
6.852: Distributed Algorithms
Fall, 2009

Class 23

Today’s plan

• Shared memory vs. networks
• Consensus in asynchronous networks
• Reading:

– Chapter 17
– [Lamport] The Part-Time Parliament (Paxos)

• Next time:
– Self-stabilization
– [Dolev book], Chapter 2

Shared memory vs. Networks
• Simulating shared memory in distributed networks:

– Popular method for simplifying distributed programming.
– Distributed shared memory (DSM).
– Easy if there are no failures.
– Possible if n > 2f; impossible if n ≤ 2f.
– [Attiya, Bar-Noy, Dolev] fault-tolerant algorithm

• Simulating networks using shared memory:
– Easier, because shared memory is “more powerful”.
– Works for any number of failures.
– Useful mainly for lower bounds, impossibility results.

• Carry over impossibility results for shared memory model to
network model

• E.g., for fault-tolerant consensus.

Paxos

• A fault-tolerant consensus algorithm for
distributed networks.

• Can use it to implement a fault-tolerant
replicated state machine (RSM) in a
distributed network.

• Generalizes Lamport’s timestamp-based
non-fault-tolerant RSM algorithm.

Simulating networks using
shared-memory systems

p1

p2

pn

x1

x2

A

C2,1
p1

C1,2 p2

Simulating networks using
shared-memory systems

• Easy transformation from networks to shared-memory,
because shared-memory model is more powerful:
– Has reliable, instantaneously-accessible shared memory.
– No arbitrary delays as in channels.

• Transformation preserves fault-tolerance, even for f ≥ n/2.
• Assume:

– Asynchronous network system A, running on undirected graph
network G.

– Failures: stopi event disables Pi and has no effect on channels.
• Produce:

– Asynchronous read/write shared-memory system B simulating A, in
the same sense as for atomic objects:

– For any execution α of the shared-memory system B × U, there is
an execution α′ of the network system A × U such that:

• α | U = α′ | U and
• stopi events occur for the same i in α and α′.
• If α is fair then α′ is also fair.

Algorithm
• Replace channel Ci,j with a 1-writer, 1-reader shared

variable x(i,j), writable by i, readable by j.
• x(i,j) contains a queue of messages, initially empty.
• Process i adds messages, never removes any.

• Process i simulates automaton Pi, step by step.
– To simulate send(m)i,j, process i adds m to end of x(i,j).

• Does this using a write operation, by remembering what it wrote there
earlier.

– Meanwhile, process i keeps checking its incoming variables x(j,i),
looking for new messages.

• Does this by remembering what it saw there before.
• When it finds a new message, process i handles it the same way Pi

would handle it.

Some pseudocode
State variables for process i
− pstate : states(Pi)
− sent(j) for each out-neighbor j: sequence of M, initially empty
− rcvd(j), processed(j) for each in-neighbor j: seq of M, initially empty

Transitions for i
− Internal send(m,j)i:

pre: send(m)i,j enabled in pstatei
eff: append m to sent(j); x(i,j) := sent(j);

update pstate as for send(m)i,j
− Internal receive(m,j)I

pre: true
eff: rcvd(j) := x(j,i);

update pstate using messages in rcvd(j) - processed(j);
processed(j) := rcvd(j)

− All others: As for Pi, using pstate.

An important corollary
• Theorem: This simulation produces an asynchronous

shared-memory system B simulating A, in the sense that, for
any execution α of the shared-memory system B × U, there
is an execution α′ of the network system A × U such that:

• α | U = α′ | U.
• stopI events occur for the same i in α and α′.
• If α is fair then α′ is also fair.

Corollary: Consensus is impossible in asynchronous
networks, with 1 stopping failure [Fischer, Lynch, Paterson].
Proof:

If such an algorithm existed, we could simulate it in an asynchronous
shared-memory system using the simulation just given.
This would yield a 1-fault-tolerant consensus algorithm for (1-writer
1-reader) read/write shared memory.
We already know this is impossible [Loui, Abu-Amara].

Another corollary
Corollary: Consensus is impossible in asynchronous
broadcast systems, with 1 stopping failure [Fischer, Lynch,
Paterson].
Asynchronous broadcast system: Process can put a
message in all its outgoing channels in one step, and all
are guaranteed to eventually be delivered.

