
6.852: Distributed Algorithms
Fall, 2009

Class 10

Today’s plan
• Simulating synchronous algorithms in

asynchronous networks
• Synchronizers
• Lower bound for global synchronization
• Reading: Chapter 16
• Next:

– Logical time
– Reading: Chapter 18, [Lamport time, clocks…],

[Mattern]

Minimum spanning tree, revisited

• In GHS, complications arise because different parts of the
network can be at very different levels at the same time.

• Alternative, more synchronized approach:
– Keep levels of nearby nodes close, by restricting the asynchrony.
– Each process uses a level variable to keep track of the level of its

current component (according to its local knowledge).
– Process at level k delays all “interesting” processing until it hears

that all its neighbors have reached level ≥ k.
• Looks (to each process) like global synchronization, but easier to

achieve.
• Each node inform its neighbors whenever it changes level.

• Resulting algorithm is simpler than GHS.
• Complexity:

– Time: O(n log n), like GHS.
– Messages: O(|E| log n), somewhat worse than GHS.

Strategy for designing asynchronous
distributed algorithms

• Assume undirected graph G = (V,E).
• Design a synchronous algorithm for G, transform it into an

asynchronous algorithm using local synchronization.
• Synchronize at every round (not every “level” as above).
• Method works only for non-fault-tolerant algorithms.

– In fact, no general transformation can work for fault-tolerant
algorithms.

– E.g., ordinary stopping agreement is solvable in synchronous
networks, but unsolvable in asynchronous networks [FLP].

• Present a general strategy, some special implementations.
– Describe in terms of sub-algorithms, modeled as abstract services.
– [Raynal book], [Awerbuch papers]

• Then a lower bound on the time for global synchronization.
– Larger than upper bounds for local synchronization.

Synchronous model, reformulated
in terms of automata

• Interactions between user process i and synchronizer:
– user-send(T,r)i

• T = set of (message, destination) pairs, destinations are neighbors of i.
• T = empty set ∅, if no messages sent by i at round r.
• r = round number

– user-rcv(T,r)i
• T = set of (message, source) pairs, source a neighbor of i.
• r = round number

GlobSynch

U1
U2 Un

• Global synchronizer automaton
• User process automata:

– Processes of an algorithm that uses
the synchronizer.

– May have other inputs/outputs, for
interacting with other programs.

Behavior of GlobSynch

• Not exactly the synchronous model:
– GlobSynch can receive round 2

messages from i before it finishes
delivering all the round 1 messages.

– But it doesn’t do anything with these
until it’s finished round 1 deliveries.

– So, essentially the same.

• GlobSynch synchronizes globally
between each pair of rounds.

GlobSynch

U1
U2 Un

• Manages global synchronization of rounds:
– Users send packages of all their round 1 messages, using user-

send(T,r) actions.
– GlobSynch waits for all round 1 messages, sorts them, then

delivers to users, using user-rcv(T,r) actions.
– Users send round 2 messages, etc.

Requirements on each Ui

– State consists of:
• A tray of messages for each (destination,

round).
• Some Boolean flags to keep track of

which sends and rcvs have happened.
– Transitions obvious.
– Liveness expressed by tasks, one for

each (destination, round). GlobSynch

U1
U2 Un

• Well-formed:
– Ui sends the right kinds of messages, in the right order, at the right

times.

• Liveness:
– After receiving the messages for any round r, Ui eventually submits

messages for round r+1.

• See code for GlobSynch in [book, p. 534].

Synchronizers

The Synchronizer Problem
• Design an automaton A that

“implements” GlobSynch in the
sense that it “looks the same” to
each Ui:
– Has the right interface.
– Exhibits the right behavior:

• ∀ fair execution α of the Uis and A,
• ∃ fair execution α′ of the Uis and

GlobSynch, such that
• ∀ i, α is indistinguishable by Ui from α′,
α ~Ui α′.

• A “behaves like” GlobSynch, as far
as any individual Ui can tell.

• Allows global reordering of events
at different Ui.

GlobSynch

U1
U2 Un

A

U1
U2 Un

Local Synchronizer, LocSynch
• Enforces local synchronization rather than

global, still looks the same locally.

