6.852: Distributed Algorithms
Fall, 2009

Class 13

Today’s plan

Asynchronous shared-memory systems
The mutual exclusion problem
Dijkstra’s algorithm

Peterson’s algorithms

_amport’s Bakery algorithm

Reading: Chapter 9, 10.1-10.5, 10.7
Next: Sections 10.6-10.8

Asynchronous Shared-Memory
Systems

Asynchronous Shared-Memory
systems

We've covered basics of non-fault-tolerant asynchronous
network algorithms:
— How to model them.

— Basic asynchronous network protocols---broadcast, spanning trees,
leader election,...

— Synchronizers (running synchronous algorithms in asynch networks)
— Logical time

— Global snapshots

Now consider asynchronous shared-memory systems:

Processes, interacting via shared objects,
possibly subject to some access constraints.

Shared objects are typed, e.g.:
— Read/write (weak)

— Read-modify-write, compare-and-swap (strong)
— Queues, stacks, others (in between)

Asynch Shared-Memory systems

Theory of ASM systems has much in common with theory
of asynchronous networks:

— Similar algorithms and impossibility results.

— Even with failures.

— Transformations from ASM model to asynch network model allow
ASM algorithms to run in asynchronous networks.

o “Distributed Shared Memory”.
Historically, theory for ASM started first.

Arose In study of early operating systems, in which several
processes can run on a single processor, sharing memory,
with possibly-arbitrary interleavings of steps.

Currently, ASM models apply to multiprocessor shared-
memory systems, in which processes can run on separate
processors and share memory.

Topics

Define the basic system model, without failures.

Use it to study basic problems:
— Mutual exclusion.
— Other resource-allocation problems.

Introduce process failures into the model.

Use model with failures to study basic problems:
— Distributed consensus

— Implementing atomic objects:
« Atomic snapshot objects
« Atomic read/write registers

Walit-free and fault-tolerant computabllity theory

Modern shared-memory multiprocessors:
— Practical issues

— Algorithms

— Transactional memory

Basic ASM Model, Version 1

Processes + objects, modeled as automata.

Arrows:

— Represent invocations and responses for
operations on the objects.

— Modeled as input and output actions.

Fine-granularity model, can describe:
— Delay between invocation and response.

— Concurrent (overlapping) operations:
* Object could reorder.

e Could allow them to run concurrently, interfering with
each other.

We’'ll begin with a simpler, coarser model:
— Object runs ops in invocation order, one at a time.
— In fact, collapse each operation into a single step.

Return to the finer model later.

O -

respond(v)

nvoke(write,v)
respond()

Basic ASM Model, Version 2

One big shared memory system automaton A.
External actions at process “ports”.

Each process i has:
— A set states, of states.
— A subset start; of start states.

Each variable x has:
— A set values, of values it can take on.
— A subset initial, of initial values.

Automaton A:
— States: State for each process, a value for each variable.
— Start: Start states, initial values.

— Actions: Each action associated with one process, and some also with a
single shared variable.

— Input/output actions: At the external boundary.

— Transitions: Correspond to local process steps and variable accesses.
» Action enabling, which variable is accessed, depend only on process state.
» Changes to variable and process state depend also on variable value.
* Must respect the type of the variable.

— Tasks: One or more per process (threads).

Basic ASM Model

e Execution of A:

— By IOA fairness definition, each task gets
infinitely many chances to take steps.

— Model environment as a separate automaton,
to express restrictions on environment
behavior.

« Commonly-used variable types:
— Read/write registers: Most basic primitive.
» Allows access using separate read and write operations.

— Read-modify-write: More powerful primitive:
« Atomically, read variable, do local computation, write to variable.

— Compare-and-swap, fetch-and-add, queues, stacks, etc.

« Different computability and complexity results hold for
different variable types.

The Mutual Exclusion Problem

Share one resource among n user processes, U, U,,...,U.,.
— E.g., printer, portion of a database.

U, has four “regions”.

— Subsets of its states, described by portions of its code.

— C critical; R remainder; Itrying; E exiB

=

Protocols for obtaining and
relinquishing the resource

Cycle: R— T—>C —E

~_

Architecture:
— U;s and A are IOAs, compose.

