
6.852: Distributed Algorithms
Fall, 2009

Class 10



Today’s plan
• Simulating synchronous algorithms in 

asynchronous networks
• Synchronizers
• Lower bound for global synchronization
• Reading:  Chapter 16
• Next:  

– Logical time
– Reading:  Chapter 18, [Lamport time, clocks…], 

[Mattern]



Minimum spanning tree, revisited

• In GHS, complications arise because different parts of the 
network can be at very different levels at the same time.

• Alternative, more synchronized approach:  
– Keep levels of nearby nodes close, by restricting the asynchrony.
– Each process uses a level variable to keep track of the level of its 

current component (according to its local knowledge).
– Process at level k delays all “interesting” processing until it hears 

that all its neighbors have reached level ≥ k.
• Looks (to each process) like global synchronization, but easier to 

achieve.
• Each node inform its neighbors whenever it changes level.

• Resulting algorithm is simpler than GHS.
• Complexity:

– Time:  O(n log n), like GHS.
– Messages:  O( |E| log n), somewhat worse than GHS.



Strategy for designing asynchronous 
distributed algorithms

• Assume undirected graph G = (V,E).
• Design a synchronous algorithm for G, transform it into an 

asynchronous algorithm using local synchronization. 
• Synchronize at every round (not every “level” as above).
• Method works only for non-fault-tolerant algorithms.

– In fact, no general transformation can work for fault-tolerant 
algorithms.

– E.g., ordinary stopping agreement is solvable in synchronous 
networks, but unsolvable in asynchronous networks [FLP].

• Present a general strategy, some special implementations.
– Describe in terms of sub-algorithms, modeled as abstract services.
– [Raynal book], [Awerbuch papers]

• Then a lower bound on the time for global synchronization.
– Larger than upper bounds for local synchronization.



Synchronous model, reformulated   
in terms of automata 

• Interactions between user process i and synchronizer:
– user-send(T,r)i

• T = set of (message, destination) pairs, destinations are neighbors of i.
• T = empty set ∅, if no messages sent by i at round r.
• r = round number

– user-rcv(T,r)i
• T = set of (message, source) pairs, source a neighbor of i.
• r = round number

GlobSynch

U1
U2 Un

• Global synchronizer automaton
• User process automata:

– Processes of an algorithm that uses 
the synchronizer.

– May have other inputs/outputs, for 
interacting with other programs.



Behavior of GlobSynch

• Not exactly the synchronous model:
– GlobSynch can receive round 2 

messages from i before it finishes 
delivering all the round 1 messages.

– But it doesn’t do anything with these 
until it’s finished round 1 deliveries.

– So, essentially the same.

• GlobSynch synchronizes globally 
between each pair of rounds.

GlobSynch

U1
U2 Un

• Manages global synchronization of rounds:
– Users send packages of all their round 1 messages, using user-

send(T,r) actions.
– GlobSynch waits for all round 1 messages, sorts them, then 

delivers to users, using user-rcv(T,r) actions.
– Users send round 2 messages, etc.



Requirements on each Ui

– State consists of:
• A tray of messages for each (destination, 

round).
• Some Boolean flags to keep track of 

which sends and rcvs have happened.
– Transitions obvious.
– Liveness expressed by tasks, one for 

each (destination, round). GlobSynch

U1
U2 Un

• Well-formed:
– Ui sends the right kinds of messages, in the right order, at the right 

times.

• Liveness:
– After receiving the messages for any round r, Ui eventually submits  

messages for round r+1. 

• See code for GlobSynch in [book, p. 534].



Synchronizers



The Synchronizer Problem
• Design an automaton A that 

“implements” GlobSynch in the 
sense that it “looks the same” to 
each Ui:
– Has the right interface.
– Exhibits the right behavior:

• ∀ fair execution α of the Uis and A,
• ∃ fair execution α′ of the Uis and 

GlobSynch, such that
• ∀ i, α is indistinguishable by Ui from α′, 
α ~Ui α′.

