6.852: Distributed Algorithms Fall, 2009

Class 24

Today's plan

- Self-stabilization
- Self-stabilizing algorithms:
 - Breadth-first spanning tree
 - Mutual exclusion
- Composing self-stabilizing algorithms
- Making non-self-stabilizing algorithms self-stabilizing
- Reading:
 - [Dolev, Chapter 2]
- Next time:
 - Partially synchronous distributed algorithms
 - Clock synchronization
 - Reading:
 - Chapters 23-25
 - [Attiya, Welch] Section 6.3, Chapter 13

Self-stabilization

- A useful fault-tolerance property for distributed algorithms.
- Algorithm can start in any state---arbitrarily corrupted.
- From there, if it runs normally (usually, without any further failures), it eventually gravitates back to correct behavior.
- [Dijkstra 73: Self-Stabilizing Systems in Spite of Distributed Control]
 - Dijkstra's most important contribution to distributed computing theory.
 - [Lamport talk, PODC 83] Reintroduced the paper, explained its importance, popularized it.
 - Became (still is) a major research direction.
 - Won PODC Influential Paper award, in 2002.
 - Award renamed the Dijkstra Prize.
- [Dolev book, 00] summarizes main ideas of the field.

Today...

- Basic ideas, from [Dolev, Chapter 2]
- Rest of the book describes:
 - Many more self-stabilizing algorithms.
 - General techniques for designing them.
 - Converting non-SS algorithms to SS algorithms.
 - Transformations between models, preserving SS.
 - SS in presence of ongoing failures.
 - Efficient SS.
 - Etc.

Self-Stabilization: Definitions

Self-stabilization

- [Dolev] considers:
 - Message-passing models, with FIFO reliable channels.
 - Shared-memory models, with read/write registers.
 - Asynchronous and synchronous models.
- To simplify, avoids internal process actions---combines these with sends, receives, or register access steps.
- Sometimes considers message losses ("loss" steps).
- Many models, must continually specify which is used.
- Defines executions:
 - Like ours, but needn't start in initial state.
 - Same as our "execution fragments".
- Fair executions:
 - Described informally.
 - Our task-based definition is fine.

Legal execution fragments

- Given a distributed algorithm A, define a set L of legal execution fragments of A.
- L can include both safety and liveness conditions.
- Example: Mutual exclusion problem
 - L might be the set of all fragments α satisfying:
 - Mutual exclusion:
 - No two processes are in the critical region, in any state in $\boldsymbol{\alpha}.$
 - Progress:
 - If in some state of α , someone is in T and no one is in C, then sometime thereafter, someone \rightarrow C.
 - If in some state of α , someone is in E, then sometime thereafter, someone \rightarrow R.

Self-stabilization: Definition

- A global state s of algorithm A is safe with respect to legal set L, provided that every fair execution fragment of A that starts with s is in L.
- Algorithm A is self-stabilizing for legal set L if every fair execution fragment α of A contains a state s that is safe with respect to L.
 - Implies that the suffix of α starting with s is in L.

α

- Also, any other fair execution fragment starting with s is in L.

• Weaker definition: Algorithm A is self-stabilizing for legal set L if every fair execution fragment α has a suffix in L.

In L

Stronger vs. weaker definition of self-stabilization

- Stronger definition: Algorithm A is self-stabilizing for legal set L if every fair execution fragment of A contains a state s that is safe with respect to L.
- Weaker definition: Algorithm A is self-stabilizing for legal set L if every fair execution fragment has a suffix in L.
- [Dolev] generally uses the stronger definition; so will we.
- But occasionally, he appears to be using the weaker definition; we'll warn when this arises.
- Q: Equivalent definitions? Not in general. LTTR.

Non-termination

- Self-stabilizing algorithms for nontrivial problems don't terminate.
- E.g., consider message-passing algorithm A:
 - Suppose A is self-stabilizing for legal set L, and A has a terminating global state s.
 - All processes quiescent, all channels empty.
 - Consider a fair execution fragment α starting with s.
 - $-\alpha$ contains no steps---just global state s.
 - Since A is self-stabilizing with respect to L, α must contain a safe state.
 - So s must be a safe state.
 - Then the suffix of α starting with s is in L; that is, just s itself is in L.
 - So L represents a trivial problem---doing nothing satisfies it.
- Similar argument for shared-memory algorithms.

