
6.852: Distributed Algorithms
Fall, 2009

Class 25

Today’s plan

• Partially synchronous (timed) distributed systems
• Modeling timed systems
• Proof methods
• Mutual exclusion in timed systems
• Consensus in timed systems
• Clock synchronization
• Reading:

– Chapters 23, 24, 25
– [Attiya, Welch], Section 6.3, Chapter 13

Partially synchronous
system models

• We’ve studied distributed algorithms in synchronous and
asynchronous distributed models.

• Now, intermediate, partially synchronous models.
– Involve some knowledge of time, but not synchronized rounds:

• Bounds on relative speed of processes,
• Upper and lower bounds for message delivery,
• Local clocks, proceeding at approximately-predictable rates.

• Useful for studying:
– Distributed algorithms whose behavior depends on time.
– Practical communication protocols.
– (Newer) Mobile networks, embedded systems, robot control,…

• Needs new models, new proof methods.
• Leads to new distributed algorithms, impossibility results.

Modeling Timed Systems

Modeling timed systems
MMT automata [Merritt, Modugno,
Tuttle]

– Simple, special-cased timed model
– Immediate extension of I/O automata

GTA, more general timed automata
Timed I/O Automata

– Still more general
– [Kaynar, Lynch, Segala, Vaandrager]

monograph
– Mathematical foundation for Tempo.

Textbook cover image removed due to
copyright restrictions.

Kaynar, Dilsun, Nancy Lynch, Roberto
Segala, and Frits Vaandrager. The Theory
of Timed I/O Automata (Synthesis Lectures
on Distributed Computing Theory). 2nd ed.
San Rafael, CA: Morgan & Claypool, 2010.
ISBN: 978-1608450022.

MMT Automata
• Definition: An MMT automaton is an I/O automaton with

finitely many tasks, plus a boundmap (lower, upper), where:
– lower maps each task T to a lower bound lower(T), 0 ≤ lower(T) < ∞

(can be 0, cannot be infinite),
– upper maps each task T to an upper bound upper(T), 0 < upper(T) ≤

∞ (cannot be 0, can be infinite),
– For every T, lower(T) ≤ upper(T).

• Timed executions:
– Like ordinary executions, but with times attached to events.
– α = s0, (π1, t1), s1, (π2, t2), s2,…
– Subject to the upper and lower bounds.

• Task T can’t be continuously enabled for more than time upper(T)
without an action of T occurring.

• If an action of T occurs, then T must have been continuously enabled for
time at least lower(T).

– Restricts the set of executions (unlike having just upper bounds):
– No fairness anymore, just time bounds.

MMT Automata, cont’d
• Timed traces:

– Suppress states and internal actions.
– Keep info about external actions and their times of occurrence.

• Admissible timed executions:
– Infinite timed executions with times approaching ∞, or
– Finite timed executions such that upper(T) = ∞ for every task

enabled in the final state.
• Rules out:

– Infinitely many actions in finite time (“Zeno behavior”).
– Stopping when some tasks still have work to do and upper bounds

by which they should do it.

• Simple model, not very general, but good enough to
describe some interesting examples:

Example: Timed FIFO channel

• Consider our usual FIFO channel automaton.
– State: queue
– Actions:

• Inputs: send(m), m in M
• Outputs: receive(m), m in M

– Tasks: receive = { receive(m) : m in M }
• Boundmap:

– Associate lower bound 0, upper bound d, with the
receive task.

• Guarantees delivery of oldest message in channel
(head of queue), within time d.

Composition of MMT automata
• Compose MMT automata by

– Composing the underlying I/O automata,
– Combining all the boundmaps.
– Composed automaton satisfies all timing constraints, of all

components.
• Satisfies pasting, projection, as before:

– Project timed execution (or timed trace) of composition to get timed
executions (timed traces) of components.

– Paste timed executions (or timed traces) that match up at
boundaries to obtained timed executions (timed traces) of the
composition.

• Also, a hiding operation, which makes some output actions
internal.