Process cannot fail in the middle of a broadcast.
Proof:

If such an algorithm existed, we could simulate it in an
asynchronous shared-memory system using a simple extension of
the simulation above.
Extension uses 1-writer multi-reader shared variables to represent
the broadcast channels.
This would yield a 1-fault-tolerant consensus algorithm for 1-writer
multi-reader read/write shared memory.
We already know this is impossible [Loui, Abu-Amara].

Q: Is this counterintuitive?

Is this counterintuitive?
Corollary: Consensus is impossible in asynchronous
broadcast systems, with 1 stopping failure [Fischer, Lynch,
Paterson].
Asynchronous broadcast system: Process can put a
message in all its outgoing channels in one step, and all
are guaranteed to eventually be delivered.

Process cannot fail in the middle of a broadcast.

Recall in synchronous model, impossibility results for
consensus depended heavily on processes failing in the
middle of a broadcast.
Now every broadcast is completed, and guaranteed to be
delivered everywhere.
But we still get impossibility.

Simulating shared-memory
systems using networks

p1

p2

pn

x1

x2

A

C2,1
p1

C1,2 p2

Simulating shared-memory in
distributed networks

• Popular method for simplifying distributed
programming.

• Non-fault-tolerant algorithms:
– Single-copy
– Multi-copy
– Majority voting

• Fault-tolerant algorithms:
– [Attiya, Bar-Noy, Dolev] algorithm for n > 2f.
– Impossibility result for n ≤ 2f.

Non-fault-tolerant simulation of
shared memory in distributed

networks

Shared memory in networks
Assume shared memory system A:
− Ports 1,…,n
− User Ui interacts with process i on port i
− Technical restriction: For each i, it’s

always either the user's turn, or process's
turn to take steps (not both).

So we can replace shared variables with
atomic object implementations without
introducing new behavior.

p1

p2

pn

x1

x2

A

Design asynchronous network system B:
− Same ports/user interface.
− Processes and FIFO reliable channels.
– For any execution α of the network system B × U, there is an

execution α′ of the shared memory system A × U such that:
• α | U = α′ | U and
• stopi events occur for the same i in α and α′.
• If α is fair then α′ is also fair (will change for FT case).

Single-copy simulation
• Non-fault-tolerant.
• Works for any object type.
• Locate each shared variable x at some known process,

owner(x).
• Handle each shared variable independently.
• Automaton Pi simulates process i of A, step by step.

– All actions other than shared-memory accesses as before.
– To access variable x, Pi sends a message to owner(x) and waits for

a response; when response arrives, uses it and resumes the
simulation.

– Meanwhile, Pi handles requests to perform accesses to all
variables x for which i = owner(x).

• Performs on local copy, in one indivisible step.
• Sends response.

More formally…
• Each automaton Pi is the composition of:

– Qi, an automaton that simulates process i of the shared-
memory system A,

• Use same automata as when replacing shared variables by
atomic objects.

– Rx,i, for every shared variable x, an automaton that
manages variable x and its requests.

Q1

Rx,1 Ry,1

Q2

Rx,2 Ry,2

Qn

Rx,n Ry,n

P1 PnP2

More formally…
• Qi and Rx,i interact using invocations and responses on

object x.
• For each x, the Rx,i automata communicate over FIFO

send/receive channels, and cooperate to implement an
atomic object for x.

• Owner(x): Collects requests via local invocations and
messages from others, processes on local copy.

• Non-owners: Send invocation to owner(x), await response.

Q1

Rx,1 Ry,1

Q2

Rx,2 Ry,2

Qn

Rx,n Ry,n

P1 PnP2

More formally…
• Correctness: Pretty obvious, since clearly the Rx,i

automata (and the channels between them) implement an
atomic object for x.

• Serialization point for each operation: When the owner
performs the operation on the local copy.

• Fault-tolerance: None. Any process failure kills its
variables, which can block everyone.

Q1

Rx,1 Ry,1

Q2

Rx,2 Ry,2

Qn

Rx,n Ry,n

P1 PnP2

Some issues
• Optimization: Avoid busy-waiting on a remote

shared variable: Send one request, let owner
notify sender when the value of the variable
changes, or when some condition on this value
becomes true.