Self-Stabilizing Algorithm 1: Self-Stabilizing Breadth-First Spanning Tree Construction

Breadth-first spanning tree

- Shared-memory model
- Connected, undirected graph G = (V,E).
- Processes P_1, \dots, P_n , P_1 a designated root.
- Permanent knowledge (built into all states of the processes):
 - P₁ always knows it's the root.
 - Everyone always knows who their neighbors are.
- Neighboring processes in G share registers in both directions:
 - r_{ij} written by P_i, read by P_j.
- Output: A breadth-first spanning tree, recorded in the r_{ii} registers:
 - r_{ii} .parent = 1 if j is i's parent, 0 otherwise.
 - $-r_{ij}$.dist = distance from root to i in the BFS tree = smallest number of hops on any path from 1 to i in G.
 - Values in registers should remain constant from some point onward.

In terms of legal sets...

- Define execution fragment α to be legal if:
 - The registers have correct BFS output values, in all states in α .
 - Registers never change.
- L = set of legal execution fragments.
- Safe state s:
 - Global state from which all extensions have registers with correct, unchanging BFS output values.
- SS definition says:
 - Any fair execution fragment α , starting from any state, contains some safe state s.
 - That is, one from which all extensions have registers with correct, unchanging BFS output values.
 - Implies that any fair execution fragment α has a suffix in which the register contents represent a fixed BFS tree.

BFS Algorithm strategy

- The system can start in any state, with
 - Any values (of the allowed types) in registers,
 - Any values in local process variables.
- Processes can't assume that their own states and output registers are initially correct.
- Repeatedly recalculate states and outputs based on inputs from neighbors.
- In case of tie, use some default rule for selecting parent.
- Prove correctness, stabilization time, using induction on distance from root.

Root process P₁

- Keep writing (0,0) everywhere.
- Access registers in fixed, round-robin order.

Non-root process P_i

- Maintains local variables Ir_{ji} to hold latest observed values of incoming registers r_{ji}.
- First loop:
 - Read all the r_{ii} , copy them into Ir_{ii} .
- Use this local info to calculate new best distance dist, choose a parent that yields this distance.
 - Use default rule, e.g., smallest index, so always break ties the same way.
 - Needed to ensure stabilization to a fixed tree.
- Second loop:
 - Write dist to all outgoing registers.
 - Notify new parent.

Non-root process P_i

- do forever
 - for every neighbor m do
 - $Ir_{mi} := read(r_{mi})$
 - dist := min({ Ir_{mi}.dist }) + 1
 - found := false
 - for every neighbor m do
 - if not found and dist = Ir_{mi}.dist + 1 then
 - write r_{im} := (1,dist)
 - found := true
 - else
 - write $r_{im} := (0, dist)$
- Note:
 - P_i doesn't take min of its own dist and neighbors' dists.
 - Unlike non-SS relaxation algorithms.
 - Ignores its own dist, recalculates solely from neighbors' dists.
 - Because its own value could be erroneous.

Correctness

- Prove this stabilizes to a particular "default" BFS tree.
- Define the default tree to be the unique BFS tree where ties in choosing parent are resolved using the rule:
 - Choose the smallest index yielding the shortest distance.
- Prove that, from any starting global state, the algorithm eventually reaches and retains the default BFS tree.
- More precisely, show it reaches a safe state, from which any execution fragment retains the default BFS tree.
- Show this happens within bounded time: O(diam ∆ I), where
 - diam is diameter of G (max distance from P_1 to anyone is enough).
 - Δ is maximum node degree
 - I is upper bound on local step time
 - The constant in the big-O is about 4.

Correctness

- Uses a lemma marking progress through distances 0, 1, 2,..., diam, as for basic AsynchBFS.
- New complication: Erroneous, too-small distance estimates.
- Define a floating distance in a global state to be a value of some r_{ij} dist that is strictly less than the actual distance from P₁ to P_i.
 - Can't be correct.
- Lemma: For every k ≥ 0, within time (4k+1)∆I, we reach a configuration such that:
 - 1. For any i with dist(P_1, P_i) $\leq k$, every r_{ij} .dist is correct.
 - 2. There is no floating distance < k.
- Moreover, these properties persist after this configuration.

