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Today’s plan
• Self-stabilization
• Self-stabilizing algorithms:

– Breadth-first spanning tree
– Mutual exclusion

• Composing self-stabilizing algorithms
• Making non-self-stabilizing algorithms self-stabilizing
• Reading:                                  

– [ Dolev, Chapter 2 ] 
• Next time:

– Partially synchronous distributed algorithms
– Clock synchronization
– Reading:  

• Chapters 23-25       
• [Attiya, Welch] Section 6.3, Chapter 13



Self-stabilization
• A useful fault-tolerance property for distributed algorithms.
• Algorithm can start in any state---arbitrarily corrupted.
• From there, if it runs normally (usually, without any further 

failures), it eventually gravitates back to correct behavior.
• [Dijkstra 73:  Self-Stabilizing Systems in Spite of Distributed 

Control]
– Dijkstra’s most important contribution to distributed computing theory.
– [Lamport talk, PODC 83] Reintroduced the paper, explained its 

importance, popularized it.
– Became (still is) a major research direction.
– Won PODC Influential Paper award, in 2002.
– Award renamed the Dijkstra Prize.

• [Dolev book, 00] summarizes main ideas of the field.



Today…

• Basic ideas, from [ Dolev, Chapter 2 ]
• Rest of the book describes:

– Many more self-stabilizing algorithms.
– General techniques for designing them.
– Converting non-SS algorithms to SS algorithms.
– Transformations between models, preserving SS.
– SS in presence of ongoing failures.
– Efficient SS.
– Etc.



Self-Stabilization:  Definitions



Self-stabilization
• [Dolev] considers:

– Message-passing models, with FIFO reliable channels.
– Shared-memory models, with read/write registers.
– Asynchronous and synchronous models.

• To simplify, avoids internal process actions---combines 
these with sends, receives, or register access steps.

• Sometimes considers message losses (“loss” steps).
• Many models, must continually specify which is used.
• Defines executions:

– Like ours, but needn’t start in initial state.
– Same as our “execution fragments”.

• Fair executions:  
– Described informally.
– Our task-based definition is fine.



Legal execution fragments

• Given a distributed algorithm A, define a set L of 
legal execution fragments of A.

• L can include both safety and liveness conditions.
• Example: Mutual exclusion problem

– L might be the set of all fragments α satisfying:
• Mutual exclusion:

– No two processes are in the critical region, in any state in α.
• Progress:

– If in some state of α, someone is in T and no one is in C, then 
sometime thereafter, someone → C.

– If in some state of α, someone is in E, then sometime thereafter, 
someone → R.



Self-stabilization:  Definition
• A global state s of algorithm A is safe with respect to legal 

set L, provided that every fair execution fragment of A that 
starts with s is in L.

• Algorithm A is self-stabilizing for legal set L if every fair 
execution fragment α of A contains a state s that is safe 
with respect to L.
– Implies that the suffix of α starting with s is in L.
– Also, any other fair execution fragment starting with s is in L.

• Weaker definition: Algorithm A is self-stabilizing for legal 
set L if every fair execution fragment α has a suffix in L.

α

s
In L

α In L



Stronger vs. weaker definition of 
self-stabilization

• Stronger definition: Algorithm A is self-stabilizing for legal 
set L if every fair execution fragment of A contains a state s 
that is safe with respect to L.

• Weaker definition: Algorithm A is self-stabilizing for legal 
set L if every fair execution fragment has a suffix in L.

• [Dolev] generally uses the stronger definition; so will we.
• But occasionally, he appears to be using the weaker 

definition;  we’ll warn when this arises.

• Q: Equivalent definitions?  Not in general.  LTTR.



Non-termination
• Self-stabilizing algorithms for nontrivial problems don’t 

terminate.

• E.g., consider message-passing algorithm A:
– Suppose A is self-stabilizing for legal set L, and A has a terminating 

global state s.
• All processes quiescent, all channels empty.