The Mutual Exclusion Problem

e Actions at user interface:
— try, crit, exit, rem,
— U, interacts with p,

e Correctness conditions:

— Well-formedness (Safety property):
« System obeys cyclic discipline.
 E.g., doesn’t grant resource when it wasn’t
requested.

— Mutual exclusion (Safety):
« System never grants to > 1 user
simultaneously.
» Trace safety property.

* Or, there’s no reachable system state in
which >1 user is in C at once.

— Progress (Liveness):

« From any point in a fair execution:
— If some useris in T and no user is in C then at
some later point, some user enters C.
— If some user is in E then at some later point,
some user enters R.

The Mutual Exclusion Problem

« Well-formedness (Safety):
— System obeys cyclic discipline.

« Mutual exclusion (Safety):
— System never grants to > 1 user.

* Progress (Liveness):

— From any point in a fair execution:

* If some userisin T and no user is in C then
at some later point, some user enters C.

» |f some user is in E then at some later point,
some user enters R.

e Conditions all constrain the system automaton A, not users.
— System determines if/when users enter C and R.
— Users determine if/when users enter T and E.

— We don'’t state any requirements on the users, except that they
preserve well-formedness.

The Mutual Exclusion Problem

Well-formedness (Safety):
Mutual exclusion (Safety):

Progress (Liveness):
— From any point in a fair execution:

» If some userisin T and no user is in C then
at some later point, some user enters C.

» |f some user is in E then at some later point,
some user enters R.

Fairness assumption:

Progress condition requires fairness assumption (all process
tasks continue to get turns to take steps).

Needed to guarantee that some process enters C or R.

In general, in the asynchronous model, liveness properties
require fairness assumptions.

Contrast: Well-formedness and mutual exclusion are safety
properties, don’t depend on fairness.

One more assumption...

 No permanently active processes.

— Locally-controlled actions can be enabled only
when userisin T or E.

— No always-awake, dedicated processes.

— Motivation:

e Multiprocessor settings, where users can run
processes at any time, but are otherwise not involved
In the protocol.

« Avoid “wasting processors”.

Mutual Exclusion algorithm
[Dijkstra 65]

Based on Dekker’s 2-process solution.
Pseudocode, p. 265-266

— Written in traditional sequential style, must somehow translate into
more detailed state/transition description.
Shared variables: Read/write registers.
— turn, in {1,2,...,n}, multi-writer multi-reader (MWmR), init anything.
— for each process i:
« flag(i), in {0,1,2}, single-writer multi-reader (1WmR), init O
» Written by i, read by everyone.
Process I's Stage 1.
— Set flag ;= 1, test to see if turn = I.
— If not, and turn’s current owner is seen to be inactive, then set turn := 1.
— Otherwise go back to to testing...
— When you see turn =i, move to Stage 2.

Dijkstra’s algorithm

e Stage 2:
— Set flag(i) := 2.
— Check (one at a time, any order) that no other process has flag = 2.
— If check completes successfully, go to C.
— If not, go back to beginning of Stage 1.

e EXit protocol:
— Set flag(i) := 0.
* Problem with the sequential code style:

— Unclear what constitutes an atomic step.

* E.g., need three separate steps to test turn, test flag(turn), and set turn.
— Must rewrite to make this clear:

» E.g., precondition/effect code (p. 268-269)

* E.g., sequential-style code with explicit reads and writes, one per line.

Dijkstra’s algorithm, pre/eff code

* One transition definition for each kind of atomic step.
e EXplicit program counter, pc.
« E.g.. When pc is:

— set-flag-1;: Sets flag to 1 and prepares to test turn.

test-turn;: Tests turn, and either moves to Stage 2 or prepares to
test the current owner’s flag.

test-flag(j);: Tests j's flag, and either goes on to set turn or goes back
to test turn again.

set -flag-2;: Sets flag to 2 and initializes set S, preparing to check all
other processes flags.

check());: If flag(j) = 2, go back to beginning.

« S keeps track of which processes have been successfully
checked in Stage 2.