Example: Timeout system

• P1: Sender process
– Sends “alive” messages at least every time l, unless it has failed.
– Express using one send task, bounds [0,l].

• P2: Timeout process
– Decrements a count from k; if reaches 0 without a message arriving, output

timeout.
– Express with 2 tasks, decrement with bounds [l1, l2], and timeout with

bounds [0,l].
– Need non-zero lower bound for decrement, so that steps can be used to

measure elapsed time.
• Compose P1, P2, and timed channel with bound d.
• Guarantees (assuming that k l1 > l + d):

– If P2 times out P1 then P1 has in fact failed.
• Even if P2 takes steps as fast as possible, enough time has passed when it

does a timeout.
– If P1 fails then P2 times out P1, and does so by time k l2 + l.

• P2 could actually take steps slowly.

P1 P2
Timed channel

Example: Two-task race
• One automaton, two tasks:

– Main = { increment, decrement, report }
• Bounds [l1, l2].

– Interrupt = { set }
• Bounds [0,l].

• Increment count as long as flag = false, then decrement.
• When count returns to 0, output report.
• Set action sets flag true.
• Q: What is a good upper bound on the latest time at which

a report may occur?
• l + l2 + (l2 / l1) l
• Obtained by incrementing as fast as possible, then

decrementing as slowly as possible.

General Timed Automata
• MMT is simple, but can’t express everything we

might want:
– Example: Perform actions “one”, then “two”, in order, so

that “one” occurs at an arbitrary time in [0,1] and “two”
occurs at time exactly 1.

• GTAs:
– More general, expressive.
– No tasks and bounds.
– Instead, explicit time-passage actions υ(t), in addition to

inputs, outputs, internal actions.
– Time-passage steps (s, υ(t), s’), between ordinary

discrete steps.

Example: Timed FIFO Channel
• Delivers oldest message within time d
• States:

queue
now, a real, initially 0
last, a real or ∞, initially ∞

• Transitions:
send(m)

Effect:
add m to queue
if |queue| = 1 then last := now + d

receive(m)
Precondition:

m = head(queue)
Effect:

remove head of queue
if queue is nonempty then last := now + d else last := ∞

υ(t)
Precondition:

now + t ≤ last
Effect:

now := now + t

Time-valued variables

Another Timed FIFO Channel
• Delivers every message within time d
• States:

queue, FIFO queue of (message, real) pairs
now, a real, initially 0

• Transitions:
send(m)

Effect:
add (m, now + d) to queue

receive(m)
Precondition:

(m,t) = head(queue), for some t
Effect:

remove head of queue
υ(t)

Precondition:
now + t ≤ t′, for every (m, t′) in queue

Effect:
now := now + t

Transforming MMTAs to GTAs
• Program the timing constraints explicitly.
• Add state components:

– now, initially 0
– For each task T, add time-valued variables:

• first(T), initially lower(T) if T is enabled in initial state, else 0.
• last(T), initially upper(T) if T is enabled in initial state, else ∞.

• Manipulate the first and last values to express the MMT
upper and lower bound requirements, e.g.:
– Don’t perform any task T if now < first(T).
– Don’t let time pass beyond any last() value.
– When task T becomes enabled, set first(T) to lower(T) and last(T)

to upper(T).
– When task T performs a step and is again enabled, set first(T) to

lower(T) and last(T) to upper(T).
– When task T becomes disabled, set first(T) to 0 and last(T) to ∞.

Two-task race
• New state components:

now, initially 0
first(Main), initially l1
last(Main), initially l2
last(Interrupt), initially l

• Transitions:
increment:

Precondition:
flag = false
now ≥ first(Main)

Effect:
count := count + 1
first(Main) := now + l1
last(Main) := now + l2

decrement:
Precondition:

flag = true
count > 0
now ≥ first(Main)

Effect:
count := count - 1
first(Main) := now + l1
last(Main) := now + l2

report:
• Precondition:

flag = true
count = 0
reported = false
now ≥ first(Main)

• Effect:
reported := true
first(Main) := 0
last(Main) := ∞

Two-task race

set:
Precondition:

flag = false
Effect:

flag := true
last(Interrupt) := ∞

υ(t):
Precondition:

now + t ≤ last(Main)
now + t ≤ last(Interrupt)

Effect:
now := now + t

More on GTAs

• Composition operation
– Identify external actions, as usual.
– Synchronize time-passage steps globally.
– Pasting and projection theorems.