• A “behaves like” GlobSynch, as far 
as any individual Ui can tell.

• Allows global reordering of events 
at different Ui.

GlobSynch

U1
U2 Un

A

U1
U2 Un



Local Synchronizer, LocSynch
• Enforces local synchronization rather than                      

global, still looks the same locally.

• Only one difference from GlobSynch:  
– Precondition for usr-rcv(T,r)i.
– Now, to deliver round r messages to user i,                     

check only that i’s neighbors have sent round r messages.
– Don’t wait for all nodes to get this far.

• Lemma 1: For every fair execution α of the Uis and LocSynch,  
there is a fair execution α′ of the Uis and GlobSynch, such that for 
each Ui, α ~Ui α′.

• Proof:  
– Can’t use a simulation relation, since global order of external events 

need not be the same, and simulation relations preserve external order.
– So consider partial order of events and dependencies:

LocSynch

U1
U2 Un



Proof sketch for Lemma 1
• Consider partial order of events and dependencies:

– Each Ui event depends on previous Ui events.
– user-rcv(*,r)i event depends on user-send(*,r)j for every neighbor j of i.
– Take transitive closure.

• Claim: If you start with a (fair) execution of LocSynch system and 
reorder the events while preserving these dependencies, the result is 
still a (fair) execution of the LocSynch system.

• So, obtain α′ by reordering the events of α so that:
– These dependencies are preserved, and
– Events associated with any round r precede those of round r+1. 

• Can do this because round r+1 events never depend on round r 
events.

• This reordering preserves the view of each Ui.
• Also, yields the extra user-rcv precondition needed by GlobSynch.



Trivial distributed algorithm to 
implement LocSynch

• Processes, point-to-point channels.
• SimpleSynch algorithm, process i:

– After user-send(T,r)i, send message to each neighbor j containing 
round number r and any basic algorithm messages i has for j.

– Send (∅,r) message if i has no basic algorithm messages for j.
– Wait to receive round r messages from all neighbors.
– Output user-rcv().

SimpleSynch
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• Lemma 2:  
– For every fair execution α of 

Uis and SimpleSynch,  there 
is a fair execution α′ of Uis
and LocSynch, such that for 
each Ui, α ~Ui α′.

• Here, indistinguishable by 
all the Uis together---
preserves external order.



SimpleSynch, cont’d
• Proof of Lemma 2:

– No reordering needed, preserves order of external events.
– Could use simulation relation.

• Corollary: For every fair execution α of Uis and 
SimpleSynch,  there is a fair execution α′ of Uis and 
GlobSynch, such that for each Ui, α ~Ui α′.

• Proof: Combine Lemmas 1 and 2.
• Complexity:

– Messages:  ≤ 2 |E| per simulated round.
– Time:  

• Assume user always sends ASAP.
• l, upper bound on task time for each task of each process.
• d, upper bound on time for first message in channel to be delivered
• Then r rounds completed within time r (d + O(l) ).



Reducing the communication
• General Safe Synchronizer strategy [Awerbuch].
• If there’s no message Ui →Uj at round r of underlying 

synchronous algorithm, try to avoid sending such 
messages in the simulating asynchronous algorithm.

• Can’t just omit them, since each process must determine, 
for each round r, when it has received all of its round r 
messages.

• Approach: Separate the functions of:
– Sending the actual messages, and
– Determining when the round is over.
– Algorithm decomposes into:

• Front Ends + channels + SafeSynch

For the actual messages For deciding when finished

SafeSynch
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FE2
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Safe Synchronizers
• FE:

– Sends, receives actual messages for each round r.
– Sends acks for received messages.
– Waits to receive acks for its own messages.

• Notes:
– Sends messages only for actual messages of the 

underlying algorithm, no dummies.
– Acks double the messages, but can still be a win.