Precondition/effect code

Shared variables:
turn € {1,...,n}, initially arbitrary
for every I:

flag(i) € {0,1,2}, initially O

Actions of process I:
Input: try,, exit;
Output: crit;, rem;

Internal: set-flag-1,, test-turn;, test-flag(j);, set-turn;, set-flag-2,,
check(j),, reset,

Precondition/effect code,
Dijkstra process |

try;:
Eff. pc .= set-flag-1

set-flag-1;:
Pre: pc = set-flag-1
Eff. flag(i) :=1

pc .= test-turn

test-turn, :

Pre: pc = test-turn

Eff: if turn =i then pc ;= set-flag-2
else pc ;= test-flag(turn)

test-flag());

Pre: pc = test-flag(j)

Eff. if flag(j) = O then pc .= set-turn
else pc := test-turn

set-turn; :
Pre: pc = set-turn
Eff. turn =1
pc .= set-flag-2
set-flag-2;:
Pre: pc = set-flag-2
Eff. flag(i) :=2
S:={i}

pc := check

More precondition/effect code,
Dijkstra process |

check();: exit;

Pre: pc = check Eff. pc :=reset
je S

Eff: if flag(j) = 2 then reset;:

S=g Pre: pc =reset
nc := set-flag-1 Eff. flag(i) :=0
else Sc.'_z?eave-exit

S=Suf{} '
If |S| = n then pc := leave-try
rem;:
crit. - Pre: pc = leave-exit
a Eff: pc:=rem

Pre: pc = leave-try
Eff: pc .= crit

Note on code style

Explicit pc makes atomicity clear, but looks
somewhat verbose/awkward.

pc Is often needed In invariants.

Alternatively: Use sequential style, with explicit
reads or writes (or other operations), one per line.

Need line numbers:

— Play same role as pc.
— Used In invariants: “If process i is at line 7 then...”

Correctness

 Well-formedness: Obvious.

e Mutual exclusion:

— Based on event order in executions, rather
than invariants.

— By contradiction: Assume U;, U;are ever In
C at the same time.

— Both must set-flag-2 before entering C;
consider the last time they do this.

— WLOG, suppose set-flag-2; comes first.

— Then flag(i) = 2 from that point onward (until
they are both in C).

— However, | must see flag(i) # 2, in order to
enter C.

— Impossible.

____Initial

State

- U, U,
in C

____Initial

set-fla

set-fla

j sees fl

state
10-2;
19-2,
ag(i) = 2

U;, U
in C

Progress

* Interesting case: Trying region.
* Proof by contradiction:

— Suppose o Is a fair execution, reaches a point where
some process is in T, no process is in C, and thereafter,
no process ever enters C.

— Now start removing complications...

— Eventually, all regions changes stop and all in T keep
their flags > 1.

— Then it must be that everyoneisinTand R,and all in T
have flag > 1.

No region changes, everyone in T or R, all in T have flag > 1.

Progress, cont’d

Ol e > “Contenders”

(o > /

No region changes, everyone in T or R, all in T have flag > 1.

Then whenever turn is reset in a4, it must be set to a
contender’s index.

Claim: In a4, turn eventually acquires a contender’s index.

Proof:

— Suppose not---stays non-contender forever.
— Consider any contender i.

— If it ever reaches test-turn, then it will set turn := 1, since it sees an
inactive process.

— Why must process i reach test-turn?
 |t's either that, or it succeeds in reaching C.
« But we have assumed no one reaches C.
— Contradiction.

Progress, cont’d

In a,, once turn = contender’s index, it is thereafter always =
some contender’s index.
— Because contenders are the only processes that can change turn.

May change several times.

Eventually, turn stops changing (because tests come out
negative), stabilizes to some value, say I.

o, . .
turn remains = |

Thereafter, all contenders # i wind up looping in Stage 1.
— If j reaches Stage 2, it returns to Stage 1, since it doesn’t go to C.
— But then j's tests always fail, so j stays in Stage 1.

But then nothing stops process i from entering C.

Mutual exclusion, Proof 2

Use invariants.
Must show they hold after any number of steps.
Main goal invariant: [{i: pc, = crit }| < 1.

To prove by induction, need more:

1. If pc, = crit (or leave-try or reset) then |S)| = n.

2. There do not exist |, J, I #], with1in S;and j in S,
1 and 2 easily imply mutual exclusion.

Proof of 1. Easy induction

Proof of 2:

— Needs some easy auxiliary invariants saying what S-values go with
what flag values and what pc values.

— Key step: When j gets added to S,, by check(j), event.
« Then must have flag(j) = 2.
 Butthen S;= < (by auxiliary invariant), so I ¢ S;, can't break invariant.