• Hiding operation
• Levels of abstraction, simulation relations

Timed I/O Automata (TIOAs)

• Extension of GTAs in which time-passage steps
are replaced by trajectories, which describe state
evolution over time intervals.
– Formally, mappings from time intervals to states.
– Allows description of interesting state evolution, such

as:
• Clocks that evolve at approximately-known rates.
• Motion of vehicles, aircraft, robots, in controlled systems.

• Composition, hiding, abstraction.

Proof methods for GTAs and TIOAs.

• Like those for untimed automata.
• Compositional methods.
• Invariants, simulation relations.

– They work for timed systems too.
– Now they generally involve time-valued state

components as well as “ordinary” state
components.

– Still provable using induction, on number of
discrete steps + trajectories.

Example: Two-task race
• Invariant 1: count ≤ ⎣ now / l1⎦.

– count can’t increase too much in limited time.
– Largest count results if each increment takes smallest time, l1.

• Prove by induction on number of discrete + time-passage
steps? Not quite:
– Property is not preserved by increment steps, which increase count

but leave now unchanged.
• So we need another (stronger) invariant.
• Q: What else changes in an increment step?

– Before the step, first(Main) ≤ now; afterwards, first(Main) = now + l1.
– So first(Main) should appear in the stronger invariant.

• Invariant 2: If not reported then count ≤ ⎣ first(Main) / l1 - 1⎦.
• Use Invariant 2 to prove Invariant 1.

Two-task race
• Invariant 2: If not reported then

count ≤ ⎣ first(Main) / l1 - 1⎦
• Proof:

– By induction.
– Base: Initially, LHS = RHS = 0.
– Inductive step: Dangerous steps either increase LHS

(increment) or decrease RHS (report).
• Time-passage steps: Don’t change anything.
• report: Can’t cause a problem because then reported = true.
• increment:

– count increases by 1
– first(Main) increases by at least l1: Before the step, first(Main) ≤

now, and after the step, first(Main) = now + l1.
– So the inequality is preserved.

Modeling timed systems (summary)

• MMT automata [Merritt, Modugno, Tuttle]
– Simple, special-cased timed model
– Immediate extension of I/O automata
– Add upper and lower bounds for tasks.

• GTA, more general timed automata
– Explicit time-passage steps

• Timed I/O Automata
– Still more general
– Instead of time-passage steps, use trajectories, which describe

evolution of state over time.
– [Kaynar, Lynch, Segala, Vaandrager] monograph
– Tempo support

Simulation relations
• These work for GTAs/TIOAs too.
• Imply inclusion of sets of timed traces of admissible

executions.
• Simulation relation definition (from A to B):

– Every start state of A has a related start state of B. (As before.)
– If s is a reachable state of A, u a related reachable state of B, and

(s, π, s′) is a discrete step of A, then there is a timed execution
fragment α of B starting with u, ending with some u′ of B that is
related to s′, having the same timed trace as the given step, and
containing no time-passage steps.

– If s is a reachable state of A, u a related reachable state of B, and
(s, υ(t), s′) is a time-passage step of A, then there is a timed
execution fragment of B starting with u, ending with some u′ of B
that is related to s′, having the same timed trace as the given step,
and whose total time-passage is t.

Example: Two-task race
• Prove upper bound of l + l2 + (l2 / l1) l on time until report.
• Intuition:

– Within time l, set flag true.
– During time l, can increment count to at most approximately l / l1.
– Then it takes time at most (l / l1) l2 to decrement count to 0.
– And at most another l2 to report.

• Could prove a simulation relation, to a trivial GTA that just
outputs report, at any time ≤ l + l2 + (l2 / l1) l.