• Q: Where to put the copies?

Q1

Rx,1 Ry,1

Q2

Rx,2 Ry,2

Qn

Rx,n Ry,n

P1 PnP2

Multi-copy simulation
• Still not fault-tolerant.
• Just for read/write objects.
• Locate each shared variable x at some known collection of

processes, owners(x).
• Handle each shared variable independently.
• How Pi accesses variable x:

– READ: Read any copy.
– WRITE: Write all copies, asynchronously, in any order.
– “Read-one, write-all.”

• Can be faster than single-copy, on average, if reading is
much more common than writing.
– E.g., in peer-to-peer systems, sharing files.

• But, without some constraints, we get coherence issues…

Multi-copy simulation: Bad examples
• Example 1: Multi-writer, inconsistent order of WRITEs

– P1 and P2 want to WRITE the same shared variable x.
– owners(x) = {P3, P4}.
– P1 and P2 send write request messages to both P3 and P4.
– P3 and P4 receive the write requests in different orders, so end up

with different values.
– Later READs may get either value, inconsistent.

• Example 2: Single-writer, inconsistent READs
– owners(x) = {P2, P3}.
– Writer P1 sends write request messages to P2 and P3.
– Message arrives at P2, P2 writes its local copy.
– Then a READ happens at P2, getting the new value.
– Later, a READ happens at P3, getting the old value.
– Then P1’s write message arrives at P3, P3 writes its local copy.
– The READs do not overlap, but are concurrent with the WRITE.
– Out-of order READ behavior is not allowed by atomic R/W object.

Multi-copy simulation
• So we need some more clever protocols…
• Idea: Use atomic transactions:
• E.g., to do a WRITE(x), perform all the writes to all copies

as a single atomic transaction, so that they appear to occur
instantaneously, as far as READ operations can tell.

• Can implement such a transaction using 2-phase locking:
– Phase 1: Lock all copies of x and write them.
– Phase 2: Release all the locks.

• Must solve problems of deadlock for lock acquisition.
• Works because serialization point for WRITE can be

placed at the “lock point”, where all the locks have been
acquired.

Majority-voting algorithms
• Still not fault-tolerant.
• Just for read/write objects.
• Locate each shared variable x at some known collection of

processes, owners(x).
• Handle each shared variable independently.
• How Pi accesses variable x:

– READ: Read from a majority of copies.
– WRITE: Write to a majority of copies.

• Concurrency anomalies suggest that we run each READ or
WRITE as an atomic transaction, using an underlying
concurrency-control strategy like 2-phase locking.

• More precisely:…

Majority-voting algorithms
• Each copy of x includes an integer tag, initially 0,

as well as a value for x.
• How Pi accesses variable x:

– Performs an atomic transaction, implemented by 2-
phase locking.

– READ:
• Read from a majority of copies.
• Return the value associated with the largest tag.

– WRITE(v):
• First do an embedded-read of a majority of copies.
• Determine the largest tag t.
• Write (v,t+1) to a majority of copies.

– Each READ or WRITE appears to be instantaneous,
because they are implemented as transactions.

Majority-voting algorithms
• To see that this implements an atomic R/W object for x:

– Choose serialization points for the READ and WRITE operations to
be the serialization points for their transactions.

– These are guaranteed by the transaction implementation, e.g., lock
points for 2-phase locking.

• Show that the R/W operations behave as if they occurred
at their transactions’ serialization points:
– WRITE operations are assigned tags 1,2,…in order of their

transactions’ serialization points.
– READ or embedded-read obtains the largest tag that has been

written by a WRITE operation serialized before it (0 if there are
none), together with the associated value for x.

– These two facts depend, in turn, on the fact that each READ or
embedded-read reads a majority of the copies, the largest tag gets
written to a majority of the copies, and all majorities intersect.

Some issues
• Still no fault-tolerance:

– Standard transaction impls like 2-phase locking aren’t fault-tolerant.
– A process that fails while holding locks “kills” the locked objects.