• Only one difference from GlobSynch:
– Precondition for usr-rcv(T,r)i.
– Now, to deliver round r messages to user i,

check only that i’s neighbors have sent round r messages.
– Don’t wait for all nodes to get this far.

• Lemma 1: For every fair execution α of the Uis and LocSynch,
there is a fair execution α′ of the Uis and GlobSynch, such that for
each Ui, α ~Ui α′.

• Proof:
– Can’t use a simulation relation, since global order of external events

need not be the same, and simulation relations preserve external order.
– So consider partial order of events and dependencies:

LocSynch

U1
U2 Un

Proof sketch for Lemma 1
• Consider partial order of events and dependencies:

– Each Ui event depends on previous Ui events.
– user-rcv(*,r)i event depends on user-send(*,r)j for every neighbor j of i.
– Take transitive closure.

• Claim: If you start with a (fair) execution of LocSynch system and
reorder the events while preserving these dependencies, the result is
still a (fair) execution of the LocSynch system.

• So, obtain α′ by reordering the events of α so that:
– These dependencies are preserved, and
– Events associated with any round r precede those of round r+1.

• Can do this because round r+1 events never depend on round r
events.

• This reordering preserves the view of each Ui.
• Also, yields the extra user-rcv precondition needed by GlobSynch.

Trivial distributed algorithm to
implement LocSynch

• Processes, point-to-point channels.
• SimpleSynch algorithm, process i:

– After user-send(T,r)i, send message to each neighbor j containing
round number r and any basic algorithm messages i has for j.

– Send (∅,r) message if i has no basic algorithm messages for j.
– Wait to receive round r messages from all neighbors.
– Output user-rcv().

SimpleSynch

U1

U2
Un

• Lemma 2:
– For every fair execution α of

Uis and SimpleSynch, there
is a fair execution α′ of Uis
and LocSynch, such that for
each Ui, α ~Ui α′.

• Here, indistinguishable by
all the Uis together---
preserves external order.

SimpleSynch, cont’d
• Proof of Lemma 2:

– No reordering needed, preserves order of external events.
– Could use simulation relation.

• Corollary: For every fair execution α of Uis and
SimpleSynch, there is a fair execution α′ of Uis and
GlobSynch, such that for each Ui, α ~Ui α′.

• Proof: Combine Lemmas 1 and 2.
• Complexity:

– Messages: ≤ 2 |E| per simulated round.
– Time:

• Assume user always sends ASAP.
• l, upper bound on task time for each task of each process.
• d, upper bound on time for first message in channel to be delivered
• Then r rounds completed within time r (d + O(l)).

Reducing the communication
• General Safe Synchronizer strategy [Awerbuch].
• If there’s no message Ui →Uj at round r of underlying

synchronous algorithm, try to avoid sending such
messages in the simulating asynchronous algorithm.

• Can’t just omit them, since each process must determine,
for each round r, when it has received all of its round r
messages.

• Approach: Separate the functions of:
– Sending the actual messages, and
– Determining when the round is over.
– Algorithm decomposes into:

• Front Ends + channels + SafeSynch

For the actual messages For deciding when finished

SafeSynch

U2

FE2

U1

FE1

OK GO GOOK

Safe Synchronizers
• FE:

– Sends, receives actual messages for each round r.
– Sends acks for received messages.
– Waits to receive acks for its own messages.

• Notes:
– Sends messages only for actual messages of the

underlying algorithm, no dummies.
– Acks double the messages, but can still be a win.

SafeSynch

U2

FE2

U1

FE1

OK GO GOOK

• FE, cont’d:
– When FE receives acks for all its round r messages, it’s safe: it knows

that all its messages have been received by its neighbors.
– Then sends OK for round r to SafeSynch.
– Before responding to user, must know that it has received all its

neighbors’ messages for round r.
– Suffices to know that all its neighbors are safe, that is, that they know

that their messages have been received.
• SafeSynch:

– Tells each FE when its neighbors are safe!
– After it has received OK from i and all its neighbors, sends GO to i.