Running Time

Upper bound on time from when some
process Is In T until some process is in C.

Assume upper bound of | on successive
turns for each process task (here, all steps
of each process are in one task).

Time upper bound for [Dijkstral: O(l n).
Proof: LTTR

Adding fairness guarantees
|Peterson]

Dijkstra algorithm does not guarantee fairness in granting
the resource to different users.

Might not be important in practice, if contention is rare.
Other algorithms add fairness guarantees.

E.g., [Peterson]. a collection of algorithms guaranteeing
lockout-freedom.

Lockout-freedom: In any (low-level) fair execution:

— If all users always return the resource then any user that enters T
eventually enters C.

— Any user that enters E eventually enters R.

Peterson 2-process algorithm

e Shared variables:

— turn, in {0,1}, 2W2R read/write register, initially arbitrary.

— for each process i =0,1:

« flag(i), in {0,1}, IWI1R reqister, initially O

« Written by i, read by 1-i.

e Process I's trying protocol:
— Sets flag(i) := 1, sets turn := 1.

— Waits for either flag(1-i) = O or turn # i.
N

J

~

N

J

~

Other process not active.

Other process has the turn variable.

— Toggles between the two tests.

e EXit protocol:
— Sets flag(i) .= 0

Precondition/effect code

Shared variables:
turn € {0,1}, initially arbitrary
for every i € {0,1}.

flag(i) € {0,1}, initially O

Actions of process I:

Input: try;, exit

Output: crit;, rem;

Internal: set-flag;, set-turn,, check-flag;, check-turn,, reset;

Precondition/effect code,
Peterson 2P, process |

try;:
Eff. pc .= set-flag

set-flag; :

Pre: pc = set-flag

Eff. flag(i) :=1
pc ;= set-turn

set-turn,; :
Pre: pc = set-turn
Eff: turn =i

pc := check-flag

check-flag;

Pre: pc = check-flag

Eff. if flag(1-1) = O then pc := leave-try
else pc := check-turn

check-turn;:

Pre: pc = check-turn

Eff: if turn =i then pc := leave-try
else pc := check-flag

More precondition/effect code,
Peterson 2P, process |

crit; : reset;:

Pre: pc = reset

Eff. flag(i) :=0
pc .= leave-exit

Pre: pc = leave-try
Eff: pc :=crit

exit;

rem..
Eff: pc :=reset !

Pre: pc = leave-exit
Eff: pc:=rem

Correctness: Mutual exclusion

Key invariant:
— If pc;, e {leave-try, crit, reset} (essentially in C), and

— pc,; € {check-flag, check-turn, leave-try, crit, reset} (engaged in the
competition or in C),

— then turn #1.

That is:

— If i has won and 1-i is currently competing then turn is set favorably
for i---which means it is set to 1-I.

Implies mutual exclusion: If both are in C then turn must
be set both ways, contradiction.

Proof of invariant: All cases of inductive step are easy.
— E.g.: a successful check-turn, causing i to advance to leave-try.
— This explicitly checks that turn = i, as needed.

Correctness: Progress

e By contradiction:

— Suppose someone isin T, and no one Is ever
thereafter in C.

— Then the execution eventually stabilizes so no
new region changes occur.

— After stabilization:

o |If exactly one process is in T, then it sees the other’s
flag = 0 and enters C.

* If both processes are in T, then turn is set favorably
to one of them, and it enters C.

Correctness: Lockout-freedom

Argue that neither process can enter C three times while
the other stays in T, after setting its flag := 1.

Bounded bypass.
Proof: By contradiction.

Suppose process iisin T and has set flag := 1, and subsequently
process (1-i) enters C three times.

In each of the second and third times through T, process (1-i) sets
turn := 1-i but later sees turn = 1.

That means process i must set turn ;=1 at least twice during that
time.

But process i sets turn := i only once during its one execution of T.
Contradiction.

Bounded bypass + progress imply lockout-freedom.

Time complexity

 Time from when any particular process i enters T
until it enters C: ¢ + O(l), where:

— ¢ Is an upper bound on the time any user remains in the
critical section, and

— |'is an upper bound on local process step time.
« Detalled proof: See book.
 Rough idea:

— Either process i can enter immediately, or else it has to
wait for (1-i).
— But in that case, it only has to wait for one critical-

section time, since if (1-1) reenters, it will set turn
favorably for I.