– Consider a fair execution fragment α starting with s.
– α contains no steps---just global state s.
– Since A is self-stabilizing with respect to L, α must contain a safe 

state.
– So s must be a safe state.
– Then the suffix of α starting with s is in L; that is, just s itself is in L.
– So L represents a trivial problem---doing nothing satisfies it.

• Similar argument for shared-memory algorithms.



Self-Stabilizing Algorithm 1:   
Self-Stabilizing Breadth-First 
Spanning Tree Construction



Breadth-first spanning tree

• Shared-memory model
• Connected, undirected graph G = (V,E).
• Processes P1,…,Pn, P1 a designated root.
• Permanent knowledge (built into all states of the 

processes):
– P1 always knows it’s the root.
– Everyone always knows who their neighbors are.
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r13

r42
r24

r31

• Neighboring processes in G share registers in both directions:  
– rij written by Pi, read by Pj.

• Output: A breadth-first spanning tree, recorded in the rij registers:
– rij.parent = 1 if j is i’s parent, 0 otherwise.
– rij.dist = distance from root to i in the BFS tree = smallest number of 

hops on any path from 1 to i in G.
– Values in registers should remain constant from some point onward.



In terms of legal sets…
• Define execution fragment α to be legal if:

– The registers have correct BFS output values, in all states in α.
– Registers never change.

• L = set of legal execution fragments.
• Safe state s:

– Global state from which all extensions have registers with correct, 
unchanging BFS output values.

• SS definition says:
– Any fair execution fragment α, starting from any state, contains 

some safe state s.
– That is, one from which all extensions have registers with correct, 

unchanging BFS output values.
– Implies that any fair execution fragment α has a suffix in which the 

register contents represent a fixed BFS tree.



BFS Algorithm strategy
• The system can start in any state, with

– Any values (of the allowed types) in registers,
– Any values in local process variables.

• Processes can’t assume that their own states and output 
registers are initially correct.

• Repeatedly recalculate states and outputs based on inputs 
from neighbors.

• In case of tie, use some default rule for selecting parent.

• Prove correctness, stabilization time, using induction on 
distance from root.



Root process P1

do forever
for every neighbor m do

write r1m := (0,0)

• Keep writing (0,0) everywhere.
• Access registers in fixed, round-robin order.

You’re not my parent My distance from root



Non-root process Pi

• Maintains local variables lrji to hold latest observed 
values of incoming registers rji.

• First loop:  
– Read all the rji, copy them into lrji.

• Use this local info to calculate new best distance 
dist, choose a parent that yields this distance.
– Use default rule, e.g., smallest index, so always break 

ties the same way.
– Needed to ensure stabilization to a fixed tree.

• Second loop:  
– Write dist to all outgoing registers.
– Notify new parent.



Non-root process Pi
• do forever

– for every neighbor m do
• lrmi := read(rmi)

– dist := min({ lrmi.dist }) + 1
– found := false
– for every neighbor m do

• if not found and dist = lrmi.dist + 1 then
– write rim := (1,dist)
– found := true

• else
– write rim := (0,dist)

• Note:
– Pi doesn’t take min of its own dist and neighbors’ dists.
– Unlike non-SS relaxation algorithms.
– Ignores its own dist, recalculates solely from neighbors’ dists.
– Because its own value could be erroneous.



Correctness
• Prove this stabilizes to a particular “default” BFS tree.
• Define the default tree to be the unique BFS tree where 

ties in choosing parent are resolved using the rule:
– Choose the smallest index yielding the shortest distance.

• Prove that, from any starting global state, the algorithm 
eventually reaches and retains the default BFS tree.

• More precisely, show it reaches a safe state, from which 
any execution fragment retains the default BFS tree.

• Show this happens within bounded time:  O(diam Δ l),
where
– diam is diameter of G (max distance from P1 to anyone is enough).
– Δ is maximum node degree
– l is upper bound on local step time
– The constant in the big-O is about 4.



