6.852: Distributed Algorithms Fall, 2009

Class 10

Today's plan

- Simulating synchronous algorithms in asynchronous networks
- Synchronizers
- Lower bound for global synchronization
- Reading: Chapter 16
- Next:
 - Logical time
 - Reading: Chapter 18, [Lamport time, clocks...], [Mattern]

Minimum spanning tree, revisited

- In GHS, complications arise because different parts of the network can be at very different levels at the same time.
- Alternative, more synchronized approach:
 - Keep levels of nearby nodes close, by restricting the asynchrony.
 - Each process uses a level variable to keep track of the level of its current component (according to its local knowledge).
 - Process at level k delays all "interesting" processing until it hears that all its neighbors have reached level $\ge k$.
 - Looks (to each process) like global synchronization, but easier to achieve.
 - Each node inform its neighbors whenever it changes level.
- Resulting algorithm is simpler than GHS.
- Complexity:
 - Time: O(n log n), like GHS.
 - Messages: O(|E| log n), somewhat worse than GHS.

Strategy for designing asynchronous distributed algorithms

- Assume undirected graph G = (V,E).
- Design a synchronous algorithm for G, transform it into an asynchronous algorithm using local synchronization.
- Synchronize at every round (not every "level" as above).
- Method works only for non-fault-tolerant algorithms.
 - In fact, no general transformation can work for fault-tolerant algorithms.
 - E.g., ordinary stopping agreement is solvable in synchronous networks, but unsolvable in asynchronous networks [FLP].
- Present a general strategy, some special implementations.
 - Describe in terms of sub-algorithms, modeled as abstract services.
 - [Raynal book], [Awerbuch papers]
- Then a lower bound on the time for global synchronization.
 - Larger than upper bounds for local synchronization.

Synchronous model, reformulated in terms of automata

- Global synchronizer automaton
- User process automata:
 - Processes of an algorithm that uses the synchronizer.
 - May have other inputs/outputs, for interacting with other programs.

- Interactions between user process i and synchronizer:
 - user-send(T,r)_i
 - T = set of (message, destination) pairs, destinations are neighbors of i.
 - $T = empty set \emptyset$, if no messages sent by i at round r.
 - r = round number
 - user-rcv(T,r)_i
 - T = set of (message, source) pairs, source a neighbor of i.
 - r = round number

Behavior of GlobSynch

- Manages global synchronization of rounds:
 - Users send packages of all their round 1 messages, using usersend(T,r) actions.
 - GlobSynch waits for all round 1 messages, sorts them, then delivers to users, using user-rcv(T,r) actions.
 - Users send round 2 messages, etc.
- Not exactly the synchronous model:
 - GlobSynch can receive round 2 messages from i before it finishes delivering all the round 1 messages.
 - But it doesn't do anything with these until it's finished round 1 deliveries.
 - So, essentially the same.
- GlobSynch synchronizes globally between each pair of rounds.

Requirements on each U_i

- Well-formed:
 - $\rm U_{i}$ sends the right kinds of messages, in the right order, at the right times.
- Liveness:
 - After receiving the messages for any round r, U_i eventually submits messages for round r+1.
- See code for GlobSynch in [book, p. 534].
 - State consists of:
 - A tray of messages for each (destination, round).
 - Some Boolean flags to keep track of which sends and rcvs have happened.
 - Transitions obvious.
 - Liveness expressed by tasks, one for each (destination, round).

Synchronizers

The Synchronizer Problem

- Design an automaton A that "implements" GlobSynch in the sense that it "looks the same" to each U_i:
 - Has the right interface.
 - Exhibits the right behavior:
 - \forall fair execution α of the U_is and A,
 - ∃ fair execution α' of the U_is and GlobSynch, such that
 - \forall i, α is indistinguishable by U_i from α' , $\alpha \sim U_i \alpha'$.
- A "behaves like" GlobSynch, as far as any individual U_i can tell.
- Allows global reordering of events at different U_i.