Proof of lemma

- Lemma: For every k ≥ 0, within time (4k+1)∆I, we reach a configuration such that:
 - 1. For any i with dist(P_1, P_i) $\leq k$, every r_{ii} dist is correct.
 - 2. There is no floating distance < k.
- **Proof:** Induction on k.
 - k = 0: P₁ writes (0,0) everywhere within time ΔI .
 - Assume for k, prove for k+1:
 - Property 1:
 - Consider P_i at distance k+1 from P_1 .
 - In one more interval of length 4∆I, P_i has a chance to update its local dist and outgoing register values.
 - By inductive hypothesis, these updates are based entirely on:
 - » Correct distance values from nodes with distance \leq k from P₁, and
 - » Possibly some floating values, but these must be $\geq k$.
 - So P_i will calculate a correct distance value.
 - Property 2:
 - For anyone to calculate a floating distance < k+1, it must see a floating distance < k.
 - Can't, by inductive hypothesis.

Proof, cont'd

- We have proved:
 - Lemma: For every $k \ge 0$, within time $(4k+1)\Delta I$, we reach a configuration such that:
 - 1. For any i with dist(P_1, P_i) $\leq k$, every r_{ij} .dist is correct.
 - 2. There is no floating distance < k.
- So within time (4 diam +1) ∆I, all the r_{ij}.dist values become correct.
- Persistence is easy to show.
- Once all the r_{ij}.dist values are correct, everyone will use the default rule and always obtain the default BFS tree.
- Ongoing failures:
 - If arbitrary failures occur from time to time, not too frequently, the algorithm gravitates back to correct behavior in between failures.
 - Recovery time depends on size (diameter) of the network.

Self-Stabilizing Algorithm 2: Self-Stabilizing Mutual Exclusion

Self-stabilizing mutual exclusion

- [Dijkstra 73]
- Ring of processes, each with output variable x_i.
- Large granularity: In one atomic step, process P_i can read both neighbors' variables, compute its next value, and write it to variable x_i.

- P₁ tries to make its variable one more than its predecessor's (mod n+1).
- Each other process tries to make its variable equal to its predecessor's

Mutual exclusion

- In what sense does this "solve mutual exclusion"?
- Definition: "P_i is enabled" (or "P_i can change its state") in a configuration, if the variables are set so P_i can take a step and change the value of its variable x_i.
- Legal execution fragment α :
 - In any state in α , exactly one process is enabled.
 - For each i, α contains infinitely many states in which P_i is enabled.
- Use this to solve mutual exclusion:
 - Say P_i interacts with requesting user U_i .
 - P_i grants U_i the critical section when:
 - U_i has requested it, and
 - P_i is enabled.
 - When U_i returns the resource, P_i actually does its step, changing x_i .
 - Guarantees mutual exclusion, progress.
 - Also lockout-freedom.

- Legal α:
 - In any state in α , exactly one process is enabled.
 - For each i, α contains infinitely many states in which P_i is enabled.
- Lemma 1: A configuration in which all the x variables have the same value is safe.
- This means that, from such a configuration, any fair execution fragment is legal.
- Proof: Only P₁ can change its state, then P₂, then P₃, ..., and so on around the ring (forever).
- Remains to show: Starting from any state, the algorithm eventually reaches a configuration in which all the x values are the same.
- This uses some more lemmas.

- Lemma 2: In every configuration, at least one of the potential x values, {0,...,n}, does not appear in any x_i.
- Proof: Obviously. There are n+1 values and only n variables.

- Lemma 3: In any fair execution fragment (from any configuration c), P₁ changes x₁ at least once every nl time.
- Proof:
 - Assume not---P₁ goes longer than nl without changing x₁ from some value v.
 - Then by time I, P_2 sets x_2 to v,
 - By time 2I, P_3 sets x_3 to v,
 - ...
 - By (n-1)I, P_n sets x_n to v.
 - All these values remain = v, as long as x_1 doesn't change.
 - But then by time nI, P_1 sees $x_n = x_1 = v$, and increments x_1 .