• Express this using time variables:
– now
– last(report), initially l + l2 + (l2 / l1) l.

• The simulation relation has an interesting form:
inequalities involving the time variables:

Simulation relation
• s = state of race automaton, u = state of time bound spec automaton
• u.now = s.now, u.reported = s.reported
• u.last(report) ≥

s.last(Int) + (s.count + 2) l2 + (l2 / l1) (s.last(Int) – s.first(Main)),
if s.flag = false and s.first(Main) ≤ s.last(Int),

s.last(Main) + (s.count) l2 , otherwise.

• Explanation:
– If flag = true, then time until report is the time until the next decrement, plus

the time for the remaining decrements and the report.
– Same if flag = false but must become true before another increment.
– Otherwise, at least one more increment can occur before flag is set.
– After set, it might take time (s.count + 1) l2 to count down and report.
– But current count could be increased some more:

• At most 1 + (last(Int) – first(Main)) / l1 times.
– Multiply by l2 to get extra time to decrement the additional count.

Timed Mutual Exclusion
Algorithms

Timed mutual exclusion
• Model as before, but now the Us

and the algorithm are MMT
automata.

• Assume one task per process, with
bounds [l1,l2], 0 < l1 ≤ l2 < ∞.

• Users: Arbitrary tasks, boundmaps.

p1

p2

pn

x1

x2

A
U1

U2

Un

• Mutual exclusion problem: guarantee well-formedness,
mutual exclusion, and progress, in all admissible timed
executions.

• No high-level fairness guarantees, for now.
• Now, algorithm’s correctness is allowed to depend on

timing assumptions.

Fischer mutual exclusion algorithm

• Famous, “published” only in email from Fischer to Lamport.
• A toy algorithm, widely used as a benchmark for modeling

and verification methods for timing-based systems.
• Uses a single read/write register, turn.
• Compare: In asynchronous model, need n variables.

• Incorrect, asynchronous version (process i):
– Trying protocol:

• wait for turn = 0
• turn := i
• if turn = i, go critical; else go back to beginning

– Exit protocol:
• turn := 0

Incorrect execution
• To avoid this problem, add a

timing constraint:
– Process i waits long enough

between seti and checki so that no
other process j that sees turn = 0
before seti can set turn := j after
checki.

– That is, interval from seti to checki
is strictly longer than interval from
testj to setj.

• Can ensure by counting steps:
– Before checking, process i waits k

steps, where k > l2 / l1.
– Shortest time from seti to checki is

k l1, which is greater than the
longest time l2 from testj to setj.

P1 P2

see turn = 0

see turn = 0

turn := 1

turn := 2

see turn = 1

see turn = 2

go critical

go critical

Fischer mutex algorithm

• Pre/effect code, p. 777.
• Not quite in the assumed model:

– That has just one task/process, with bounds [l1, l2].
– Here we use another task for the check, with bounds

[a1, a2], where a1 = k l1, a2 = k l2,

– This version is more like the ones used in most
verification work.

• Proof?
– Easy to see the algorithm avoids the bad example,

but how do we know it’s always correct?

Proof of mutex property
• Use invariants.
• One of the earliest examples of an assertional proof for

timed models.
• Key intermediate assertion:

– If pci = check, turn = i, and pcj = set, then first(checki) > last(mainj).
– That is, if i is about to check turn and get a positive answer, and j is

about to set turn, then the earliest time when i might check it is
strictly after the latest time when j might set it.

– Rules out the bad interleaving.
• Can prove this by an easy induction.
• Use it to prove main assertion:

– If pci ∈{ leave-try, crit, reset }, then turn = i, and for every j, pcj ≠ set.
• Which immediately implies mutual exclusion.

Proof of progress
• Easy event-based argument:

– By contradiction: Assume someone is in T, and no one is
thereafter ever in C.

– Then eventually region changes stop, everyone is in either T or R,
at least one process is in T.

– Eventually turn acquires a contender’s index, then stabilizes to
some contender’s index, say i.