Local Synchronizer, LocSynch

- Enforces local synchronization rather than global, still looks the same locally.
- Only one difference from GlobSynch:
 - Precondition for $usr-rcv(T,r)_i$.
 - Now, to deliver round r messages to user i, check only that i's neighbors have sent round r messages.
 - Don't wait for all nodes to get this far.
- Lemma 1: For every fair execution α of the U_is and LocSynch, there is a fair execution α' of the U_is and GlobSynch, such that for each U_i, α ~U_i α'.
- Proof:
 - Can't use a simulation relation, since global order of external events need not be the same, and simulation relations preserve external order.
 - So consider partial order of events and dependencies:

Proof sketch for Lemma 1

- Consider partial order of events and dependencies:
 - Each U_i event depends on previous U_i events.
 - $user-rcv(*,r)_i$ event depends on $user-send(*,r)_i$ for every neighbor j of i.
 - Take transitive closure.
- Claim: If you start with a (fair) execution of LocSynch system and reorder the events while preserving these dependencies, the result is still a (fair) execution of the LocSynch system.
- So, obtain α' by reordering the events of α so that:
 - These dependencies are preserved, and
 - Events associated with any round r precede those of round r+1.
- Can do this because round r+1 events never depend on round r events.
- This reordering preserves the view of each U_i.
- Also, yields the extra user-rcv precondition needed by GlobSynch.

Trivial distributed algorithm to implement LocSynch

- Processes, point-to-point channels.
- SimpleSynch algorithm, process i:
 - After user-send(T,r), send message to each neighbor j containing round number r and any basic algorithm messages i has for j.
 - Send (\emptyset ,r) message if i has no basic algorithm messages for j.
 - Wait to receive round r messages from all neighbors.
 - Output user-rcv().

• Lemma 2:

- For every fair execution α of U_i s and SimpleSynch, there is a fair execution α' of U_i s and LocSynch, such that for each U_i , $\alpha \sim U_i \alpha'$.
- Here, indistinguishable by all the U_is together--preserves external order.

SimpleSynch, cont'd

- Proof of Lemma 2:
 - No reordering needed, preserves order of external events.
 - Could use simulation relation.
- Corollary: For every fair execution α of U_is and SimpleSynch, there is a fair execution α' of U_is and GlobSynch, such that for each U_i, $\alpha \sim U_i \alpha'$.
- **Proof:** Combine Lemmas 1 and 2.
- Complexity:
 - Messages: $\leq 2 |E|$ per simulated round.
 - Time:
 - Assume user always sends ASAP.
 - I, upper bound on task time for each task of each process.
 - d, upper bound on time for first message in channel to be delivered
 - Then r rounds completed within time r (d + O(I)).

Reducing the communication

- General Safe Synchronizer strategy [Awerbuch].
- If there's no message $U_i \rightarrow U_j$ at round r of underlying synchronous algorithm, try to avoid sending such messages in the simulating asynchronous algorithm.
- Can't just omit them, since each process must determine, for each round r, when it has received all of its round r messages.
- Approach: Separate the functions of:
 - Sending the actual messages, and
 - Determining when the round is over.
 - Algorithm decomposes into:

For the actual messages

For deciding when finished

Safe Synchronizers

- FE:
 - Sends, receives actual messages for each round r.
 - Sends acks for received messages.
 - Waits to receive acks for its own messages.
- Notes:
 - Sends messages only for actual messages of the underlying algorithm, no dummies.
 - Acks double the messages, but can still be a win.
- FE, cont'd:
 - When FE receives acks for all its round r messages, it's safe: it knows that all its messages have been received by its neighbors.
 - Then sends OK for round r to SafeSynch.
 - Before responding to user, must know that it has received all its neighbors' messages for round r.
 - Suffices to know that all its neighbors are safe, that is, that they know that their messages have been received.
- SafeSynch:
 - Tells each FE when its neighbors are safe!
 - After it has received OK from i and all its neighbors, sends GO to i.

Correctness of SafeSynch

- Lemma 3: For every fair execution α of SafeSynch system, there is a fair execution α' of LocSynch system, such that for each U_i, $\alpha \sim U_i \alpha'$.
- (Actually, indistinguishable to all the U_is together.)
- Corollary: For every fair execution α of SafeSynch system, there is a fair execution α' of GlobSynch system, such that for each U_i, $\alpha \sim U_i \alpha'$.
- Must still implement SafeSynch with a distributed algorithm...
- We now give three SafeSynch implementations, Synchronizers A, B, and Γ [Awerbuch].
- All implement SafeSynch, in the sense that the resulting systems are indistinguishable to each U_i (in fact, to all the U_is together).

SafeSynch Implementations

- SafeSynch's job: After receiving OK for round r from i and all its neighbors, send GO for round r to i.
- Synchronizer A:
 - When process i receives OK_i, sends to neighbors.
 - When process i hears that it and all its neighbors have received OKs, outputs GO_i.
- Obviously implements SafeSynch.
- Complexity: To emulate r rounds:
 - Messages: $\leq 2m + 2r |E|$, if synch alg sends m actual messages in r rounds.