• Can generalize majorities to quorum configurations.
• Quorum configuration:

– A set of read-quorums, finite subsets of process indices,
– A set of write-quorums, finite subsets of process indices, such that
– R ∩ W ≠ ∅ for every read-quorum R and write-quorum W.

• READ operation accesses any read-quorum.
• WRITE operation accesses both a read-quorum and a

write-quorum (in its two phases).
• Allows tuning for smaller read-quorums, which can speed

up READs.
– E.g., read-one, write-all is a special case.

Fault-tolerant simulation of
shared memory in distributed

networks

Fault-tolerant simulation of shared
memory in distributed networks

• [Attiya, Bar-Noy, Dolev] algorithm.
• Tolerates f stopping failures, requires n > 2f.
• Assume reliable channels.
• Just for read/write objects, in fact, 1-writer multi-reader

objects (exercise: extend to MWMR).
• Modeling failures:

– Use a stopi input at each external port (of the shared-memory
system A, or of the network system B).

– stopi disables all locally-controlled actions of process i, in either
system.

– Does not affect messages in transit (in system B).

• Q: What is guaranteed by the [ABD] simulation?

[ABD] Guarantees
• Tolerates f stopping failures, requires n > 2f.
• For any execution α of network system B × U, there is an

execution α′ of shared-memory system A × U such that:
– α | U = α′ | U and
– stopI events occur for the same i in α and α′.

• Moreover, if α is fair and contains stopi events for at most f
different ports, then α′ is also fair.

• This means that in the simulated shared-memory
execution, all non-failed processes continue taking steps---
the failed processes in the network system don’t introduce
any new blocking.

• Assume shared-memory system A has only 1-writer multi-
reader read/write shared variables.

[ABD] algorithm
• Tolerates f stopping failures, requires n > 2f.
• Implement atomic object for each shared variable x, then

combine.
• No transactions, no synchronization.
• Each process keeps:

– val, a value for x, initially v0
– tag, initially 0

• P1 does WRITE(v):
– Let t be the first unused tag (Pi knows this because it’s the only

writer, hence the only process generating tags).
– Set local variables to (v,t).
– Send message (“write”, v,t) to all other processes.
– When anyone receives such a message:

• Updates local variables to (v,t) if t > current tag.
• In any case, sends ack to P1.

– When P1 knows a majority have received (v,t), returns ack.

[ABD] atomic object algorithm
• Any process Pi does a READ:

– Read own copy; send (“read”) messages to all other
processes.

– When anyone receives this message, responds with its
current (v,t).

– When Pi has heard from a majority, prepares to return the
v from the (v,t) pair with the largest t.

– However, before returning v, Pi propagates this (v,t).
• As in the [Vitanyi, Awerbuch] algorithm.
• And for a similar reason (prevent out-of-order reads).

– When anyone receives this propagated (v,t):
• Updates local variables to (v,t) if t > current tag.
• Sends ack to Pi.

– When Pi knows a majority have received (v,t), returns ack.

ABD algorithm
READERS
on read

readtag := readtag+1
send “read(readtag)” to all other processes

- wait for ack from majority
let t be largest tag received
if t > tag then (val,tag) := (v,t)

where v is value received with t
send “propagate(val,tag,readtag)” to all readers

- wait for ack from majority
return val

ALL PROCESSES
on receiving “read(rt)” from j

send “read-ack(val,tag,rt)” to j

READERS
on receiving “propagate(v,t)” from j

if t > tag then (val,tag) := (v,t)
send “prop-ack(t)” to j

WRITER
on write(v)

(val,tag) := (v,tag+1)
send “write(val,tag)” to all readers

- wait for ack from majority
return ack

READERS
on receiving “write(v,t)” from writer
if t > tag then

(val,tag) := (v,t)
send “write-ack(t)” to writer

STATE VARIABLES per process
val: V, initially v0
tag: N, initially 0
readtag: N, initially 0
lots of “bookkeeping” variables

Correctness of [ABD] atomic object
algorithm

• Well-formedness √
• f-failure termination, for n > 2f √
• Atomicity:

– Algorithm is similar to [Vitanyi, Awerbuch], so use similar proof,
based on partial order lemma.

– Here, define the partial order by:
• Order WRITEs by tags.
• Order READ right after WRITE whose value it gets.