– Then i proceeds to C.
• Refine this argument to a time bound, for the time from

when someone is in T until someone is in C:
– 2 a2 + 5 l2 = 2 k l2 + 5 l2
– Since k is approximately L = l2 / l1 (timing uncertainty ratio), this is

2 L l2 + O(l2)
– Thus, timing uncertainty stretches the time complexity.

Stretching the time complexity
• Q: Why is the time complexity “stretched” by the timing

uncertainty L = (l2/ l1), yielding an L l2 term?
• Process i must ensure that time t = l2 has elapsed, to know

that another process has had enough time to perform a
step.

• Process i determines this by counting its own steps.
• Must count at least t / l1 steps to be sure that time t has

elapsed, even if i’s steps are fast (l1).
• But the steps could be slow (l2), so the total time could be

as big as (t / l1) l2 = (l2 / l1) t = L t.
• Requires real time Lt for process in a system with timing

uncertainty L to be sure that time t has elapsed.
• Similar stretching phenomenon arose in timeout example.

Lower bound on time
• Theorem: There is no timed mutex algorithm for 2

processes with 1 shared variable, having an upper bound
of L l2 on the time for someone to reach C.

• Proof:
– Like the proof that 1 register is insufficient for 2-process

asynchronous mutual exclusion.
– By contradiction; suppose such an algorithm exists.
– Consider admissible execution α in which process 1 runs alone,

slowly (all steps take l2).
– By assumption, process 1 must enter C within time L l2.
– Must write to the register x before →C.
– Pause process 1 just before writing x for the first time.

p1 only
p1 covers x p1 enters C

Lower bound on time
• Proof, cont’d:

– Now run process 2, from where process 1 covers x.
– p2 sees initial state, so eventually →C.
– If p2 takes steps as slowly as possible (l2), must →C within time L l2.
– If we speed p2 up (shrink), p2 →C within time L l2 (l1 / l2) = L l1.
– So we can run process 2 all the way to C during the time p1 is

paused, since l2 = L l1.
– Then as in asynchronous case, can resume p1, overwrites x, enters

C, contradiction.

p1 only
p1 covers x p1 enters C

p2 only

p2 enters C

The Fischer algorithm is fragile
• Depends on timing assumptions, even for the main safety

property, mutual exclusion.
• It would be nice if safety were independent of timing (e.g.,

like Paxos).
• Can modify Fischer so mutual exclusion holds in all

asynchronous runs, for n processes, using 3 registers
[Section 24.3].

• But this fails to guarantee progress, even assuming timing
eventually stabilizes (like Paxos).

• In fact, progress depends crucially on timing:
– If time bounds are violated, then algorithm can deadlock, making

future progress impossible.
• In fact, we have:

Another impossibility result!
• It’s impossible to guarantee n-process mutual exclusion in

all asynchronous runs, progress if timing stabilizes, with <
n registers:

• Theorem: There is no asynchronous read/write shared-
memory algorithm for n ≥ 2 processes that:
– Guarantees well-formedness and mutual exclusion when run

asynchronously,
– Guarantees progress when run so that each process’ step bounds

eventually are in the range [l1,l2], and
– Uses < n shared registers.

• !!!

• Proof: Similar to that of impossibility of asynchronous
mutex for < n registers (tricky).

Timed Consensus Algorithms

Consensus in timed systems
• Network model:
• Process:

– MMT automaton, finitely many
tasks.

– Task bounds [l1,l2], 0 < l1 ≤ l2 < ∞,
L = l2 / l1

– Stopping failures only.
• Channels:

– GTA or TIOA
– Reliable FIFO channels, upper

bound of d for every message.
• Properties:

– Agreement,
– Validity (weak or strong),
– Failure-free termination
– f-failure termination, wait-free

termination

initi

decidei initj
decidej

Channels

• In general, we’re
allowed to rely on time
bounds for both safety +
liveness.

• Q: Can we solve fault-
tolerant agreement?
How many failures?
How much time does it
take?

Consensus in timed systems
• Assumptions:

– V = { 0, 1 },
– Completely connected graph,
– l1, l2 << d (in fact, n l2 << d, L l2 << d).
– Every task always enabled.