- Lemma 4: In any fair execution fragment α, a configuration in which all the x values are the same (and so, a safe configuration) occurs within time (n² + n)l.
- Proof:
 - Let c = initial configuration of α .
 - Let v = some value that doesn't appear in any x_i , in c.
 - Then v doesn't appear anywhere, in α , unless/until P₁ sets x₁ := v.
 - Within time nI, P_1 changes x_1 , incrementing it by 1, mod (n+1).
 - Within another nI, P_1 increments x_1 again.
 - ...
 - Within $n^2 I$, P_1 increments x_1 to v.
 - At that point, there are still no other v's anywhere else.
 - Then this v propagates all the way around the ring.
 - P_1 doesn't change x_1 until v reaches x_n .
 - Yields all $x_i = v$, within time $(n^2 + n)I$.

Putting the pieces together

- Legal execution fragment α :
 - In any state in α , exactly one process is enabled.
 - For each i, α contains infinitely many states in which P_i is enabled.
- L = set of legal fragments.
- Theorem: Dijkstra's algorithm is self-stabilizing with respect to legal set L.
- In the sense of reaching a safe state.
- Remark:
 - This uses n+1 values for the x_i variables.
 - A curiosity:
 - This also works with n values, or even n-1.
 - But not with n-2 [Dolev, p. 20].

Reducing the atomicity

- Dijkstra's algorithm reads x_{i-1}, computes, and writes x_i, all atomically.
- Now adapt this for usual model, in which only individual read/write steps are atomic.
- Consider Dijkstra's algorithm on a 2nprocess ring, with processes Q_j, variables y_j. j = 1, 2, ..., 2n.
 - Needs 2n+1 values for the variables.
- Emulate this in the usual n-process ring, with processes P_i, variables x_i:
 - P_i emulates both Q_{2i-1} and Q_{2i} .
 - y_{2i-1} is a local variable of P_i.
 - y_{2i} corresponds to x_i .

 X_1 X_n P_1 P_2 P_3 X_3

Reducing the atomicity

- Consider Dijkstra's algorithm on a 2nprocess ring, with processes Q_j, variables y_i. j = 1, 2, ..., 2n.
- Emulate this in an n-process ring, with processes P_i, variables x_i.
 - P_i emulates both Q_{2i-1} and Q_{2i} .
 - y_{2i-1} is a local variable of P_i.
 - y_{2i} corresponds to x_i .

- To emulate a step of Q_{2i-1} , P_i reads from x_{i-1} , writes to its local variable y_{2i-1} .
- To emulate a step of Q_{2i} , P_i reads from its local variable y_{2i-1} , writes to x_i .
- Since in each case one variable is internal, can emulate each step with just one ordinary read or write to shared memory.

Composing Self-Stabilizing Algorithms

Composing self-stabilizing algorithms

- Consider several algorithms, where
 - A_1 is self-stabilizing for legal set L₁,
 - A_2 is SS for legal set L_2 , "assuming A_1 stabilizes for L_1 "
 - A_3 is SS for legal set L_3 , "assuming A_1 stabilizes for L_1 and A_2 stabilizes for L_2 "
 - etc.
- Then we should be able to run all the algorithms together, and the combination should be self-stabilizing for L1 \cap L2 \cap L3 \cap ...
- Need composition theorems.
- Details depend on which model we consider.
- E.g., consider two shared memory algorithms, A_1 and A_2 .

Composing SS algorithms

- Consider read/write shared memory algorithms, A₁ and A₂, where:
 - All of A_1 's shared registers are written only by A_1 processes.
 - No inputs arrive in A₁'s registers.
 - All of A_2 's shared registers are written only by A_1 and A_2 processes.
 - No other inputs arrive in A₂'s registers.
 - Registers shared between \overline{A}_1 and A_2 are written only by A_1 processes, not by A_2 processes.
 - One-way information flow, from A_1 and A_2 .
 - A_1 makes sense in isolation, but A_2 depends on A_1 for some inputs.
- Definition: A_2 is self-stabilizing for L_2 with respect to A_1 and L_1 provided that: If α is any fair execution fragment of the combination of A_1 and A_2 whose projection on A_1 is in L_1 , then α has a suffix in L_2 .
- Theorem: If A_1 is SS for L_1 and A_2 is SS for L_2 with respect to A_1 and L_1 , then the combination of A_1 and A_2 is SS for L_2 .