Correctness
• Uses a lemma marking progress through distances 0, 1, 

2,..., diam, as for basic AsynchBFS.
• New complication: Erroneous, too-small distance 

estimates.
• Define a floating distance in a global state to be a value of 

some rij.dist that is strictly less than the actual distance 
from P1 to Pi.
– Can’t be correct.

• Lemma: For every k ≥ 0, within time (4k+1)Δl, we reach a 
configuration such that:
1. For any i with dist(P1,Pi) ≤ k, every rij.dist is correct.
2. There is no floating distance < k.

• Moreover, these properties persist after this configuration.



Proof of lemma
• Lemma: For every k ≥ 0, within time (4k+1)Δl, we reach a configuration 

such that:
1. For any i with dist(P1,Pi) ≤ k, every rij.dist is correct.
2. There is no floating distance < k.

• Proof: Induction on k.
– k = 0:  P1 writes (0,0) everywhere within time Δl.
– Assume for k, prove for k+1:

• Property 1:
– Consider Pi at distance k+1 from P1.
– In one more interval of length 4Δl, Pi has a chance to update its local dist 

and outgoing register values.
– By inductive hypothesis, these updates are based entirely on:

» Correct distance values from nodes with distance ≤ k from P1, and 
» Possibly some floating values, but these must be ≥ k.

– So Pi will calculate a correct distance value.
• Property 2:

– For anyone to calculate a floating distance < k+1, it must see a floating 
distance < k.

– Can’t, by inductive hypothesis.



Proof, cont’d
• We have proved:

– Lemma: For every k ≥ 0, within time (4k+1)Δl, we reach a 
configuration such that:

1. For any i with dist(P1,Pi) ≤ k, every rij.dist is correct.
2. There is no floating distance < k.

• So within time (4 diam +1) Δl, all the rij.dist values become 
correct.

• Persistence is easy to show.
• Once all the rij.dist values are correct, everyone will use the 

default rule and always obtain the default BFS tree.
• Ongoing failures:

– If arbitrary failures occur from time to time, not too frequently, the 
algorithm gravitates back to correct behavior in between failures.

– Recovery time depends on size (diameter) of the network.



Self-Stabilizing Algorithm 2:
Self-Stabilizing Mutual 

Exclusion



Self-stabilizing mutual exclusion
• [Dijkstra 73]
• Ring of processes, each with output variable xi.
• Large granularity:  In one atomic step, process 

Pi can read both neighbors’ variables, compute 
its next value, and write it to variable xi. 

P1:  
do forever:

if x1 = xn then x1 := x1 + 1 mod (n+1)

Pi, i ≠ 1:  
do forever:

if xi ≠ xi-1 then xi :=  xi-1

P1

Pn

P3

P2

x1

x2

x3

xn

• P1 tries to make its variable one more than its predecessor’s (mod 
n+1).

• Each other process tries to make its variable equal to its 
predecessor’s

That’s (n+1), not n.



Mutual exclusion
• In what sense does this “solve mutual exclusion”?
• Definition: “Pi is enabled” (or “Pi can change its state”) in a 

configuration, if the variables are set so Pi can take a step 
and change the value of its variable xi.

• Legal execution fragment α:
– In any state in α, exactly one process is enabled.
– For each i, α contains infinitely many states in which Pi is enabled.

• Use this to solve mutual exclusion:
– Say Pi interacts with requesting user Ui.
– Pi grants Ui the critical section when:

• Ui has requested it, and 
• Pi is enabled.

– When Ui returns the resource, Pi actually does its step, changing xi.
– Guarantees mutual exclusion, progress.
– Also lockout-freedom.



Lemma 1
• Legal α:

– In any state in α, exactly one process is enabled.
– For each i, α contains infinitely many states in which Pi is enabled.

• Lemma 1: A configuration in which all the x variables have 
the same value is safe.

• This means that, from such a configuration, any fair 
execution fragment is legal.