Messages within A

Messages and acks by FEs

- Time:
$$\leq r (3d + O(I))$$

acks

report-OK

FE

Comparisons

- To emulate r rounds:
 - SafeSynch system with Synchronizer A
 - Messages: 2m + 2 r |E|
 - Time: r (3d + O(l))
 - Simple Synch
 - Messages: 2 r |E|
 - Time: r (d + O(l))
- So Synchronizer A hasn't improved anything.
- Next, Synchronizer B, with lower message complexity, higher time complexity.
- Then Synchronizer Γ, does well in terms of both messages and time, in an important subclass of networks (those with a "cluster" structure).

Synchronizer B

- Assumes rooted spanning tree of graph, height h.
- Algorithm:
 - All processes convergecast OK to root, using spanning tree edges.
 - Root then bcasts permission to GO, again using the spanning tree.
- Obviously implements SafeSynch (overkill).
- Complexity: To emulate r rounds, in which synch algorithm sends m messages:

Synchronizer Γ

- Hybrid of A and B.
- In "clustered" (almost partitionable) graphs, can get performance advantages of both:
 - Time like A, communication like B.
- Assume spanning forest of rooted trees, each tree spanning a "cluster" of nodes.
- Example:
 - Clusters = triangles
 - All edges between adjacent triangles.
 - Spanning forest:

• Use B within each cluster, A among clusters.

Decomposition of Γ

- ClusterSynch:
 - After receiving OKs from everyone in the cluster, sends cluster-OK to ForestSynch.
 - After receiving cluster-GO from ForestSynch, sends GO to everyone in the cluster.
 - Similar to B.
- ForestSynch:
 - Essentially, a safe synchronizer for the "Cluster Graph" G':
 - Nodes of G' are the clusters.
 - Edge between two clusters iff they contain nodes that are adjacent in G.
- Lemma: Γ Implements SafeSynch
- Proof idea:
 - Must show: If $GO(r)_i$ occurs, then there must be a previous $OK(r)_i$ and also previous $OK(r)_i$ for every neighbor j of i.

Γ Implements SafeSynch

- Show: If GO(r), occurs, then there must be a previous OK(r), and also previous OK(r), for every neighbor j of i.
- Must be a previous OK(r);
 - GO(r), preceded by cluster-GO(r) for i's cluster (ClusterSynch),
 - Which is preceded by cluster-OK(r) for i's cluster (ForestSynch),
 - Which is preceded by OK(r)_i (ClusterSynch).
- Must be previous $OK(r)_i$ for neighbor j in the same cluster as i.
 - GO(r), preceded by cluster-GO(r) for i's cluster (ClusterSynch),
 - Which is preceded by cluster-OK(r) for i's cluster (ForestSynch),
 - Which is preceded by OK(r), (ClusterSynch).
- Must be previous OK(r); for neighbor j in a different cluster.
 - Then the two clusters are neighboring clusters in the cluster graph G', because i and j are neighbors in G.
 - GO(r), preceded by cluster-GO(r) for i's cluster (ClusterSynch),
 - Which is preceded by cluster-OK(r) for j's cluster (ForestSynch),
 - Which is preceded by OK(r)_i (ClusterSynch).

Implementing ClusterSynch and ForestSynch

- Still need distributed algorithms for these...
- ClusterSynch:
 - Use variant of Synchronizer B on cluster tree:
 - Convergecast OKs to root on the cluster tree,
 - root outputs cluster-OK, receives cluster-GO,
 - root broadcasts GO on the cluster tree.
- ForestSynch:
 - Clusters run Synchronizer A.
 - But clusters can't actually run anything...
 - So cluster roots run A.
 - Simulate communication channels between neighboring clusters by indirect communication paths between the roots.
 - These paths must exist: Run through the trees and across edges that join the clusters.
- cluster-OK and cluster-GO are internal actions of the cluster root processes.

Putting the pieces together

- In Γ, real process i emulates FrontEnd_i, process i in ClusterSynch algorithm, and process i in ForestSynch algorithm.
 - Composition of three automata.
- Real channel C_{i,j} emulates channel from FrontEnd_i to FrontEnd_j, channel from i to j in ClusterSynch algorithm, and channel from i to j in ForestSynch algorithm.
- Orthogonal decompositions of Γ :
 - Physical: Nodes and channels.
 - Logical: FEs, ClusterSynch, and ForestSynch
 - Same system, 2 views.
 - Works because composition of automata is associative, commutative.
- Such decompositions are common for complex distributed algorithms:
 - Each node runs pieces of algorithms at several layers.
- Theorem 1: For every fair execution α of Γ system (or A, or B), there is a fair execution α' of GlobSynch system, such that for each U_i , $\alpha \sim U_i \alpha'$.