• Results:
– Simple algorithm, for any number f of failures, strong

validity, time bound ≈ f L d
– Simple lower bound: (f+1) d.
– More sophisticated algorithm: ≈ Ld + (2f+2) d
– More sophisticated lower bound: ≈ Ld + (f-1) d

• [Attiya, Dwork, Lynch, Stockmeyer]

Simple algorithm
• Implement a perfect failure detector, which times

out failed processes.
– Process i sends periodic “alive” messages.
– Process i determines process j has failed if i doesn’t

receive any messages from j for a large number of i’s
steps (≈ (d + l2) / l1 steps).

– Time until detection at most ≈ L d + O(L l2).
– Ld is the time needed for a timeout.

• Use the failure detector to simulate a round-based
synchronous consensus algorithm for the required
f+1 rounds.

• Time for consensus at most ≈ f L d + O(f L l2).

Simple lower bound

• Upper bound (so far): ≈ f L d + O(f L l2).
• Lower bound (f+1)d

– Follows from (f+1)-round lower bound for
synchronous model, via a model transformation.

• Note the role of the timing uncertainty L:
– Appears in the upper bound: f Ld, time for f

successive timeouts.
– But doesn’t appear in the lower bound.

• Q: How does the real cost depend on L?

Better algorithm

• Time bound: Ld + (2f+2)d + O(f l2 + L l2)
– Time for just one timeout!
– Tricky algorithm, LTTR.

• Uses a series of rounds, each involving an attempt to decide.
• At even-numbered rounds, try to decide 0; at odd-numbered

rounds, try to decide 1.
• Each failure can cause an attempt to fail, move on to another

round.
• Successful round takes time at most ≈ Ld.
• Unsuccessful round k takes time at most ≈ (fk + 1) d, where fk is

the number of processes that fail at round k.

Better lower bound

• Upper bound: ≈ Ld + (2f+2)d
• Lower bound: Ld + (f-1) d
• Interesting proof---uses practically every

lower bound technique we’ve seen:
– Chain argument, as in Chapter 6.
– Bivalence argument, as in Chapter 12.
– Stretching and shrinking argument for timed

executions, as in Chapter 24.
• LTTR

[Dwork, Lynch, Stockmeyer 88]
consensus results

• 2007 Dijkstra prize
• Weaken the time bound assumptions so that they hold

eventually, from some point on, not necessarily always.
• Assume n > 2f (unsolvable otherwise).
• Guarantees agreement, validity, f-failure termination.

– Thus, safety properties (agreement and validity) don’t depend on
timing.

– Termination does---but in a nice way: guaranteed to terminate if
time bound assumptions hold from any point on.

– Similar to problem solved by Paxos.
• Algorithm:

– Similar to Paxos (earlier), but allows less concurrency.

[DLS] algorithm
• Rotating coordinator as in 3-phase commit, pre-allocated “stages”.
• In each stage, one pre-determined coordinator takes charge, tries to

coordinate agreement using a four-round protocol:
1. Everyone sends “acceptable” values to coordinator; if coordinator receives

“enough”, it chooses one to propose.
2. Coordinator sends proposed value to everyone; anyone who receives it

“locks” the value.
3. Everyone who received a proposal in round 2 sends an ack to the

coordinator; if coordinator receives “enough” acks, decides on the
proposed value.

4. Everyone exchanges lock info.
• “Acceptable” means opposite value isn’t locked.

• Implementing synchronous rounds:
– Use the time assumptions.
– Emulation may be unreliable until timing stabilizes.
– That translates into possible lost messages, in earlier rounds.
– Algorithm can tolerate lost messages before stabilization.

Mutual exclusion vs. consensus
• Mutual exclusion with < n shared registers:

– Asynchronous systems:
• Impossible

– Timed systems:
• Solvable, time upper bound O(L l2), matching lower bound

– Systems where timing assumptions hold from some point on:
• Impossible to guarantee both safety (mutual exclusion) and liveness

(progress).
• Consensus with f failures, f ≥ 1:

– Asynchronous systems:
• Impossible

– Timed systems:
• Solvable, time upper bound L d + O(d), matching lower bound.