SafeSynch
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• FE, cont’d:
– When FE receives acks for all its round r messages, it’s safe: it knows 

that all its messages have been received by its neighbors.
– Then sends OK for round r to SafeSynch.
– Before responding to user, must know that it has received all its 

neighbors’ messages for round r.
– Suffices to know that all its neighbors are safe, that is, that they know 

that their messages have been received.
• SafeSynch:

– Tells each FE when its neighbors are safe!
– After it has received OK from i and all its neighbors, sends GO to i.



Correctness of SafeSynch
• Lemma 3: For every fair execution α of SafeSynch system,  there is a 

fair execution α′ of LocSynch system, such that for each Ui, α ~Ui α′.
• (Actually, indistinguishable to all the Uis together.)

• Corollary: For every fair execution α of SafeSynch system,  there is a 
fair execution α′ of GlobSynch system, such that for each Ui, α ~Ui α′.

• Must still implement SafeSynch with a distributed algorithm…

• We now give three SafeSynch implementations, Synchronizers Α, Β, 
and Γ [Awerbuch].

• All implement SafeSynch, in the sense that the resulting systems are 
indistinguishable to each Ui (in fact, to all the Uis together).
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• SafeSynch’s job:  After receiving OK for 
round r from i and all its neighbors,  
send GO for round r to i.

• Synchronizer Α:
– When process i receives OKi, sends to 

neighbors.
– When process i hears that it and all its 

neighbors have received OKs, outputs GOi.
• Obviously implements SafeSynch.
• Complexity: To emulate r rounds:

– Messages:   ≤ 2m + 2 r |E|, if synch alg sends m actual messages 
in r rounds.

– Time:   ≤ r (3d + O(l))

SafeSynch Implementations

Messages and acks by FEs Messages within Α

msgs

acks

report-OK

FE

Α



Comparisons
• To emulate r rounds:

– SafeSynch system with Synchronizer Α
• Messages:   2m + 2 r |E|
• Time:    r (3d + O(l))

– Simple Synch
• Messages:   2 r |E|
• Time:    r (d + O(l))

• So Synchronizer Α hasn’t improved anything.
• Next, Synchronizer Β, with lower message complexity, 

higher time complexity.
• Then Synchronizer Γ, does well in terms of both 

messages and time, in an important subclass of 
networks (those with a “cluster” structure).



Synchronizer Β
• Assumes rooted spanning tree of graph, height h.
• Algorithm:

– All processes convergecast OK to root, using spanning tree edges.
– Root then bcasts permission to GO, again using the spanning tree.

• Obviously implements SafeSynch (overkill).
• Complexity: To emulate r rounds, in which synch algorithm 

sends m messages:
– Messages:  2 m   +   2 r n

– Beats Α:   2m + 2 r |E|
– Time:   ≤ r (2d + O(l) + 2h (d + O(l)))

Messages and acks by FEs Messages within Β

Β,  convergecast and broadcastFEs



Synchronizer Γ
• Hybrid of Α and Β.
• In “clustered” (almost partitionable) graphs, can get performance 

advantages of both:
– Time like Α, communication like Β.

• Assume spanning forest of rooted trees, each tree spanning a 
“cluster” of nodes.

• Example: 
– Clusters = triangles
– All edges between                                               

adjacent triangles.

– Spanning forest:

• Use Β within each cluster, Α among clusters.



• ClusterSynch:
– After receiving OKs from 

everyone in the cluster,  sends 
cluster-OK to ForestSynch.

– After receiving cluster-GO from 
ForestSynch, sends GO to 
everyone in the cluster.

– Similar to Β.

Decomposition of Γ
OK

GO
GO

OK

SafeSynch

ForestSynch

ClusterSynch ClusterSynch

• ForestSynch:
– Essentially, a safe synchronizer for the “Cluster Graph” G′:

• Nodes of G′ are the clusters.
• Edge between two clusters iff they contain nodes that are adjacent in G.

• Lemma: Γ Implements SafeSynch
• Proof idea: 

– Must show:  If GO(r)i occurs, then there must be a previous OK(r)i, and 
also previous OK(r)j for every neighbor j of i.