Peterson n-process algorithms

e Extend 2-process algorithm for lockout-free
mutual exclusion to n-process algorithm, In
two ways:

— Using linear sequence of competitions, or
— Using binary tree of competitions.

Sequence of competitions

Competitions 1,2,...,n-1.
Competition k has one loser, up to n-k winners.
Thus, only one can win in competition n-1, implying mutual exclusion.

Shared vars:
— For each competition k in {1,2,...,n-1}:
o turn(k) in {1,2,...n}, mMWmR register, written and read by all, initially arbitrary.
— Foriin{1,2,...n}:
« flag(i) in {0,1,2,...,n-1}, IWmR register, written by i and read by all, initially O.

Process I trying protocol:

— For each level k:
« Set flag(i) := k, indicating i is competing at level k.
o Setturn(k) :=1.
« Wait for either turn(k) = i, or everyone else’s flag < k (check flags one at a time).

Exit protocol:
— Setflag(i) :=0

Correctness: Mutual exclusion

Definition: Process i is a winner at level k if either:

— level.> k, or

— level, = k and pc; € {leave-try, crit, reset}.

Definition: Process i is a competitor at level k if either:
— Process i is a winner at level k, or

— level, = k and pc; € {check-flag, check-turn}.

Invariant 1: If process i is a winner at level k, and process
| # 11s a competitor at level k, then turn(k) = 1.

Proof. By induction, similar to 2-process case.
— Complication: More steps to consider.
— Now have many flags, checked in many steps.

— Need auxiliary invariants saying something about what is true in
the middle of checking a set of flags.

Correctness: Mutual exclusion

e Invariant 2. For any k, 1 <k <n-1, there are at most n-k
winners at level k.

* Proof: By induction, on level number, for a particular
reachable state (not induction on number of steps).
— Basis: k=1:
» Suppose false, for contradiction.

 Then all n processes are winners at level 1.

* Then Invariant 1 implies that turn(1) is unequal to all indices,
contradiction.

— Inductive step: ...

Correctness: Mutual exclusion

Invariant 2. For any k, 1 <k <n-1, there are at most n - k
winners at level k.

Inductive step: Assume for k, 1 < k < n-2, show for k+1.
— Suppose false, for contradiction.

— Then more than n — (k + 1) processes, that is, at least n — k
processes, are winners at level k + 1: | Win, ;| =2 n - k.

— Every level k+1 winner is also a level k winner: Win,,, < Win,.
— By inductive hypothesis, | Win, | < n-k.
— So Win,,, = Win,, and | Win,,, | = | Win_| = n - k.
— Q: What is the value of turn(k+1) ?
e Can't be the index of any process in Win,,,, by Invariant 1.
* Must be the index of some competitor at level k+1 (Invariant, LTTR).

« But every competitor at level k+1 is a winner at level k, so is in Win,.
 Contradiction, since Win,,, = Win,.

Progress, Lockout-freedom

e Lockout-freedom proof idea:

Let k be the highest level at which some process i gets stuck.
Then turn(k) must remain = |i.
That means no one else ever reenters the competition at level k.

Eventually, winners from level k will finish, since k is the highest level at
which anyone gets stuck.

Then all other flags will be <k, so i advances.

« Alternatively, prove lockout-freedom by showing a time bound for each
process, from —»T until ->C. (See book)

Define T(0) = maximum time from when a process —T until »>C.

Define T(k), 1 <k < n-1 = max time from when a process wins at level k
until ->C.

T(n-1) <.

T(k) <2 T(k+1) + c + (3n+2) |, by detailed analysis.

Solve recurrences, get exponential bound, good enough for showing
lockout-freedom.

Peterson Tournament Algorithm

Assume n = 2",
Processes = leaves of binary tree of height h.

Competitions = internal nodes, labeled by binary
strings.

Each process engages in log n competitions,
following path up to root.

Each process | has:

— A unique competition x at each
level k.

— A unique role in X (0 = left, 1 = right).
— A set of potential opponents in Xx.

Peterson Tournament Algorithm

e Shared variables:
— For each process i, flag(i) in {0,...,h}, indicating level, initially O
— For each competition x, turn(x), a Boolean, initially arbitrary.