– Key: Condition 2: If operation π finishes before operation ϕ starts,
then ϕ is not ordered before π.

– Consider cases, based on operation types.

– Case 1:

– Because majorities intersect, ϕ gets a tag ≥ the tag written by π.
– So ϕ is ordered after π.

π ϕ

WRITE READ

Correctness of [ABD] atomic
object algorithm

linearization point of write with tag t
− when majority of processes have tag ≥ t
− may linearize multiple writes at same point

linearization point of read returning value associated
with tag t
− immediately after linearization point of write with tag t, or
− immediately after invocation of read, (why do we need this?)
− whichever is later

Atomicity, cont’d
– Partial order:

• Order WRITEs by tags.
• Order READ right after WRITE whose value it gets.

– Condition 2: If operation π finishes before operation ϕ
starts, then ϕ is not ordered before π.

– Case 2:

– Then ϕ gets a tag ≥ the tag obtained by π, because of
propagation and majority intersection.

– So ϕ is not ordered before π.

– Other cases: Simpler, LTTR.

π ϕ

READ READ

[ABD] Simulation
• Now use [ABD] atomic object algorithm to construct a

distributed simulation of any fault-tolerant shared-memory
algorithm A that uses 1-writer multi-reader shared vars:

• Simply replace shared variables by [ABD] atomic object
implementations.

• Guarantees:
– For any execution α of network system B × U, there is an execution

α′ of shared-memory system A × U such that:
• α | U = α′ | U and
• stopI events occur for the same i in α and α′.

– Moreover, if α is fair and contains stopi events for at most f (< n/2)
different ports, then α′ is also fair.

• That is, we have a correct simulation, provided that there
are at most f failures in the network system B.

[ABD] Simulation Corollaries
• Guarantees:

– For any execution α of network system B × U, there is an execution α′
of shared-memory system A × U such that:

• α | U = α′ | U and
• stopI events occur for the same i in α and α′.
• If α is fair and contains stopi events for at most f different ports, then α′ is

also fair.
• Corollary: Wait-free atomic snapshot algorithm using 1WmR

registers (Chapter 13) can be transformed, using [ABD], to a
distributed network memory-snapshot algorithm.

• Corollary: [Vitanyi, Awerbuch] wait-free mWmR register
implementation using 1WmR registers can be transformed,
using [ABD], to a distributed network register implementation.

• But note:
– The transformed versions are not wait-free, but guarantee only f-failure

termination, where n > 2f.
– Since the [ABD] implementation of atomic 1WmR registers tolerates

only f < n/2 failures, so do the algorithms that use it.

Some issues
• Can generalize majorities to quorum configuration:

– Set of read-quorums, set of write-quorums.
– R ∩ W ≠ ∅ for every read-quorum R, write-quorum W.

• Then
– READ operation accesses both a read-quorum and a write-quorum.
– WRITE operation accesses just a write-quorum.

• So, we cannot improve READ performance by using smaller
read-quorums!

• Q: So how can we get faster READ performance?
• A: Optimize to eliminate “most” propagation phases.

– When a WRITE with tag t completes, or a READ completes
propagation of tag t, then tag t doesn’t require further propagation.

– So, an operation that completes t can send messages to everyone
saying that t is complete; everyone who receives such a message
marks t as complete.

– A READ that gets tag t and sees it marked (anywhere) as complete
doesn’t need to propagate t.

Impossibility of n/2-fault-tolerance
• General “fact” about the distributed network model: hardly

anything interesting can be computed with ≥ n/2 failures.
• Contrast with shared-memory model: There are many

interesting wait-free shared-memory algorithms.
• Theorem: In the asynchronous network model with n =

m+p processes, no implementation of m-writer p-reader
atomic registers guarantees f-failure termination for f ≥ n/2.

• Proof: (Same structure as for other proofs showing
impossibility of n/2-fault-tolerance.)
– By contradiction. Suppose f ≥ n/2 and we have an algorithm…
– Assume WLOG that:

• Initial value of implemented register = 0.
• P1 is a writer and Pn is a reader.

– Partition the n processes into two subsets, each with size ≤ f:
• G1 = {1,…,f}, G2 = {f+1,…,n}.