Correctness of SafeSynch
• Lemma 3: For every fair execution α of SafeSynch system, there is a

fair execution α′ of LocSynch system, such that for each Ui, α ~Ui α′.
• (Actually, indistinguishable to all the Uis together.)

• Corollary: For every fair execution α of SafeSynch system, there is a
fair execution α′ of GlobSynch system, such that for each Ui, α ~Ui α′.

• Must still implement SafeSynch with a distributed algorithm…

• We now give three SafeSynch implementations, Synchronizers Α, Β,
and Γ [Awerbuch].

• All implement SafeSynch, in the sense that the resulting systems are
indistinguishable to each Ui (in fact, to all the Uis together).

U2

FE2

U1

FE1

OK GO GOOK

Α

• SafeSynch’s job: After receiving OK for
round r from i and all its neighbors,
send GO for round r to i.

• Synchronizer Α:
– When process i receives OKi, sends to

neighbors.
– When process i hears that it and all its

neighbors have received OKs, outputs GOi.
• Obviously implements SafeSynch.
• Complexity: To emulate r rounds:

– Messages: ≤ 2m + 2 r |E|, if synch alg sends m actual messages
in r rounds.

– Time: ≤ r (3d + O(l))

SafeSynch Implementations

Messages and acks by FEs Messages within Α

msgs

acks

report-OK

FE

Α

Comparisons
• To emulate r rounds:

– SafeSynch system with Synchronizer Α
• Messages: 2m + 2 r |E|
• Time: r (3d + O(l))

– Simple Synch
• Messages: 2 r |E|
• Time: r (d + O(l))

• So Synchronizer Α hasn’t improved anything.
• Next, Synchronizer Β, with lower message complexity,

higher time complexity.
• Then Synchronizer Γ, does well in terms of both

messages and time, in an important subclass of
networks (those with a “cluster” structure).

Synchronizer Β
• Assumes rooted spanning tree of graph, height h.
• Algorithm:

– All processes convergecast OK to root, using spanning tree edges.
– Root then bcasts permission to GO, again using the spanning tree.

• Obviously implements SafeSynch (overkill).
• Complexity: To emulate r rounds, in which synch algorithm

sends m messages:
– Messages: 2 m + 2 r n

– Beats Α: 2m + 2 r |E|
– Time: ≤ r (2d + O(l) + 2h (d + O(l)))

Messages and acks by FEs Messages within Β

Β, convergecast and broadcastFEs

Synchronizer Γ
• Hybrid of Α and Β.
• In “clustered” (almost partitionable) graphs, can get performance

advantages of both:
– Time like Α, communication like Β.

• Assume spanning forest of rooted trees, each tree spanning a
“cluster” of nodes.

• Example:
– Clusters = triangles
– All edges between

adjacent triangles.

– Spanning forest:

• Use Β within each cluster, Α among clusters.

• ClusterSynch:
– After receiving OKs from

everyone in the cluster, sends
cluster-OK to ForestSynch.

– After receiving cluster-GO from
ForestSynch, sends GO to
everyone in the cluster.

– Similar to Β.

Decomposition of Γ
OK

GO
GO

OK

SafeSynch

ForestSynch

ClusterSynch ClusterSynch

• ForestSynch:
– Essentially, a safe synchronizer for the “Cluster Graph” G′:

• Nodes of G′ are the clusters.
• Edge between two clusters iff they contain nodes that are adjacent in G.

• Lemma: Γ Implements SafeSynch
• Proof idea:

– Must show: If GO(r)i occurs, then there must be a previous OK(r)i, and
also previous OK(r)j for every neighbor j of i.

Γ Implements SafeSynch
• Show: If GO(r)i occurs, then there must be a previous OK(r)i, and

also previous OK(r)j for every neighbor j of i.
• Must be a previous OK(r)i:

– GO(r)i preceded by cluster-GO(r) for i’s cluster (ClusterSynch),
– Which is preceded by cluster-OK(r) for i’s cluster (ForestSynch),
– Which is preceded by OK(r)i (ClusterSynch).

• Must be previous OK(r)j for neighbor j in the same cluster as i.
– GO(r)i preceded by cluster-GO(r) for i’s cluster (ClusterSynch),
– Which is preceded by cluster-OK(r) for i’s cluster (ForestSynch),
– Which is preceded by OK(r)j (ClusterSynch).