• Proof: Only P1 can change its state, then P2, then P3, …, 
and so on around the ring (forever).

• Remains to show:  Starting from any state, the algorithm 
eventually reaches a configuration in which all the x values 
are the same.

• This uses some more lemmas.



Lemma 2
• Lemma 2: In every configuration, at least one of 

the potential x values, {0,…,n}, does not appear in 
any xi.

• Proof: Obviously.  There are n+1 values and only 
n variables.



Lemma 3
• Lemma 3: In any fair execution fragment (from any 

configuration c), P1 changes x1 at least once every nl time.
• Proof:

– Assume not---P1 goes longer than nl without changing x1 from 
some value v.

– Then by time l, P2 sets x2 to v,
– By time 2l, P3 sets x3 to v,
– …
– By (n-1)l, Pn sets xn to v.
– All these values remain = v, as long as x1 doesn’t change.
– But then by time nl, P1 sees xn = x1 = v, and increments x1.



Lemma 4
• Lemma 4: In any fair execution fragment α, a configuration 

in which all the x values are the same (and so, a safe 
configuration) occurs within time (n2 + n)l.

• Proof:  
– Let c = initial configuration of α.
– Let v = some value that doesn’t appear in any xi, in c.
– Then v doesn’t appear anywhere, in α, unless/until P1 sets x1 := v.
– Within time nl, P1 changes x1, incrementing it by 1, mod (n+1).
– Within another nl, P1 increments x1 again.
– …
– Within n2l, P1 increments x1 to v.
– At that point, there are still no other v’s anywhere else.
– Then this v propagates all the way around the ring.
– P1 doesn’t change x1 until v reaches xn.
– Yields all xi = v, within time (n2 + n)l.



Putting the pieces together
• Legal execution fragment α:

– In any state in α, exactly one process is enabled.
– For each i, α contains infinitely many states in which Pi is enabled.

• L = set of legal fragments.

• Theorem: Dijkstra’s algorithm is self-stabilizing with 
respect to legal set L.

• In the sense of reaching a safe state.

• Remark:  
– This uses n+1 values for the xi variables.
– A curiosity:  

• This also works with n values, or even n-1.
• But not with n-2 [Dolev, p. 20].



Reducing the atomicity
• Dijkstra’s algorithm reads xi-1, 

computes, and writes xi, all atomically.
• Now adapt this for usual model, in 

which only individual read/write steps 
are atomic.

• Consider Dijkstra’s algorithm on a 2n-
process ring, with processes Qj, 
variables yj. j = 1, 2, …, 2n.
– Needs 2n+1 values for the variables.
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• Emulate this in the usual n-process ring, with processes 
Pi, variables xi:
– Pi emulates both Q2i-1 and Q2i.
– y2i-1 is a local variable of Pi.
– y2i  corresponds to xi.



Reducing the atomicity
• Consider Dijkstra’s algorithm on a 2n-

process ring, with processes Qj, 
variables yj. j = 1, 2, …, 2n.

• Emulate this in an n-process ring, with 
processes Pi, variables xi.
– Pi emulates both Q2i-1 and Q2i.
– y2i-1 is a local variable of Pi.
– y2i  corresponds to xi.

P1

Pn

P3
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• To emulate a step of Q2i-1, Pi reads from xi-1, writes to its local 
variable y2i-1.

• To emulate a step of Q2i, Pi reads from its local variable y2i-1, 
writes to xi.

• Since in each case one variable is internal, can emulate each 
step with just one ordinary read or write to shared memory.



Composing Self-Stabilizing 
Algorithms



Composing self-stabilizing 
algorithms

• Consider several algorithms, where
– A1 is self-stabilizing for legal set L1,
– A2 is SS for legal set L2, “assuming A1 stabilizes for L1”
– A3 is SS for legal set L3, “assuming A1 stabilizes for L1 and A2

stabilizes for L2”
– etc.