– By f-fault-tolerance, even if one entire group fails, the other group
must still give correct atomic register responses.

Impossibility of n/2-fault-tolerance
• Theorem: In the asynchronous network model with n =

m+p processes, no implementation of m-writer p-reader
atomic registers guarantees f-failure termination for f ≥ n/2.

• Proof, cont’d:
– Partition the processes into G1 = {1,…,f}, G2 = {f+1,…,n}.
– If one group fails, the other group must still give correct atomic

register responses.
– Execution α1:

• G2 processes fail initially.
• P1 invokes WRITE(1).
• WRITE must eventally terminate with ack.
• Let α1′ be the portion of α1 up to the ack.

– Execution α2:
• G1 processes fail initially.
• Pn invokes READ.
• READ must eventally terminate with response 0.
• Let α2′ be the portion of α2 up to the response.

Proof, cont’d
• Execution α1:

– G2 processes fail initially.
– P1 invokes WRITE(1).
– WRITE must eventally terminate with ack.
– Let α1′ be the portion of α1 up to the ack.

• Execution α2:
– G1 processes fail initially.
– Pn invokes READ.
– READ must eventally terminate with response 0.
– Let α2′ be the portion of α2 up to the response.

• Execution α3: Paste…
– Don’t fail anyone.
– Do all the steps of α1′ first, including the ack.
– Then do all the steps of α2′, including the response of 0.
– Meanwhile, delay all messages between G1 and G2.

• Activity in α1′ and α2′ is independent, so α3 is an execution.
• But not correct for an atomic register, since the WRITE(1) completes

before the start of the READ that returns 0.
• Contradiction.

An implication
• This theorem implies that there is no general simulation of

shared-memory systems by networks, preserving f-fault-
tolerance, for f ≥ n/2.
– See book, p. 567, for a definition of f-simulation, which formalizes

“preserving f-fault-tolerance”.
– It’s essentially the overall guarantee we gave earlier for [ABD].

• Because if there were, then we could use it to convert a
(trivial) wait-free shared-memory implementation of a multi-
writer, multi-reader atomic register into an f-fault-tolerant
distributed network implementation, f ≥ n/2.

• Since the example shows that no such algorithm exists,
neither does such a general simulation.

Fault-Tolerant Agreement in
Asynchronous Networks:

The Paxos Algorithm

Agreement in asynchronous
networks

• It’s impossible to reach agreement in asynchronous
networks, even if we know that at most one failure will
occur.

• But what if we really need to?
– For transaction commit.
– For agreeing on the order in which to perform operations.
– …

• Some possibilities:
– Randomized algorithm (Ben-Or), terminates with high probability.
– Approximate agreement.
– Use a failure detector service, implemented by timeouts.

Best approach

• Guarantee agreement, validity in all cases.
• Guarantee termination if the system eventually

“stabilizes”:
– No more failures, recoveries, message losses.
– Timing of messages, process steps within “normal”

bounds.
• Termination should be fast when system is stable.
• Actually, stable behavior need not continue

forever, just long enough for computation to
terminate.

Eventually stable approach:
Some history

• [Dwork, Lynch, Stockmeyer] first presented a consensus
algorithm with these properties (2007 Dijkstra Prize)

• [Cristian] used similar approach for group membership
algorithms.

• [Lamport, Part-Time Parliament]
– Introduced the Paxos algorithm.
– Relationship with [DLS]:

• Achieves similar guarantees.
• Paxos allows more concurrency, tolerates more kinds of failures.
• Basic strategy for assuring safety similar to [DLS].

– Background:
• Paper unpublished for 10 years because of nonstandard style.
• Eventually published “as is”, because others began recognizing its

importance and building on its ideas.

Paxos consensus protocol
• Called Single-Decree Synod protocol.
• Assumptions:

– Asynchronous processes, stopping failures, also
recovery.

– Messages may be lost.
• Lamport’s paper also describes how to cope with

crashes, where volatile memory is lost in a crash
(we’ll skip this).

• We’ll present the algorithm in two stages:
– Describe a very nondeterministic algorithm that

guarantees the safety properties (agreement, validity).
– Constrain this to get termination soon after stabilization.