• Must be previous OK(r)j for neighbor j in a different cluster.
– Then the two clusters are neighboring clusters in the cluster graph G′,

because i and j are neighbors in G.
– GO(r)i preceded by cluster-GO(r) for i’s cluster (ClusterSynch),
– Which is preceded by cluster-OK(r) for j’s cluster (ForestSynch),
– Which is preceded by OK(r)j (ClusterSynch).

Implementing ClusterSynch and
ForestSynch

• Still need distributed algorithms for these…
• ClusterSynch:

– Use variant of Synchronizer Β on cluster tree:
• Convergecast OKs to root on the cluster tree,
• root outputs cluster-OK, receives cluster-GO,
• root broadcasts GO on the cluster tree.

• ForestSynch:
– Clusters run Synchronizer Α.

• But clusters can’t actually run anything…
• So cluster roots run Α.
• Simulate communication channels between

neighboring clusters by indirect communication
paths between the roots.

• These paths must exist: Run through the trees
and across edges that join the clusters.

• cluster-OK and cluster-GO are internal
actions of the cluster root processes.

Putting the pieces together
• In Γ, real process i emulates FrontEndi, process i in ClusterSynch

algorithm, and process i in ForestSynch algorithm.
– Composition of three automata.

• Real channel Ci,j emulates channel from FrontEndi to FrontEndj,
channel from i to j in ClusterSynch algorithm, and channel from i to
j in ForestSynch algorithm.

• Orthogonal decompositions of Γ:
– Physical: Nodes and channels.
– Logical: FEs, ClusterSynch, and ForestSynch
– Same system, 2 views.
– Works because composition of automata is associative, commutative.

• Such decompositions are common for complex distributed
algorithms:
– Each node runs pieces of algorithms at several layers.

• Theorem 1: For every fair execution α of Γ system (or Α, or Β),
there is a fair execution α′ of GlobSynch system, such that for each
Ui, α ~Ui α′.

Complexity of Γ
• Consider r rounds, in which the synchronous algorithm sends m

messages.
• Let:

– h = max height of a cluster tree
– e′ = total number of edges on shortest paths between roots of neighboring

clusters.
• Messages: 2m + O(r (n + e′))

• Time: O (r h (d + l))
• If n + e′ << |E|, then Γ’s message complexity is much better than Α’s.
• If h << height of spanning tree of entire network, then Γ’s time

complexity is much better than Β’s.
• Both of these are true for “nicely clustered” networks.

Messages and acks by FEs
Messages in cluster trees,
In ClusterSynch algorithm

Messages between roots,
In ForestSynch algorithm

Comparison of Costs
• r rounds
• m messages sent by synchronous algorithm
• d, message delay
• Ignore local processing time l.
• e′ = total length of paths between roots of neighboring clusters
• h = height of global spanning tree
• h′ = max height of cluster tree

Α

Γ

Β

Messages Time

2 m + 2 r |E|

2 m + 2 r n

2 m + O(r (n + e′))

O(r d)

O(r h d)

O(r h′ d)

Example
• p × p grid of complete k-graphs, with all nodes of

neighboring k-graphs connected.
• Clusters = k-graphs
• h = O(p)
• h′ = O(1)

Α

Γ

Β

Messages Time

2 m + O(r p2 k2)

2 m + O(r p2 k)

2 m + O(r p2 k)

O(r d)

O(r p d)

O(r d)

Application 1: Breadth-first search
• Recap:

– SynchBFS:
• Constructs BFS tree
• O(|E|) messages, O(diam) rounds

– When run in asynchronous network:
• Constructs a spanning tree, but not necessarily BFS

– Modified version, with corrections:
• Constructs BFS tree
• O(n |E|) messages, O(diam n d) time (counting pileups)

• BFS using synchronizer:
– Runs more like SynchBFS, avoids corrections, pileups
– With Synchronizer Α:

• O(diam |E|) messages, O(diam d) time
– With Synchronizer Β :

• Better communication, but costs time.
– With Synchronizer Γ :

• Better overall, in clustered graphs.