* Process I's trying protocol: For each level k:
— Set flag(i) := k.
— Set turn(x) := b, where:
e X isi's level k competition, A

e bisi's“role”, 0or1l
— Wait for either: . .

 turn(x) = opposite role, or
« all flags of potential opponents in x are < k.
i 00 01 10
e EXit protocol:
— Set flag(i) := 0.

Correctness

e Mutual exclusion:

— Similar to before.

— Key invariant: At most one process from any particular subtree
rooted at level k is currently a winner at level k.

e Time bound (from —T until -C): (n-1) ¢ + O(n?)
— Implies progress, lockout-freedom.
— Define: T(0) = max time from —T until ->C.
— T(k), 1 £k <log n = max time from winning at level k until ->C.
— T(log n) <.
— T(k) <2 T(k+1) + c + (2k + 2K+ 7) | (see book).
* Roughly: Might need to wait for a competitor to reach C, then finish C,
then for yourself to reach C.

— Solve recurrences.

Bounded Bypass?

Peterson’s Tournament algorithm has a low time bound from —»T until
—C:

(n-1) c + O(n21)
Implies lockout-freedom, progress.

Q: Does it satisfy bounded bypass?
No! There’s no upper bound on the number of times one process could
bypass another in the trying region. E.g.:

— Process 0 enters, starts competing at level 1, then pauses.

— Process 7 enters, quickly works its way to the top, enters C, leaves C.

— Process 7 enters again...repeats any number of times.

— All while process 0 is paused.

No contradiction between small time bound and unbounded bypass.

— Because of the way we’re modeling timing of asynchronous executions,
using upper bound assumptions.

— When processes go at very different speeds, we say that the slow processes
are going at normal speed, faster processes are going very fast.

Lamport’s Bakery Algorithm

Like taking tickets in a bakery.

Nice features:
— Uses only single-writer, multi-reader registers.

— Extends to even weaker registers, in which operations have
durations, and a read that overlaps a write receives an arbitrary
response.

— Guarantees lockout-freedom, in fact, almost-FIFO behavior.

But:
— Registers are unbounded size.

— Algorithm can be simulated using bounded registers, but not easily
(uses bounded concurrent timestamps).

Shared variables:
— For each process i:
» choosing(i), a Boolean, written by i, read by all, initially O
* number(i), a natural number, written by i, read by all, initially O

Bakery Algorithm

o First part, up to choosing(i) := 0 (the “Doorway”, D):
— Process i chooses a number number greater than all the numbers it
reads for the other processes; writes this in number(i).
— While doing this, keeps choosing(i) = 1.
— Two processes could choose the same number (unlike real bakery).
— Break ties with process ids.

e Second part:

— Wait to see that no others are choosing, and no one else has a
smaller number.

— That is, wait to see that your ticket is the smallest.

— Never go back to the beginning of this part---just proceed step by
step, waiting when necessary.

Code

Shared variables:

foreveryi e {1,...,n}.
choosing(i) € {0,1}, initially O, writable by i, readable by all j # i
number(i), a natural number, initially O, writable by I, readable by | # 1I.

try;
choosing(i) := 1
number(i) := 1 + max; ,; number(j)
choosing(i) := 0
forj=ido
waitfor choosing(j) =0
waitfor number(j) = 0 or (number(i), i) < (number()), j)
crit,

exit;
number(i) ;=0

rem,

Correctness: Mutual exclusion

o Key invariant: If processiisin C, and process | # |
Isin (T -D)u C,
_ %

Trying region after doorway, or critical region

then (number(i),i) < (number()),)).

* Proof:
— Could prove by induction.
— Instead, give argument based on events in executions.

— This argument extends to weaker registers, with
concurrent accesses.

Correctness: Mutual exclusion

Invariant: IfiisinC,andj=1isin (T — D) u C, then
(number(i),i) < (number(j),)).

Proof:

— Consider a point whereiisinCandj=iisin (T - D) v C.

— Then before i entered C, it must have read choosing(j) = 0, event .

m. I reads choosing(j) =0 1iNnC,jin(T-D)uC

— Case 1. j sets choosing(j) := 1 (starts choosing) after r.
 Then number(i) is set before j starts choosing.
* S0 j sees the “correct” number(i) and chooses something bigger.
« That suffices.