• Then we should be able to run all the algorithms together, 
and the combination should be self-stabilizing for L1 ∩ L2 
∩ L3 ∩ …

• Need composition theorems.
• Details depend on which model we consider.
• E.g., consider two shared memory algorithms, A1 and A2.



Composing SS algorithms
• Consider read/write shared memory algorithms, A1 and A2, 

where:
– All of A1’s shared registers are written only by A1 processes.

• No inputs arrive in A1’s registers.
– All of A2’s shared registers are written only by A1 and A2 processes.

• No other inputs arrive in A2’s registers.
– Registers shared between A1 and A2 are written only by A1

processes, not by A2 processes. 
– One-way information flow, from A1 and A2.
– A1 makes sense in isolation, but A2 depends on A1 for some inputs.

• Definition: A2 is self-stabilizing for L2 with respect to A1 and 
L1 provided that:  If α is any fair execution fragment of the 
combination of A1 and A2 whose projection on A1 is in L1, 
then α has a suffix in L2.

• Theorem: If A1 is SS for L1 and A2 is SS for L2 with respect 
to A1 and L1, then the combination of A1 and A2 is SS for L2.



Weaker definition of SS
• At this point, [Dolev] seems to be using the weaker 

definition for self-stabilization:
• Instead of:

– Algorithm A is self-stabilizing for legal set L if every fair 
execution fragment α of A contains a state s that is safe 
with respect to L.

• Now using:
– Algorithm A is self-stabilizing for legal set L if every fair 

execution fragment α has a suffix in L.
• So we’ll switch here.



Composing SS algorithms
• Def: A2 is self-stabilizing for L2 with respect to A1 and L1 provided that 

any fair execution fragment of the combination of A1 and A2 whose 
projection on A1 is in L1, has a suffix in L2.

• Theorem: If A1 is SS for L1 and A2 is SS for L2 with respect to A1 and 
L1, then the combination of A1 and A2 is SS for L2.

• Proof:  
– Let α be any fair exec fragment of the combination of A1 and A2.
– We must show that α has a suffix in L2 (weaker definition of SS).
– Projection of α on A1 is a fair execution fragment of A1.
– Since A1 is SS for L1, this projection has a suffix in L1.
– Therefore, α has a suffix α′ whose projection on A1 is in L1.
– Since A2 is self-stabilizing with respect to A1, α′ has a suffix α′′ in L2.
– So α has a suffix in L2, as needed.

• Total stabilization time is the sum of the stabilization times 
of A1 and A2.



Applying the composition theorem
• Theorem supports modular 

construction of SS algorithms.
• Example: SS mutual exclusion in an 

arbitrary rooted undirected graph
– A1:  

• Constructs rooted spanning tree, using 
the SS BFS algorithm.  

• The rij registers contain all the tree info 
(parent and distance).

– A2:  
• Takes A1’s rij registers as input.
• Solves mutual exclusion using a Dijkstra-

like algorithm, which runs on the stable 
tree in the rij registers.

– Q: But Dijkstra’s algorithm uses a ring---
how can we run it on a tree?  

– A: Thread the ring through the nodes of 
the tree, e.g.:

P1

P5P4

P3P2



Mutual exclusion in a rooted tree
• Use the read/write version of the Dijkstra

ring algorithm, with local and shared 
variables.

• Each process Pi emulates several processes 
of Dijkstra algorithm.

• Bookkeeping needed, see [Dolev, p. 24-27].

• Initially, both the tree and the mutex
algorithm behave badly.

• After a while (O(diam Δ l)  time), the tree 
stabilizes (since the BFS algorithm is SS), 
but the mutex algorithm continues to behave 
badly.

P1

P5P4

P3P2

• After another while (O(n2 l) time), the mutex algorithm also stabilizes 
(since it’s SS given that the tree is stable).

• Total time is the sum of the stabilization times of the two algorithms: 
O(diam Δ l) + O( n2 l) = O( n2 l).