The nondeterministic “safe”
algorithm: Ballots

• Uses ballots, each of which represents an attempt
to reach consensus.

• Ballot = (identifier, value) pair.
– Identifier is an element of Bid, some totally-ordered set

of ballot identifiers.
– Value in V ∪ { ⊥ }, where V is the consensus domain.

• Somehow, ballots get started, and get values
assigned to them.

• Processes can vote for, or abstain from, particular
ballots.
– Abstention from a ballot is a promise never to vote for it.

The safe algorithm: Quorums
• The fate of a ballot depends on the actions of quorums of

processes on that ballot.
• Quorum configuration:

– A set of read-quorums, finite subsets of process index set I, and
– A set of write-quorums, finite subsets of I, such that
– R ∩ W ≠ ∅ for every read-quorum R and write-quorum W.

• Generalization of majorities.
• Ballot becomes dead if every node in some read-quorum

abstains from it.
• A ballot can succeed only if every node in some write-

quorum votes for it.

Safe algorithm, centralized version

• Anyone can create a new ballot with Bid b:
– make-ballot(b)
– Provided no ballot with Bid b has yet been created.
– val(b) is set to ⊥.

• A process i can abstain, in one step, from an
entire set of ballots:
– abstain(B,i), B ⊆ Bid
– Provided i has not previously voted for any ballot in B.
– We allow B to be any set of Bids, not necessarily

associated with already-created ballots.
• For example, B = all Bids in some range [bmin, bmax].
• This is important…

Safe algorithm, centralized version
• Anyone can assign a value v to a ballot id b, assign-

val(b,v), provided:
– A ballot with id = b has been created.
– val(b) is undefined.
– v is someone’s consensus input.
– (**) For every b′ ∈ Bid, b′ < b, either val(b′) = v or b′ is dead.

• Notes on (**):
– Recall: b′ dead means some read-quorum has abstained from b′.
– (**) Refers to every b′ ∈ Bid, not just created ones.

• Relies on “set abstentions”.
• Thus, we can assign a value to a ballot b only if we know

it won’t make b conflict with lower-numbered ballots b′.
• Motivation:

– Several ballots can be created, can collect votes.
– More than one might succeed in collecting write-quorum of votes.
– But we don’t want successful ballots to conflict.

Safe algorithm, centralized version

• A process i can vote for a ballot b, vote(b,i),
if b is a created ballot from which i hasn’t
abstained.

• A ballot may succeed, succeed(b), if a write-
quorum W has voted for it.

• A process can decide on the value that is
associated with any successful ballot,
decide(v).

Safety properties

• Validity:
– Immediate. Only initial values ever get assigned to

ballots.
• Agreement:

– Because of the careful way we avoid assigning different
values to ballots that might succeed.

– Key Invariant: If val(b) ≠ ⊥, b′ ∈ Bid, and b′ < b, then
either val(b′) = val(b) or b′ is dead.

– Implies that all successful ballots have the same value.

Modifying the ** condition for
assigning ballot values

• Instead of checking:
(**) For every b′ ∈ Bid, b′ < b, either val(b′) = v or b′ is dead.

• Check the apparently-weaker condition:
(***) Either:
Every b′ ∈ Bid, b′ < b, is dead, or
there exists b′ < b with val(b′) = v, and such that every b′′
with b′ < b′′ < b is dead.

• (***) is easier to check in a distributed algorithm (will show
how).

• And (***) implies (**), by easy induction on the number of
steps in an execution.

Safe algorithm, distributed version

• Any process i can create a ballot, at any time.
– Use locally-reserved ballot id b.
– Ballot start is triggered by signal from a separate

BallotTrigger service that decides who should start
ballots and when, based on monitoring system
behavior.

– Precise choices don’t affect the safety properties, so for
now, leave them nondeterministic.

• Phase 1:
– Process i starts a ballot when told to do so by

BallotTrigger, but doesn’t assign a value to it yet.
– Rather, first tries to collect enough abstention

information for smaller ballots to guarantee (***).
– If/when it collects that, assigns val(b).