Complexity of Γ

- Consider r rounds, in which the synchronous algorithm sends m messages.
- Let:
 - h = max height of a cluster tree
 - e' = total number of edges on shortest paths between roots of neighboring clusters.

- Time: O (r h (d + l))
- If $n + e' \ll |E|$, then Γ 's message complexity is much better than A's.
- If h << height of spanning tree of entire network, then Γ 's time complexity is much better than B's.
- Both of these are true for "nicely clustered" networks.

Comparison of Costs

- r rounds
- m messages sent by synchronous algorithm
- d, message delay
- Ignore local processing time I.
- e' = total length of paths between roots of neighboring clusters
- h = height of global spanning tree
- h' = max height of cluster tree

	Messages	Time
А	2 m + 2 r E	O(r d)
В	2 m + 2 r n	O(r h d)
Г	2 m + O(r (n + e'))	O(r h′ d)

Example

- p × p grid of complete k-graphs, with all nodes of neighboring k-graphs connected.
- Clusters = k-graphs
- h = O(p)
- h' = O(1)

	Messages	Time
А	2 m + O(r p² k²)	O(r d)
В	2 m + O(r p² k)	O(rpd)
Γ	2 m + O(r p² k)	O(r d)

Application 1: Breadth-first search

- Recap:
 - SynchBFS:
 - Constructs BFS tree
 - O(|E|) messages, O(diam) rounds
 - When run in asynchronous network:
 - Constructs a spanning tree, but not necessarily BFS
 - Modified version, with corrections:
 - Constructs BFS tree
 - O(n |E|) messages, O(diam n d) time (counting pileups)
- BFS using synchronizer:
 - Runs more like SynchBFS, avoids corrections, pileups
 - With Synchronizer A:
 - O(diam |E|) messages, O(diam d) time
 - With Synchronizer B :
 - Better communication, but costs time.
 - With Synchronizer Γ :
 - Better overall, in clustered graphs.

Application 2: Broadcast and ack

- Use synchronizer to simulate synchronous broadcast-ack combination.
- Assume known leader, but no spanning tree.
- Recap:
 - Synchronous Bcast-ack:
 - Constructs spanning tree while broadcasting
 - O(|E|) messages, O(diam) rounds
 - Asynchronous Bcast-ack:
 - Timing anomaly: Construct non-min-hop paths, on which acks travel.
 - O(|E|) messages, O(n d) time
- Using (e.g.) Synchronizer A:
 - Avoids timing anomaly.
 - Broadcast travels on min-hop paths, so acks follow min-hop paths.
 - O(diam |E|) messages, O(diam d) time

Application 3: Shortest paths

- Assume weights on edges.
- Without termination detection.
- Recap:
 - Synchronous Bellman-Ford:
 - Allows some corrections, due to low-cost high-hop-count paths.
 - O(n |E|) messages, O(n) rounds
 - Asynch Bellman-Ford
 - Many corrections possible (exponential), due to message delays.
 - Message complexity exponential in n.
 - Time complexity exponential in n, counting message pileups.
- Using (e.g.) Synchronizer A:
 - Behaves like Synchronous Bellman-Ford.
 - Avoids corrections due to message delays.
 - Still has corrections due to low-cost high-hop-count paths.
 - O(n |E|) messages, O(n d) time
 - Big improvement.

Further work

- To read more:
 - See Awerbuch's extensive work on
 - Applications of synchronizers.
 - Distributed algorithms for clustered networks.
 - Also work by Peleg
- Q: This work used a strategy of purposely slowing down portions of a system in order to improve overall performance. In which situations is this strategy a win?

Lower Bound on Time for Synchronization

Lower bound on time

- A, B, Γ emulate synchronous algorithms only in a local sense:
 - Looks the same to individual users,
 - Not to the combination of all users---can reorder events at different users.
- Good enough for many applications (e.g., data management).
- Not for others (e.g., embedded systems).
- Now show that global synchronization is inherently more costly than local synchronization, in terms of time complexity.
- Approach:
 - Define a particular global synchronization problem, the k-Session Problem.
 - Show this problem has a fast synchronous algorithm, that is, a fast algorithm using GlobSynch.
 - Time O(k d), assuming GlobSynch takes steps ASAP.
 - Prove that all asynchronous distributed algorithms for this problem are slow.
 - Time Ω(k diam d).
 - Implies GlobSynch has no fast distributed implementation.
- Contrast:
 - A, SimpleSynch are fast distributed implementations of LocSynch.

k-Session Problem

- Session:
 - Any sequence of flash events containing at least one flash_i event for each location i.