Γ Implements SafeSynch
• Show: If GO(r)i occurs, then there must be a previous OK(r)i, and 

also previous OK(r)j for every neighbor j of i.
• Must be a previous OK(r)i:

– GO(r)i preceded by cluster-GO(r) for i’s cluster (ClusterSynch),
– Which is preceded by cluster-OK(r) for i’s cluster (ForestSynch),
– Which is preceded by OK(r)i (ClusterSynch).

• Must be previous OK(r)j for neighbor j in the same cluster as i.
– GO(r)i preceded by cluster-GO(r) for i’s cluster (ClusterSynch),
– Which is preceded by cluster-OK(r) for i’s cluster (ForestSynch),
– Which is preceded by OK(r)j (ClusterSynch).

• Must be previous OK(r)j for neighbor j in a different cluster. 
– Then the two clusters are neighboring clusters in the cluster graph G′,

because i and j are neighbors in G.  
– GO(r)i preceded by cluster-GO(r) for i’s cluster (ClusterSynch),
– Which is preceded by cluster-OK(r) for j’s cluster (ForestSynch),
– Which is preceded by OK(r)j (ClusterSynch).



Implementing ClusterSynch and 
ForestSynch

• Still need distributed algorithms for these…
• ClusterSynch:

– Use variant of Synchronizer Β on cluster tree:
• Convergecast OKs to root on the cluster tree, 
• root outputs cluster-OK, receives cluster-GO, 
• root broadcasts GO on the cluster tree.

• ForestSynch:
– Clusters run Synchronizer Α.

• But clusters can’t actually run anything…
• So cluster roots run Α.
• Simulate communication channels between 

neighboring clusters by indirect communication 
paths between the roots.

• These paths must exist:  Run through the trees 
and across edges that join the clusters.

• cluster-OK and cluster-GO are internal 
actions of the cluster root processes.



Putting the pieces together
• In Γ, real process i emulates FrontEndi, process i in ClusterSynch

algorithm, and process i in ForestSynch algorithm.
– Composition of three automata.

• Real channel Ci,j emulates channel from FrontEndi to FrontEndj, 
channel from i to j in ClusterSynch algorithm, and channel from i to 
j in ForestSynch algorithm.

• Orthogonal decompositions of Γ:
– Physical:  Nodes and channels.
– Logical:  FEs, ClusterSynch, and ForestSynch
– Same system, 2 views.
– Works because composition of automata is associative, commutative.

• Such decompositions are common for complex distributed 
algorithms:
– Each node runs pieces of algorithms at several layers.

• Theorem 1: For every fair execution α of Γ system (or Α, or Β ),  
there is a fair execution α′ of GlobSynch system, such that for each 
Ui, α ~Ui α′.



Complexity of Γ
• Consider r rounds, in which the synchronous algorithm sends m 

messages.
• Let:

– h = max height of a cluster tree
– e′ = total number of edges on shortest paths between roots of neighboring 

clusters.
• Messages:   2m + O(r (n + e′))

• Time:  O ( r h (d + l))
• If n + e′ << |E|, then Γ’s message complexity is much better than Α’s.
• If h << height of spanning tree of entire network, then Γ’s time 

complexity is much better than Β’s.
• Both of these are true for “nicely clustered” networks.

Messages and acks by FEs
Messages in cluster trees,
In ClusterSynch algorithm

Messages between roots,
In ForestSynch algorithm



Comparison of Costs
• r rounds
• m messages sent by synchronous algorithm
• d, message delay
• Ignore local processing time l.
• e′ = total length of paths between roots of neighboring clusters
• h = height of global spanning tree
• h′ = max height of cluster tree

Α

Γ

Β

Messages Time

2 m + 2 r |E|

2 m + 2 r n

2 m + O( r (n + e′))

O( r d )

O( r h d )

O( r h′ d )



Example
• p × p grid of complete k-graphs, with all nodes of 

neighboring k-graphs connected.
• Clusters = k-graphs
• h = O(p)
• h′ = O(1)