Weaker definition of SS

- At this point, [Dolev] seems to be using the weaker definition for self-stabilization:
- Instead of:
 - Algorithm A is self-stabilizing for legal set L if every fair execution fragment α of A contains a state s that is safe with respect to L.
- Now using:
 - Algorithm A is self-stabilizing for legal set L if every fair execution fragment α has a suffix in L.
- So we'll switch here.

Composing SS algorithms

- Def: A₂ is self-stabilizing for L₂ with respect to A₁ and L₁ provided that any fair execution fragment of the combination of A₁ and A₂ whose projection on A₁ is in L₁, has a suffix in L₂.
- **Theorem:** If A_1 is SS for L_1 and A_2 is SS for L_2 with respect to A_1 and L_1 , then the combination of A_1 and A_2 is SS for L_2 .

• Proof:

- Let α be any fair exec fragment of the combination of A₁ and A₂.
- We must show that α has a suffix in L₂ (weaker definition of SS).
- Projection of α on A₁ is a fair execution fragment of A₁.
- Since A_1 is SS for L_1 , this projection has a suffix in L_1 .
- Therefore, α has a suffix α' whose projection on A₁ is in L₁.
- Since A_2 is self-stabilizing with respect to A_1 , α' has a suffix α'' in L_2 .
- So α has a suffix in L₂, as needed.
- Total stabilization time is the sum of the stabilization times of A₁ and A₂.

Applying the composition theorem

- Theorem supports modular construction of SS algorithms.
- Example: SS mutual exclusion in an arbitrary rooted undirected graph
 - A₁:
 - Constructs rooted spanning tree, using the SS BFS algorithm.
 - The r_{ij} registers contain all the tree info (parent and distance).
 - A₂:
 - Takes A₁'s r_{ij} registers as input.
 - Solves mutual exclusion using a Dijkstralike algorithm, which runs on the stable tree in the r_{ii} registers.
 - Q: But Dijkstra's algorithm uses a ring--how can we run it on a tree?
 - A: Thread the ring through the nodes of the tree, e.g.:

Mutual exclusion in a rooted tree

- Use the read/write version of the Dijkstra ring algorithm, with local and shared variables.
- Each process P_j emulates several processes of Dijkstra algorithm.
- Bookkeeping needed, see [Dolev, p. 24-27].
- Initially, both the tree and the mutex algorithm behave badly.
- After a while (O(diam △ I) time), the tree stabilizes (since the BFS algorithm is SS), but the mutex algorithm continues to behave badly.
- After another while (O(n² I) time), the mutex algorithm also stabilizes (since it's SS given that the tree is stable).
- Total time is the sum of the stabilization times of the two algorithms: O(diam Δ I) + O(n² I) = O(n² I).

Self-Stabilizing Emulations

Self-stabilizing emulations [Dolev, Chapter 4]

- Design a SS algorithm A₂ to solve a problem L₂, using a model that is more powerful then the "real" one.
- Design an algorithm A₁ using the real model, that "stabilizes to emulate" the powerful model
- Combine A_1 and A_2 to get a SS algorithm for L_2 using the real model.

Self-stabilizing emulations

- Example 1 [Dolev, Section 4.1]: Centralized scheduler
 - Rooted undirected graph of processes.
 - Powerful model: Process can read several variables, change state, write several variables, all atomically.
 - Basic model: Just read/write steps.
 - Emulation algorithm A_1 :
 - Uses Dijkstra-style mutex algorithm over BFS spanning tree algorithm
 - Process performs steps of A₂ only when it has the critical section (global lock).
 - Performs all steps that are performed atomically in the powerful model, before exiting the critical section.
 - Stabilizes to emulate the more powerful model.
 - Initially, both emulation A_1 and algorithm A_2 behave badly.
 - After a while, emulation begins behaving correctly, yielding mutual exclusion.
 - After another while, A_2 stabilizes for L_2 .

Self-stabilizing emulations

- Example 2 [Nolte]: Virtual Node layer for mobile networks
 - Mobile ad hoc network: Collection of processes running on mobile nodes, communicating via local broadcast.
 - Powerful model: Also includes stationary Virtual Nodes at fixed geographical locations (e.g., grid points).
 - Basic model: Just the mobile nodes.
 - Emulation algorithm A_1 :
 - Mobile nodes in the vicinity of a Virtual Node's location cooperate to emulate the VN.
 - Uses Replicated State Machine strategy, coordinated by a leader.
 - Application algorithm A_2 running over the VN layer:
 - Geocast, or point-to-point routing, or motion coordination,...
 - Initially, both the emulation A_1 and the application algorithm A_2 behave badly.
 - Then the emulation begins behaving correctly, yielding a VN Layer.
 - Then the application stabilizes.