– Systems where timing assumptions hold from some point on:
• Can guarantee both safety (agreement and validity) and liveness (f-

failure termination), for n > 2f.

Clock Synchronization
Algorithms

Clock synchronization
• Network model:
• Process:

– TIOA
– Includes a physical clock component

that progresses at some (possibly
varying) rate in the range [1 - ρ, 1+ ρ].

– Not under the process’ control.
• Channels:

– GTA or TIOA
– Reliable FIFO channels, message delay

bounds in interval [d1, d2].
• Properties:

– Each node, at each time, computes the
value of a logical clock

– Agreement: Logical clocks should
become, and remain, within a small
constant ε of each other.

– Validity: Logical clock values should be
approximately within the range of the
physical clock values.

Channels

• Issues:
– Timing uncertainty
– Tolerating failures
– Scalability
– Accommodating

external clock inputs

Timing uncertainty
• E.g., 2 processes:

– Messages from p1 to p2 might always take the
minimum time d1.

– Messages from p2 to p1 might always take the
maximum time d2.

– Or vice versa.
– Either way, the logical clocks are supposed to be

within ε of each other.
– Implies that ε ≥ (d2 – d1) / 2

• Can achieve ε ≈ (d2 – d1) / 2, if clock drift
rate is very small and there are no failures.

• For n processes in fully connected graph,
can achieve ε ≈ (d2 – d1) (1 – 1/n), and that’s
provably optimal.

p1 p2

d1

d2

p1 p2

d2

d1

Accommodating failures
• Several published algorithms for n > 3f processes

to establish and maintain clock synchronization, in
the presence of up to f Byzantine faulty processes.
– [Lamport], [Dolev, Strong], [Lundelius, Lynch],…
– Some algorithms perform fault-tolerant averaging.
– Some wait until f+1 processes claim a time has been

reached before jumping to that time.
– Etc.

• Lower bound: n > 3f is necessary.
– Original proof: [Dolev, Strong]
– Cuter proof: [Fischer, Lynch, Merritt]

• By contradiction: Assume (e.g.) a 3-process clock synch
algorithm that tolerates 1 Byzantine faulty process.

• Form a large ring, from many copies of the algorithm:

Accommodating failures
• Lower bound proof: n > 3f necessary

– By contradiction: Assume a 3-process clock synch algorithm that
tolerates 1 Byzantine faulty process.

– Form a large ring, from many copies of the algorithm:

– Let the physical clocks drift progressively, as we move around the
ring, fastest and slowest at opposite sides of the ring.

– Any consecutive pair’s logical clocks must remain within ε of each
other, by agreement, and must remain approximately within the
range of their physical clocks, by validity.

– Can’t satisfy this everywhere in the ring.

3 2

1

A

321

123

S
321

123
slow

fast

Scalability
• Large, not-fully-connected network.
• E.g., a line:

• Can’t hope to synchronize distant nodes too closely.
• Instead, try to achieve a gradient property, saying that

neighbors’ clocks are always closely synchronized.
• Impossibility result for gradient clock synch [Fan 04]: Any

clock synch algorithm in a line of length D has some
reachable state in which the logical clocks of two neighbors
are Ω(log D / log log D) apart.

• Algorithms exist that achieve a constant gradient “most of
the time”.

• And newer algorithms that achieve O(log D) all of the time.

External clock inputs

• Practical clock synch algorithms use reliable
external clock sources:
– NTP time service in Internet
– GPS in mobile networks

• Nodes with reliable time info send it to other
nodes.

• Recipients may correct for communication delays
• Typically ignore failures.

Mobile Wireless Network
Algorithms

Mobile networks
• Nodes moving in physical space, communicating using local broadcast.
• Mobile phones, hand-held computers; robots, vehicles, airplanes
• Physical space:

– Generally 2-dimensional, sometimes 3
• Nodes:

– Have uids.
– May know the approximate real time, and their own approximate locations.
– May fail or be turned off, may restart.
– Don’t know a priori who else is participating, or who is nearby.