Application 2: Broadcast and ack

• Use synchronizer to simulate synchronous broadcast-ack
combination.

• Assume known leader, but no spanning tree.
• Recap:

– Synchronous Bcast-ack:
• Constructs spanning tree while broadcasting
• O(|E|) messages, O(diam) rounds

– Asynchronous Bcast-ack:
• Timing anomaly: Construct non-min-hop paths, on which acks travel.
• O(|E|) messages, O(n d) time

• Using (e.g.) Synchronizer Α:
• Avoids timing anomaly.
• Broadcast travels on min-hop paths, so acks follow min-hop paths.
• O(diam |E|) messages, O(diam d) time

Application 3: Shortest paths
• Assume weights on edges.
• Without termination detection.
• Recap:

– Synchronous Bellman-Ford:
• Allows some corrections, due to low-cost high-hop-count paths.
• O(n |E|) messages, O(n) rounds

– Asynch Bellman-Ford
• Many corrections possible (exponential), due to message delays.
• Message complexity exponential in n.
• Time complexity exponential in n, counting message pileups.

• Using (e.g.) Synchronizer Α:
• Behaves like Synchronous Bellman-Ford.
• Avoids corrections due to message delays.
• Still has corrections due to low-cost high-hop-count paths.
• O(n |E|) messages, O(n d) time
• Big improvement.

Further work

• To read more:
– See Awerbuch’s extensive work on

• Applications of synchronizers.
• Distributed algorithms for clustered networks.

– Also work by Peleg
• Q: This work used a strategy of purposely

slowing down portions of a system in order to
improve overall performance. In which
situations is this strategy a win?

Lower Bound on Time for
Synchronization

Lower bound on time
• Α, Β, Γ emulate synchronous algorithms only in a local sense:

– Looks the same to individual users,
– Not to the combination of all users---can reorder events at different users.

• Good enough for many applications (e.g., data management).
• Not for others (e.g., embedded systems).

• Now show that global synchronization is inherently more costly than
local synchronization, in terms of time complexity.

• Approach:
– Define a particular global synchronization problem, the k-Session Problem.
– Show this problem has a fast synchronous algorithm, that is, a fast algorithm

using GlobSynch.
• Time O(k d), assuming GlobSynch takes steps ASAP.

– Prove that all asynchronous distributed algorithms for this problem are slow.
• Time Ω(k diam d).

– Implies GlobSynch has no fast distributed implementation.
• Contrast:

– Α, SimpleSynch are fast distributed implementations of LocSynch.

k-Session Problem
• Session:

– Any sequence of flash events
containing at least one flashi
event for each location i.

flash1
flashn

flash2

• k-Session problem:
– Perform at least k separate sessions (in every fair execution),

and eventually halt.

• Original motivation:
– Synchronization needed to perform parallel matrix computations

that require enough interleaving of process steps, but tolerate
extra steps.

Example: Boolean matrix computation

• n = m3 processes compute the transitive closure of m × m Boolean
matrix M.

• pi,j,k repeatedly does:
– read M(i,k), read M(k,j)
– If both are 1 then write 1 in M(i,j)

• Each flashi,j,k in abstract session problem represents a chance for
pi,j,k to read or write a matrix entry.

• With enough interleaving (O (log n) sessions), this is guaranteed
to compute transitive closure.

flash1
flashn

flash2

Synchronous solution

• Fast algorithm using GlobSynch:
– Just flash once at every round.
– k sessions done in time O(k d), assuming

GlobSynch takes steps ASAP.

GlobSynch

U1
U2 Un

flash1 flashn

flash2

Asynchronous lower bound
• Consider distributed algorithm A that solves the k-session problem.
• Consists of process automata and FIFO send/receive channel

automata.

• Assume:
– d = upper bound on time to deliver any message (don’t count pileups)
– l = local processing time, l << d

• Define time measure T(A):
– Timed execution α: Fair execution with times labeling events, subject to

upper bound of d on message delay, l for local processing.
– T(α) = time of last flash in α
– T(A) = supremum, over all timed executions α, of T(α).