Making Non-Self-Stabilizing Algorithms Self-Stabilizing

Making non-self-stabilizing algorithms self-stabilizing

- [Dolev, Section 2.8]: Recomputation of floating outputs.
 - Method of converting some non-SS distributed algorithms to SS algorithms.
- What kinds of algorithms?
 - Algorithm A, computes a distributed function based on distributed inputs.
 - Assumes processes' inputs are in special, individual input variables, I_i, whose values never change (e.g., contain fixed information about local network topology).
 - Outputs placed in special, individual output variables O_i.
- Main idea: Execute A repeatedly, from its initial state, with the fixed inputs, with two kinds of output variables:
 - Temporary output variables o_i.
 - Floating output variables FO_i.
- Use the temporary variables o_i the same way A uses O_i.
- Write to the floating variables FO_i only at the end of function computation.
- When restarting A, reset all variables except the floating outputs FO_i.
- Eventually, the floating outputs should stop changing.

Example: Consensus

- Start with a simple synchronous, non-fault-tolerant, nonself-stabilizing network consensus algorithm A, and make it self-stabilizing.
- Undirected graph G = (V,E), known upper bound D on diameter.
- Non-SS consensus algorithm A:
 - Everyone starts with Boolean input in I_i .
 - After D rounds, everyone agrees, and decision value = 1 iff someone's input = 1.
 - At intermediate rounds, process i keeps current consensus proposal in O_i.
 - At each round, send O_i to neighbors, resets O_i to "or" of its current value and received values.
 - Stop after D rounds.
- A works fine, in synchronous model, if it executes once, from initial states.

Example: Consensus

- To make this self-stabilizing:
 - Run algorithm A repeatedly, with the FO_i as floating outputs.
 - While running A, use o_i instead of O_i .
 - Copy o_i to FO_i at the end of each execution of A.
- This is not quite right...
 - Assumes round numbers are synchronized.
 - Algorithm begins in an arbitrary global state, so round numbers can be off.

Example: Consensus

- Run algorithm A repeatedly, with the FO_i as floating outputs.
- While running A, use o_i instead of O_i.
- Copy o_i to FO_i at the end of each execution of A.
- Must also synchronize round numbers 1,2,...,D.
 - Needs a little subprotocol.
 - Each process, at each round, sets its round number to max of its own and all those of its neighbors.
 - When reach D, start over at 1.
- Eventually, rounds become synchronized throughout the network.
- Thereafter, the next full execution of A succeeds, produces correct outputs in the FO_i variables.
- Thereafter, the FO_i will never change.

Extensions

- Can make this into a fairly general transformation, for synchronous algorithms.
- Using synchronizers, can extend to some asynchronous algorithms.

Making non-SS algorithms SS: Monitoring and Resetting [Section 5.2]

- AKA Checking and Correction.
- Assumes message-passing model.
- Basic idea:
 - Continually monitor the consistency of the underlying algorithm.
 - Repair the algorithm when inconsistency is detected.
- For example:
 - Use SS leader election service to choose a leader (if there isn't already a distinguished process).
 - Leader, repeatedly:
 - Conducts global snapshots,
 - Checks consistency,
 - Sends out corrections if necessary.
- Local monitoring and resetting [Varghese thesis, 92]
 - For some algorithms, can check and restore local consistency predicates.
 - E.g., BFS: Can check that local distance is one more than parent's distance, recalculate dist and parent if not.

Other stuff in the book

- Discussion of practical motivations.
- Proof methods for showing SS.
- Stabilizing to an abstract specification.
- Model conversions, for SS algorithms:
 - Shared memory \rightarrow message-passing
 - Synchronous \rightarrow asynchronous
- SS in presence of ongoing failures.
 Stopping, Byzantine, message loss.
- Efficient "local" SS algorithms.
- More examples.

Next time...

- Partially synchronous distributed algorithms
- Reading:
 - Chapters 23-25
 - [Attiya, Welch], Section 6.3, Chapter 13

6.852J / 18.437J Distributed Algorithms Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.