role, or
• all flags of potential opponents in x are < k.

• Exit protocol:
– Set flag(i) := 0.

0 1 2 3 54 6 7

00 111001

λ

10

Correctness
• Mutual exclusion:

– Similar to before.
– Key invariant: At most one process from any particular subtree

rooted at level k is currently a winner at level k.

• Time bound (from →T until →C): (n-1) c + O(n2 l)
– Implies progress, lockout-freedom.
– Define: T(0) = max time from →T until →C.
– T(k), 1 ≤ k ≤ log n = max time from winning at level k until →C.
– T(log n) ≤ l.
– T(k) ≤ 2 T(k+1) + c + (2k+1 + 2k + 7) l (see book).

• Roughly: Might need to wait for a competitor to reach C, then finish C,
then for yourself to reach C.

– Solve recurrences.

Bounded Bypass?
• Peterson’s Tournament algorithm has a low time bound from →T until

→C:
(n -1) c + O(n2 l)

• Implies lockout-freedom, progress.

• Q: Does it satisfy bounded bypass?
• No! There’s no upper bound on the number of times one process could

bypass another in the trying region. E.g.:
– Process 0 enters, starts competing at level 1, then pauses.
– Process 7 enters, quickly works its way to the top, enters C, leaves C.
– Process 7 enters again…repeats any number of times.
– All while process 0 is paused.

• No contradiction between small time bound and unbounded bypass.
– Because of the way we’re modeling timing of asynchronous executions,

using upper bound assumptions.
– When processes go at very different speeds, we say that the slow processes

are going at normal speed, faster processes are going very fast.

Lamport’s Bakery Algorithm
• Like taking tickets in a bakery.
• Nice features:

– Uses only single-writer, multi-reader registers.
– Extends to even weaker registers, in which operations have

durations, and a read that overlaps a write receives an arbitrary
response.

– Guarantees lockout-freedom, in fact, almost-FIFO behavior.
• But:

– Registers are unbounded size.
– Algorithm can be simulated using bounded registers, but not easily

(uses bounded concurrent timestamps).

• Shared variables:
– For each process i:

• choosing(i), a Boolean, written by i, read by all, initially 0
• number(i), a natural number, written by i, read by all, initially 0

Bakery Algorithm
• First part, up to choosing(i) := 0 (the “Doorway”, D):

– Process i chooses a number number greater than all the numbers it
reads for the other processes; writes this in number(i).

– While doing this, keeps choosing(i) = 1.
– Two processes could choose the same number (unlike real bakery).
– Break ties with process ids.

• Second part:
– Wait to see that no others are choosing, and no one else has a

smaller number.
– That is, wait to see that your ticket is the smallest.
– Never go back to the beginning of this part---just proceed step by

step, waiting when necessary.

Code
Shared variables:
for every i ∈ {1,…,n}:

choosing(i) ∈ {0,1}, initially 0, writable by i, readable by all j ≠ i
number(i), a natural number, initially 0, writable by i, readable by j ≠ i.

tryi
choosing(i) := 1
number(i) := 1 + maxj ≠ i number(j)
choosing(i) := 0
for j ≠ i do

waitfor choosing(j) = 0
waitfor number(j) = 0 or (number(i), i) < (number(j), j)

criti

exiti
number(i) := 0
remi

Correctness: Mutual exclusion
• Key invariant: If process i is in C, and process j ≠ i

is in (T − D) ∪ C,

then (number(i),i) < (number(j),j).

• Proof:
– Could prove by induction.
– Instead, give argument based on events in executions.
– This argument extends to weaker registers, with

concurrent accesses.

Trying region after doorway, or critical region

Correctness: Mutual exclusion
• Invariant: If i is in C, and j ≠ i is in (T − D) ∪ C, then

(number(i),i) < (number(j),j).
• Proof:

– Consider a point where i is in C and j ≠ i is in (T − D) ∪ C.
– Then before i entered C, it must have read choosing(j) = 0, event π.

– Case 1: j sets choosing(j) := 1 (starts choosing) after π.
• Then number(i) is set before j starts choosing.
• So j sees the “correct” number(i) and chooses something bigger.
• That suffices.