A

flash1
flashn

flash2

Lower bound
• Theorem 2: If A solves the k-session problem then T(A) ≥ (k-1) diam d.
• Factor of diam worse than the synchronous algorithm.

• Definition: Slow timed execution: All message deliveries take exactly
the upper bound time d.

• Proof: By contradiction.
– Suppose T(A) < (k-1) diam d.
– Fix α, any slow timed execution of A.
– α contains at least k sessions.
– α contains no flash event at a time ≥ (k-1) diam d.
– So we can decompose α = α1 α2 …αk-1 α″, where:

• Time of last event in α′ is < (k-1) diam d.
• No flash events occur in α″.
• Difference between the times of the first and last events in each αr is < diam d.

α′

Lower bound, cont’d
• Now reorder events in α, while preserving dependencies:

– Events of same process.
– Send and corresponding receive.

• Reordered execution will have < k sessions, a
contradiction.

• Fix processes, j0 and j1, with dist(j0,j1) = diam (maximum
distance apart).

• Reorder within each αr separately:
– For α1: Reorder to β1 = γ1 δ1, where:

• γ1 contains no event of j0, and
• δ1 contains no event of j1.

– Forα2: Reorder to β2 = γ2 δ2, where:
• γ1 contains no event of j1, and
• δ1 contains no event of j0.

– And alternate thereafter.

Lower bound, cont’d
• If the reordering yields a fair execution of A (can

ignore timing), then we get a contradiction,
because it contains ≤ k-1 sessions:
– No session entirely within γ1, (no event of j0).
– No session entirely within δ1 γ2 (no event of j1).
– No session entirely within δ2 γ3 (no event of j0).
– …
– Thus, every session must span some γr - δr boundary.
– But, there are only k-1 such boundaries.

• So, it remains only to construct the reordering.

Constructing the reordering
• WLOG, consider αr for r odd.
• Need βr = γr δr, where γr contains no event of j0, δr no event of j1.

• If αr contains no event of j0 then don’t reorder, just define γr = αr, δr = λ.
• Similarly if αr contains no event of j1.
• So assume αr contains at least one event of each.
• Let π be the first event of j0, ϕ the last event of j1 in αr.

• Claim: ϕ does not depend on π.
• Why: Insufficient time for messages to travel from j0 to j1:

– Execution α is slow (message deliveries take time d).
– Time between π and ϕ is < diam d.
– j0 and j1 are diam apart.

• Then, we can reorder αr to βr, in which π comes after ϕ.
• Consequently, in βr, all events of j1 precede all events of j0.
• Define γr to be the part ending with ϕ, δr the rest.

Next time…

• Time, clocks, and the ordering of events in a
distributed system.

• State-machine simulation.
• Vector timestamps.
• Reading:

– Chapter 18
– [Lamport time, clocks…paper]
– [Mattern paper]

MIT OpenCourseWare
http://ocw.mit.edu

6.852J / 18.437J Distributed Algorithms
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

	6.852: Distributed Algorithms�Fall, 2009
	Today’s plan
	Minimum spanning tree, revisited
	Strategy for designing asynchronous distributed algorithms
	Synchronous model, reformulated in terms of automata
	Behavior of GlobSynch
	Requirements on each Ui
	Synchronizers
	The Synchronizer Problem
	Local Synchronizer, LocSynch
	Proof sketch for Lemma 1
	Trivial distributed algorithm to implement LocSynch
	SimpleSynch, cont’d
	Reducing the communication
	Safe Synchronizers
	Correctness of SafeSynch
	SafeSynch Implementations
	Comparisons
	Synchronizer
	Synchronizer
	Decomposition of
	 Implements SafeSynch
	Implementing ClusterSynch and ForestSynch
	Putting the pieces together
	Complexity of
	Comparison of Costs
	Example
	Application 1: Breadth-first search
	Application 2: Broadcast and ack
	Application 3: Shortest paths
	Further work
	Lower Bound on Time for Synchronization
	Lower bound on time
	k-Session Problem
	Example: Boolean matrix computation
	Synchronous solution
	Asynchronous lower bound
	Lower bound
	Lower bound, cont’d
	Lower bound, cont’d
	Constructing the reordering
	Next time…