- k-Session problem:
 - Perform at least k separate sessions (in every fair execution), and eventually halt.
- Original motivation:
 - Synchronization needed to perform parallel matrix computations that require enough interleaving of process steps, but tolerate extra steps.

Example: Boolean matrix computation

- n = m³ processes compute the transitive closure of m × m Boolean matrix M.
- p_{i,j,k} repeatedly does:
 - read M(i,k), read M(k,j)
 - If both are 1 then write 1 in M(i,j)
- Each flash_{i,j,k} in abstract session problem represents a chance for $p_{i,j,k}$ to read or write a matrix entry.
- With enough interleaving (O (log n) sessions), this is guaranteed to compute transitive closure.

Synchronous solution

• Fast algorithm using GlobSynch:

– Just flash once at every round.

k sessions done in time O(k d), assuming
GlobSynch takes steps ASAP.

Asynchronous lower bound

- Consider distributed algorithm A that solves the k-session problem.
- Consists of process automata and FIFO send/receive channel automata.

- Assume:
 - d = upper bound on time to deliver any message (don't count pileups)
 - I = local processing time, I << d</p>
- Define time measure T(A):
 - Timed execution α : Fair execution with times labeling events, subject to upper bound of d on message delay, I for local processing.
 - $T(\alpha)$ = time of last flash in α
 - T(A) = supremum, over all timed executions α , of T(α).

Lower bound

- Theorem 2: If A solves the k-session problem then $T(A) \ge (k-1)$ diam d.
- Factor of diam worse than the synchronous algorithm.
- Definition: Slow timed execution: All message deliveries take exactly the upper bound time d.
- Proof: By contradiction.
 - Suppose T(A) < (k-1) diam d.
 - Fix α , any slow timed execution of A.
 - α contains at least k sessions.
 - α contains no flash event at a time \geq (k-1) diam d.
 - So we can decompose $\alpha = \alpha_1 \alpha_2 \dots \alpha_{k-1} \alpha''$, where:

$$\alpha'$$

- Time of last event in α' is < (k-1) diam d.
- No flash events occur in α".
- Difference between the times of the first and last events in each α_r is < diam d.

Lower bound, cont'd

- Now reorder events in α , while preserving dependencies:
 - Events of same process.
 - Send and corresponding receive.
- Reordered execution will have < k sessions, a contradiction.
- Fix processes, j_0 and j_1 , with dist (j_0, j_1) = diam (maximum distance apart).
- Reorder within each α_r separately:
 - For α_1 : Reorder to $\beta_1 = \gamma_1 \delta_1$, where:
 - γ_1 contains no event of j_0 , and
 - δ_1 contains no event of j_1 .
 - For α_2 : Reorder to $\beta_2 = \gamma_2 \delta_2$, where:
 - γ_1 contains no event of j_1 , and
 - δ_1 contains no event of j_0 .
 - And alternate thereafter.

Lower bound, cont'd

- If the reordering yields a fair execution of A (can ignore timing), then we get a contradiction, because it contains ≤ k-1 sessions:
 - No session entirely within γ_1 , (no event of j_0).
 - No session entirely within $\delta_1 \gamma_2$ (no event of j_1).
 - No session entirely within $\delta_2 \gamma_3$ (no event of j_0).
 - Thus, every session must span some γ_r δ_r boundary.
 - But, there are only k-1 such boundaries.

- ...

• So, it remains only to construct the reordering.

Constructing the reordering

- WLOG, consider α_r for r odd.
- Need $\beta_r = \gamma_r \delta_r$, where γ_r contains no event of j_0 , δ_r no event of j_1 .
- If α_r contains no event of j_0 then don't reorder, just define $\gamma_r = \alpha_r$, $\delta_r = \lambda$.
- Similarly if α_r contains no event of j_1 .
- So assume α_r contains at least one event of each.
- Let π be the first event of j_0 , ϕ the last event of j_1 in α_r .
- Claim: φ does not depend on π .
- Why: Insufficient time for messages to travel from j₀ to j₁:
 - Execution α is slow (message deliveries take time d).
 - Time between π and ϕ is < diam d.
 - j₀ and j₁ are diam apart.
- Then, we can reorder α_r to β_r , in which π comes after φ .
- Consequently, in β_r , all events of j_1 precede all events of j_0 .
- Define γ_r to be the part ending with ϕ , δ_r the rest.

Next time...

- Time, clocks, and the ordering of events in a distributed system.
- State-machine simulation.
- Vector timestamps.
- Reading:
 - Chapter 18
 - [Lamport time, clocks...paper]
 - [Mattern paper]

6.852J / 18.437J Distributed Algorithms Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.