Self-Stabilizing Emulations



Self-stabilizing emulations
[Dolev, Chapter 4]

• Design a SS algorithm A2 to solve a problem L2, 
using a model that is more powerful then the “real”
one.

• Design an algorithm A1 using the real model, that 
“stabilizes to emulate” the powerful model 

• Combine A1 and A2 to get a SS algorithm for L2
using the real model.



Self-stabilizing emulations
• Example 1 [Dolev, Section 4.1]:  Centralized scheduler

– Rooted undirected graph of processes.
– Powerful model:  Process can read several variables, change state, 

write several variables, all atomically.
– Basic model:  Just read/write steps.
– Emulation algorithm A1:   

• Uses Dijkstra-style mutex algorithm over BFS spanning tree algorithm
• Process performs steps of A2 only when it has the critical section 

(global lock).
• Performs all steps that are performed atomically in the powerful model, 

before exiting the critical section.
– Stabilizes to emulate the more powerful model.
– Initially, both emulation A1 and algorithm A2 behave badly.
– After a while, emulation begins behaving correctly, yielding mutual 

exclusion.
– After another while, A2 stabilizes for L2.



Self-stabilizing emulations
• Example 2 [Nolte]:  Virtual Node layer for mobile networks

– Mobile ad hoc network:  Collection of processes running on mobile 
nodes, communicating via local broadcast.

– Powerful model:  Also includes stationary Virtual Nodes at fixed
geographical locations (e.g., grid points).

– Basic model:  Just the mobile nodes.
– Emulation algorithm A1:   

• Mobile nodes in the vicinity of a Virtual Node’s location cooperate to 
emulate the VN.

• Uses Replicated State Machine strategy, coordinated by a leader.
– Application algorithm A2 running over the VN layer:

• Geocast, or point-to-point routing, or motion coordination,…
– Initially, both the emulation  A1and the application algorithm A2

behave badly.
– Then the emulation begins behaving correctly, yielding a VN Layer.
– Then the application stabilizes.



Making Non-Self-Stabilizing 
Algorithms Self-Stabilizing



Making non-self-stabilizing 
algorithms self-stabilizing

• [Dolev, Section 2.8]: Recomputation of floating outputs.
– Method of converting some non-SS distributed algorithms to SS algorithms.

• What kinds of algorithms?
– Algorithm A, computes a distributed function based on distributed inputs.
– Assumes processes’ inputs are in special, individual input variables, Ii,  

whose values never change (e.g., contain fixed information about local 
network topology).

– Outputs placed in special, individual output variables Oi.
• Main idea: Execute A repeatedly, from its initial state, with the fixed 

inputs, with two kinds of output variables:
– Temporary output variables oi.
– Floating output variables FOi.

• Use the temporary variables oi the same way A uses Oi.
• Write to the floating variables FOi only at the end of function computation.
• When restarting A, reset all variables except the floating outputs FOi.
• Eventually, the floating outputs should stop changing.



Example:  Consensus
• Start with a simple synchronous, non-fault-tolerant, non-

self-stabilizing network consensus algorithm A, and make 
it self-stabilizing.

• Undirected graph G = (V,E), known upper bound D on 
diameter.

• Non-SS consensus algorithm A:
– Everyone starts with Boolean input in Ii.
– After D rounds, everyone agrees, and decision value = 1 iff

someone’s input = 1.
– At intermediate rounds, process i keeps current consensus 

proposal in Oi.
– At each round, send Oi to neighbors, resets Oi to “or” of its current 

value and received values.
– Stop after D rounds.

• A works fine, in synchronous model, if it executes once, 
from initial states.



Example:  Consensus

• To make this self-stabilizing:
– Run algorithm A repeatedly, with the FOi as floating 

outputs.
– While running A, use oi instead of Oi.
– Copy oi to FOi at the end of each execution of A.

• This is not quite right…
– Assumes round numbers are synchronized.
– Algorithm begins in an arbitrary global state, so round 

numbers can be off.