Α

Γ

Β

Messages Time

2 m + O( r p2 k2 )

2 m + O( r p2 k )

2 m + O( r p2 k)

O( r d )

O( r p d )

O( r d )



Application 1:  Breadth-first search
• Recap:

– SynchBFS:  
• Constructs BFS tree
• O( |E| ) messages, O( diam ) rounds

– When run in asynchronous network:
• Constructs a spanning tree, but not necessarily BFS

– Modified version, with corrections:
• Constructs BFS tree
• O( n |E| ) messages, O( diam n d ) time (counting pileups)

• BFS using synchronizer:
– Runs more like SynchBFS, avoids corrections, pileups
– With Synchronizer Α: 

• O( diam |E| ) messages, O( diam d ) time
– With Synchronizer Β :  

• Better communication, but costs time.
– With Synchronizer Γ :  

• Better overall, in clustered graphs.



Application 2:  Broadcast and ack

• Use synchronizer to simulate synchronous broadcast-ack
combination.

• Assume known leader, but no spanning tree.
• Recap:

– Synchronous Bcast-ack:
• Constructs spanning tree while broadcasting
• O( |E| ) messages, O( diam ) rounds

– Asynchronous Bcast-ack:
• Timing anomaly:  Construct non-min-hop paths, on which acks travel.
• O( |E| ) messages, O( n d ) time

• Using (e.g.) Synchronizer Α:
• Avoids timing anomaly.
• Broadcast travels on min-hop paths, so acks follow min-hop paths.
• O( diam |E| ) messages, O( diam d ) time



Application 3:  Shortest paths
• Assume weights on edges.
• Without termination detection.
• Recap:

– Synchronous Bellman-Ford:
• Allows some corrections, due to low-cost high-hop-count paths.
• O( n |E| ) messages, O( n ) rounds

– Asynch Bellman-Ford
• Many corrections possible (exponential), due to message delays.
• Message complexity exponential in n.
• Time complexity exponential in n, counting message pileups.

• Using (e.g.) Synchronizer Α:
• Behaves like Synchronous Bellman-Ford.
• Avoids corrections due to message delays.
• Still has corrections due to low-cost high-hop-count paths.
• O( n |E| ) messages, O( n d ) time 
• Big improvement.



Further work

• To read more:
– See Awerbuch’s extensive work on

• Applications of synchronizers.
• Distributed algorithms for clustered networks.

– Also work by Peleg
• Q:  This work used a strategy of purposely 

slowing down portions of a system in order to 
improve overall performance.  In which 
situations is this strategy a win?



Lower Bound on Time for 
Synchronization



Lower bound on time
• Α, Β, Γ emulate synchronous algorithms only in a local sense:

– Looks the same to individual users,
– Not to the combination of all users---can reorder events at different users.

• Good enough for many applications (e.g., data management).
• Not for others (e.g., embedded systems).

• Now show that global synchronization is inherently more costly than 
local synchronization, in terms of time complexity. 

• Approach:
– Define a particular global synchronization problem, the k-Session Problem.
– Show this problem has a fast synchronous algorithm, that is, a fast algorithm 

using GlobSynch.
• Time O( k d ), assuming GlobSynch takes steps ASAP.

– Prove that all asynchronous distributed algorithms for this problem are slow.
• Time Ω( k diam d ). 

– Implies GlobSynch has no fast distributed implementation.
• Contrast:

– Α, SimpleSynch are fast distributed implementations of LocSynch.



k-Session Problem
• Session:  

– Any sequence of flash events 
containing at least one flashi
event for each location i.

flash1
flashn

flash2

• k-Session problem:
– Perform at least k separate sessions (in every fair execution), 

and eventually halt.

• Original motivation:
– Synchronization needed to perform parallel matrix computations 

that require enough interleaving of process steps, but tolerate 
extra steps.



Example: Boolean matrix computation

• n = m3 processes compute the transitive closure of m × m Boolean 
matrix M.