– Case 2: j sets choosing(j) := 0 (finishes choosing) before π.
• Then when i reads number(j) in its second waitfor loop, it gets the

“correct” number(j).
• Since i decides to enter C, it must see (number(i),i) < (number(j),j).

π: i reads choosing(j) = 0 i in C, j in (T − D) ∪ C

Correctness: Mutual exclusion

• Invariant: If i is in C, and j ≠ i is in (T − D) ∪
C, then (number(i),i) < (number(j),j).

• Proof of mutual exclusion:
– Apply invariant both ways.
– Contradictory requirements.

Liveness Conditions
• Progress:

– By contradiction.
– If not, eventually region changes stop, leaving everyone in T or R,

and at least one process in T.
– Everyone in T eventually finishes choosing.
– Then nothing blocks the smallest (number, index) process from

entering C.

• Lockout-freedom:
– Consider any i that enters T
– Eventually it finishes the doorway.
– Thereafter, any newly-entering process picks a bigger number.
– Progress implies that processes continue to enter C, as long as i is

still in T.
– In fact, this must happen infinitely many times!
– But those with bigger numbers can’t get past i, contradiction.

FIFO Condition
• Not really FIFO (→T vs. →C), but almost:

– FIFO after the doorway: if j leaves D before i →T, then j →C before
i →C.

• But the “doorway” is an artifact of this algorithm, so this
isn’t a meaningful way to evaluate the algorithm!

• Maybe say “there exists a doorway such that”…
• But then we could take D to be the entire trying region,

making the property trivial.
• To make the property nontrivial:

– Require D to be “wait-free”: a process is guaranteed to complete D
it if it keeps taking steps, regardless of what any other processes
do.

– D in the Bakery Algorithm is wait-free.
• The algorithm is FIFO after a wait-free doorway.

Impact of Bakery Algorithm

• Originated important ideas:
– Wait-freedom

• Fundamental notion for theory of fault-tolerant
asynchronous distributed algorithms.

– Weakly coherent memories
• Beginning of formal study: definitions, and some

algorithmic strategies for coping with them.

Next time…

• More mutual exclusion algorithms:
– Lamport’s Bakery Algorithm, cont’d
– Burns’ algorithm

• Number of registers needed for mutual exclusion.
• Reading: Sections 10.6-10.8

MIT OpenCourseWare
http://ocw.mit.edu

6.852J / 18.437J Distributed Algorithms
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

	6.852: Distributed Algorithms�Fall, 2009
	Today’s plan
	Asynchronous Shared-Memory Systems
	Asynchronous Shared-Memory systems
	Asynch Shared-Memory systems
	Topics
	Basic ASM Model, Version 1
	Basic ASM Model, Version 2
	Basic ASM Model
	The Mutual Exclusion Problem
	The Mutual Exclusion Problem
	The Mutual Exclusion Problem
	The Mutual Exclusion Problem
	One more assumption…
	Mutual Exclusion algorithm [Dijkstra 65]
	Dijkstra’s algorithm
	Dijkstra’s algorithm, pre/eff code
	Precondition/effect code
	Precondition/effect code,�Dijkstra process i
	More precondition/effect code,�Dijkstra process i
	Note on code style
	Correctness
	Progress
	Progress, cont’d
	Progress, cont’d
	Mutual exclusion, Proof 2
	Running Time
	Adding fairness guarantees [Peterson]
	Peterson 2-process algorithm
	Precondition/effect code
	Precondition/effect code,�Peterson 2P, process i
	More precondition/effect code,�Peterson 2P, process i
	Correctness: Mutual exclusion
	Correctness: Progress
	Correctness: Lockout-freedom
	Time complexity
	Peterson n-process algorithms
	Sequence of competitions
	Correctness: Mutual exclusion
	Correctness: Mutual exclusion
	Correctness: Mutual exclusion
	Progress, Lockout-freedom
	Peterson Tournament Algorithm
	Peterson Tournament Algorithm
	Correctness
	Bounded Bypass?
	Lamport’s Bakery Algorithm
	Bakery Algorithm
	Code
	Correctness: Mutual exclusion
	Correctness: Mutual exclusion
	Correctness: Mutual exclusion
	Liveness Conditions
	FIFO Condition
	Impact of Bakery Algorithm
	Next time…