Example:  Consensus
• Run algorithm A repeatedly, with the FOi as floating outputs.
• While running A, use oi instead of Oi.
• Copy oi to FOi at the end of each execution of A.

• Must also synchronize round numbers 1,2,…,D.
– Needs a little subprotocol.
– Each process, at each round, sets its round number to max of its

own and all those of its neighbors.
– When reach D, start over at 1.

• Eventually, rounds become synchronized throughout the 
network.

• Thereafter, the next full execution of A succeeds, produces 
correct outputs in the FOi variables.

• Thereafter, the FOi will never change.



Extensions

• Can make this into a fairly general transformation, 
for synchronous algorithms.

• Using synchronizers, can extend to some 
asynchronous algorithms.



Making non-SS algorithms SS:  
Monitoring and Resetting [Section 5.2]

• AKA Checking and Correction.
• Assumes message-passing model.
• Basic idea:

– Continually monitor the consistency of the underlying algorithm.
– Repair the algorithm when inconsistency is detected.

• For example:
– Use SS leader election service to choose a leader (if there isn’t already a 

distinguished process).
– Leader, repeatedly:

• Conducts global snapshots, 
• Checks consistency,
• Sends out corrections if necessary.

• Local monitoring and resetting [Varghese thesis, 92]
– For some algorithms, can check and restore local consistency predicates.
– E.g., BFS:  Can check that local distance is one more than parent’s 

distance, recalculate dist and parent if not.



Other stuff in the book
• Discussion of practical motivations.
• Proof methods for showing SS.
• Stabilizing to an abstract specification.
• Model conversions, for SS algorithms:  

– Shared memory → message-passing
– Synchronous → asynchronous

• SS in presence of ongoing failures.
– Stopping, Byzantine, message loss.

• Efficient “local” SS algorithms.
• More examples.



Next time…

• Partially synchronous distributed algorithms
• Reading:  

– Chapters 23-25       
– [Attiya, Welch], Section 6.3, Chapter 13                  



MIT OpenCourseWare
http://ocw.mit.edu 

6.852J / 18.437J Distributed Algorithms 
Fall 2009 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu/terms
http://ocw.mit.edu

	6.852: Distributed Algorithms�Fall, 2009
	Today’s plan
	Self-stabilization
	Today…
	Self-Stabilization:  Definitions
	Self-stabilization
	Legal execution fragments
	Self-stabilization:  Definition
	Stronger vs. weaker definition of self-stabilization
	Non-termination
	Self-Stabilizing Algorithm 1:   Self-Stabilizing Breadth-First Spanning Tree Construction
	Breadth-first spanning tree
	In terms of legal sets… 
	BFS Algorithm strategy
	Root process P1
	Non-root process Pi
	Non-root process Pi 
	Correctness
	Correctness
	Proof of lemma
	Proof, cont’d
	Self-Stabilizing Algorithm 2:�Self-Stabilizing Mutual Exclusion
	Self-stabilizing mutual exclusion
	Mutual exclusion
	Lemma 1
	Lemma 2
	Lemma 3
	Lemma 4
	Putting the pieces together
	Reducing the atomicity
	Reducing the atomicity
	Composing Self-Stabilizing Algorithms
	Composing self-stabilizing algorithms
	Composing SS algorithms
	Weaker definition of SS
	Composing SS algorithms
	Applying the composition theorem
	Mutual exclusion in a rooted tree
	Self-Stabilizing Emulations
	Self-stabilizing emulations�[Dolev, Chapter 4]
	Self-stabilizing emulations
	Self-stabilizing emulations
	Making Non-Self-Stabilizing Algorithms Self-Stabilizing
	Making non-self-stabilizing algorithms self-stabilizing
	Example:  Consensus
	Example:  Consensus
	Example:  Consensus
	Extensions
	Making non-SS algorithms SS:  Monitoring and Resetting [Section 5.2]
	Other stuff in the book
	Next time…