— Case 2: | sets choosing(j) := 0 (finishes choosing) before .

« Then when i reads number(j) in its second waitfor loop, it gets the
“correct” number()).

« Since i decides to enter C, it must see (number(i),i) < (number()),j).

Correctness: Mutual exclusion

e Invariant: IfiisinC,andj=1isin (T — D) u
C, then (number(1),1) < (number()),)).

* Proof of mutual exclusion:
— Apply invariant both ways.
— Contradictory requirements.

Liveness Conditions

 Progress:

By contradiction.

If not, eventually region changes stop, leaving everyone in T or R,
and at least one processin T.

Everyone in T eventually finishes choosing.

Then nothing blocks the smallest (number, index) process from
entering C.

e Lockout-freedom:

Consider any i that enters T
Eventually it finishes the doorway.
Thereafter, any newly-entering process picks a bigger number.

Progress implies that processes continue to enter C, as long as i is
still in T.

In fact, this must happen infinitely many times!
But those with bigger numbers can’t get past i, contradiction.

FIFO Condition

Not really FIFO (—>T vs. —»C), but almost:

— FIFO after the doorway: if j leaves D before i —»T, then] ->C before
| >C.

But the “doorway” is an artifact of this algorithm, so this

Isn’t a meaningful way to evaluate the algorithm!

Maybe say “there exists a doorway such that”...

But then we could take D to be the entire trying region,
making the property trivial.
To make the property nontrivial:

— Require D to be “wait-free”. a process is guaranteed to complete D
it if it keeps taking steps, regardless of what any other processes
do.

— D in the Bakery Algorithm is wait-free.
The algorithm is FIFO after a wait-free doorway.

Impact of Bakery Algorithm

e Originated important ideas:

— Wait-freedom

« Fundamental notion for theory of fault-tolerant
asynchronous distributed algorithms.

— Weakly coherent memories

e Beginning of formal study: definitions, and some
algorithmic strategies for coping with them.

Next time...

 More mutual exclusion algorithms:
— Lamport’'s Bakery Algorithm, cont’'d
— Burns’ algorithm

 Number of registers needed for mutual exclusion.
 Reading:. Sections 10.6-10.8

MIT OpenCourseWare
Ihttp://ocw.mit.edu

6.852J / 18.437J Distributed Algorithms
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

	6.852: Distributed Algorithms�Fall, 2009
	Today’s plan
	Asynchronous Shared-Memory Systems
	Asynchronous Shared-Memory systems
	Asynch Shared-Memory systems
	Topics
	Basic ASM Model, Version 1
	Basic ASM Model, Version 2
	Basic ASM Model
	The Mutual Exclusion Problem
	The Mutual Exclusion Problem
	The Mutual Exclusion Problem
	The Mutual Exclusion Problem
	One more assumption…
	Mutual Exclusion algorithm [Dijkstra 65]
	Dijkstra’s algorithm
	Dijkstra’s algorithm, pre/eff code
	Precondition/effect code
	Precondition/effect code,�Dijkstra process i
	More precondition/effect code,�Dijkstra process i
	Note on code style
	Correctness
	Progress
	Progress, cont’d
	Progress, cont’d
	Mutual exclusion, Proof 2
	Running Time
	Adding fairness guarantees [Peterson]
	Peterson 2-process algorithm
	Precondition/effect code
	Precondition/effect code,�Peterson 2P, process i
	More precondition/effect code,�Peterson 2P, process i
	Correctness: Mutual exclusion
	Correctness: Progress
	Correctness: Lockout-freedom
	Time complexity
	Peterson n-process algorithms
	Sequence of competitions
	Correctness: Mutual exclusion
	Correctness: Mutual exclusion
	Correctness: Mutual exclusion
	Progress, Lockout-freedom
	Peterson Tournament Algorithm
	Peterson Tournament Algorithm
	Correctness
	Bounded Bypass?
	Lamport’s Bakery Algorithm
	Bakery Algorithm
	Code
	Correctness: Mutual exclusion
	Correctness: Mutual exclusion
	Correctness: Mutual exclusion
	Liveness Conditions
	FIFO Condition
	Impact of Bakery Algorithm
	Next time…