• pi,j,k repeatedly does:  
– read M(i,k), read M(k,j)
– If both are 1 then write 1 in M(i,j)

• Each flashi,j,k in abstract session problem represents a chance for 
pi,j,k to read or write a matrix entry.

• With enough interleaving ( O (log n) sessions ), this is guaranteed 
to compute transitive closure.

flash1
flashn

flash2



Synchronous solution

• Fast algorithm using GlobSynch:  
– Just flash once at every round.
– k sessions done in time O( k d ), assuming 

GlobSynch takes steps ASAP.

GlobSynch

U1
U2 Un

flash1 flashn

flash2



Asynchronous lower bound
• Consider distributed algorithm A that solves the k-session problem.
• Consists of process automata and FIFO send/receive channel 

automata.

• Assume:
– d = upper bound on time to deliver any message (don’t count pileups)
– l = local processing time, l << d

• Define time measure T(A):
– Timed execution α:  Fair execution with times labeling events, subject to 

upper bound of d on message delay, l for local processing.
– T(α) = time of last flash in α
– T(A) = supremum, over all timed executions α, of T(α).

A

flash1
flashn

flash2



Lower bound
• Theorem 2: If A solves the k-session problem then T(A) ≥ (k-1) diam d.
• Factor of diam worse than the synchronous algorithm.

• Definition:  Slow timed execution: All message deliveries take exactly 
the upper bound time d.

• Proof: By contradiction.
– Suppose T(A) < (k-1) diam d.
– Fix α, any slow timed execution of A.
– α contains at least k sessions.
– α contains no flash event at a time ≥ (k-1) diam d.
– So we can decompose α = α1 α2 …αk-1 α″, where:

• Time of last event in α′ is < (k-1) diam d.
• No flash events occur in α″.
• Difference between the times of the first and last events in each αr is < diam d.

α′



Lower bound, cont’d
• Now reorder events in α, while preserving dependencies:

– Events of same process.
– Send and corresponding receive.

• Reordered execution will have < k sessions, a 
contradiction.

• Fix processes, j0 and j1, with dist(j0,j1) = diam (maximum 
distance apart).

• Reorder within each αr separately:
– For α1:  Reorder to β1 = γ1 δ1, where:

• γ1 contains no event of j0, and
• δ1 contains no event of j1.

– Forα2:  Reorder to β2 = γ2 δ2, where:
• γ1 contains no event of j1, and
• δ1 contains no event of j0.

– And alternate thereafter.



Lower bound, cont’d
• If the reordering yields a fair execution of A (can 

ignore timing), then we get a contradiction, 
because it contains ≤ k-1 sessions:
– No session entirely within γ1, (no event of j0).
– No session entirely within δ1 γ2 (no event of j1).
– No session entirely within δ2 γ3 (no event of j0).
– …
– Thus, every session must span some γr - δr boundary.
– But, there are only k-1 such boundaries.

• So, it remains only to construct the reordering.



Constructing the reordering
• WLOG, consider αr for r odd.
• Need βr = γr δr, where γr contains no event of j0, δr no event of j1.

• If αr contains no event of j0 then don’t reorder, just define γr = αr, δr = λ.
• Similarly if αr contains no event of j1.
• So assume αr contains at least one event of each.
• Let π be the first event of j0, ϕ the last event of j1 in αr.

• Claim: ϕ does not depend on π.
• Why: Insufficient time for messages to travel from j0 to j1:

– Execution α is slow (message deliveries take time d).
– Time between π and ϕ is < diam d.
– j0 and j1 are diam apart.

• Then, we can reorder αr to βr, in which π comes after ϕ.
• Consequently, in βr, all events of j1 precede all events of j0.
• Define γr to be the part ending with ϕ, δr the rest.



Next time…

• Time, clocks, and the ordering of events in a 
distributed system.

• State-machine simulation.
• Vector timestamps.
• Reading:  

– Chapter 18
– [Lamport time, clocks…paper]
– [Mattern paper]
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