• Communication:
– Broadcast, received by nearby listening nodes.
– May be unreliable, subject to collisions/losses, or
– May be assumed reliable (relying on backoff mechanisms to mask losses).

• Motion:
– Usually unpredictable, subject to physical limitations, e.g. velocity bounds.
– May be controllable (robots).

• Q: What problems can/cannot be solved in such networks?

Some preliminary results
• Dynamic graph model

– Welch, Walter, Vaidya,…
– Algorithms for mutual exclusion, k-exclusion, message routing,…

• Wireless networks with collisions
– Algorithms / lower bounds for broadcast in the presence of

collisions [Bar-Yehuda, Goldreich, Itai], [Kowalski, Pelc],…
– Algorithms / lower bounds for consensus [Newport, Gilbert, et al.]

• Rambo atomic memory algorithm
– [Gilbert, Lynch, Shvartsman]
– Reconfigurable Atomic Memory for Basic (read/write) Objects
– Implemented using a changing quorum system configuration.
– Paxos consensus used to change the configuration, runs in the

background without interfering with ongoing reads/writes.
• Virtual Node abstraction layers for mobile networks

– Gilbert, Nolte, Brown, Newport,…

Some preliminary results

• Neighbor discovery, counting number of
nodes, maintaining network structures,…

• Leave all this for another course.

VN Layers for mobile networks

• Add Virtual Nodes: Simple state machines (TIOAs) located
at fixed, known geographical locations (e.g., grid points).

• Mobile nodes in the vicinity emulate the VSNs, using a
Replicated State Machine approach, with an elected leader
managing communication.

• Virtual Nodes may fail, later recover in initial state.
• Program applications over the VSN layer.

– Geocast, location services, point-to-point communication, bcast.
– Data collection and dissemination.
– Motion coordination (robots, virtual traffic lights, virtual air-traffic

controllers).

• Other work: Neighbor discovery, counting number of
nodes, maintaining network structures,…

• Leave all this for another course.

Next time…

• There is no next time!
• Have a very nice break!

MIT OpenCourseWare
http://ocw.mit.edu

6.852J / 18.437J Distributed Algorithms
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

	6.852: Distributed Algorithms�Fall, 2009
	Today’s plan
	Partially synchronous system models
	Modeling Timed Systems
	Modeling timed systems
	MMT Automata
	MMT Automata, cont’d
	Example: Timed FIFO channel
	Composition of MMT automata
	Example: Timeout system
	Example: Two-task race
	General Timed Automata
	Example: Timed FIFO Channel
	Another Timed FIFO Channel
	Transforming MMTAs to GTAs
	Two-task race
	Two-task race
	More on GTAs
	Timed I/O Automata (TIOAs)
	Proof methods for GTAs and TIOAs.
	Example: Two-task race
	Two-task race
	Modeling timed systems (summary)
	Simulation relations
	Example: Two-task race
	Simulation relation
	Timed Mutual Exclusion Algorithms
	Timed mutual exclusion
	Fischer mutual exclusion algorithm
	Incorrect execution
	Fischer mutex algorithm
	Proof of mutex property
	Proof of progress
	Stretching the time complexity
	Lower bound on time
	Lower bound on time
	The Fischer algorithm is fragile
	Another impossibility result!
	Timed Consensus Algorithms
	Consensus in timed systems
	Consensus in timed systems
	Simple algorithm
	Simple lower bound
	Better algorithm
	Better lower bound
	[Dwork, Lynch, Stockmeyer 88] consensus results
	[DLS] algorithm
	Mutual exclusion vs. consensus
	Clock Synchronization Algorithms
	Clock synchronization
	Timing uncertainty
	Accommodating failures
	Accommodating failures
	Scalability
	External clock inputs
	Mobile Wireless Network Algorithms
	Mobile networks
	Some preliminary results
	Some preliminary results
	VN Layers for mobile networks
	Next time…