Safe algorithm, distributed version

• Phase 2:
– Tries to get enough other processes to vote for its new

ballot.
• Communication pattern:

make-ballot

assign-val

succeed

Phase 1, collect abstention information

Phase 2, collect votes

Ensuring (***)
(***) Either every b′ < b is dead, or there exists b′ < b with

val(b′) = v, such that every b′′ with b′ < b′′ < b is dead.
• Phase 1:

– Originator process i tells other processes the new ballot number b.
– Each recipient j abstains from all smaller-numbered ballots it hasn’t

yet voted for.
– Each j sends back to i:

• The largest ballot number < b that it has ever voted for, if any, together
with that ballot’s value.

• Else (if no such ballot), sends a message saying there is none.
– When process i collects this information from a read-quorum R, it

assigns a value v to ballot b:
• If anyone in R says it voted for a ballot < b, then v = the value

associated with the largest-numbered of these ballots.
• If not, then v = any initial value.

• Claim this choice satisfies (***):

Ensuring (***)
• (***) Either every b′ < b is dead, or there exists b′ < b with

val(b′) = v, such that every b′′ with b′ < b′′ < b is dead.

• Why does this choice satisfy (***)?

• Case 1: Someone in R says it voted for a ballot < b.
– Say b′ is the largest such ballot number.
– Then everyone in R has abstained from all ballots between b′ and b.
– So all ballots between b′ and b are dead.
– So, choosing v = val(b′) ensures the second clause of (***).

• Case 2: Everyone in R says it did not vote for a ballot < b.
– Then everyone in R has abstained from all ballots < b.
– So all ballots < b are dead.
– Satisfies the first clause of (***).

Safe algorithm, distributed version,
cont’d

• After assigning val(b) = v, originator i sends Phase 2
messages asking processes to vote for b.

• If i collects such votes from a write-quorum W, it can
successfully complete ballot b and decide v.

make-ballot

assign-val

succeed

Phase 1,
collect abstentions

Phase 2,
collect votes

• Note:
– Originator i, or others,

could start up new
ballots at any time.

– (***) guarantees that
all successful ballots
will have the same
value v.

– Arbitrary concurrent
attempts to conduct
ballots are OK, at
least with respect to
safety.

Liveness
• To guarantee termination when the algorithm stabilizes, we must

restrict its nondeterminism.
• Most importantly, must restrict BallotTrigger so that, after stabilization:

– It asks only one process to start ballots (leader).
– It doesn’t tell the leader to start new ballots too often---allows enough time

for ballots to complete.
• E.g., BallotTrigger might:

– Use knowledge of “normal case” time bounds to try to detect who has
failed.

– Choose smallest-index non-failed process as leader (refresh periodically).
– Tell the leader to try a new ballot every so often---allowing enough “normal

case” message delays to finish the protocol.
• Notice that BallotTrigger uses time information---not purely

asynchronous.
• We know we can’t solve the problem otherwise.
• Algorithm tolerates inaccuracies in BallotTrigger: If it “guesses wrong”

about failures or delays, termination may be delayed, but safety
properties are still guaranteed.

Replicated state machines (RSMs)
Paper also deals with repeated consensus, in particular, on
a sequence of operations for an RSM.
Yields an RSM that tolerates stopping failures/recoveries,
message loss/duplication.
Strategy:

Use infinitely many instances of Paxos to agree on first operation,
second, third,…
Similar to Herlihy’s universal construction, which uses repeated
consensus to decide on successive operations for an atomic object.

Lamport’s paper also includes various optimizations, LTTR.
Considerable follow-on work, engineering Paxos to work
for maintaining real data.
− Disk Paxos
− HP, Microsoft, Google,…

Next time

• Self-stabilization
• [Dolev book], Chapter 2

MIT OpenCourseWare
http://ocw.mit.edu

6.852J/ 18.437J Distributed Algorithms
Fall 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

	6.852: Distributed Algorithms�Fall, 2009
	Today’s plan
	Shared memory vs. Networks
	Paxos
	Simulating networks using shared-memory systems
	Simulating networks using shared-memory systems
	Algorithm
	Some pseudocode
	An important corollary
	Another corollary
	Is this counterintuitive?
	Simulating shared-memory systems using networks
	Simulating shared-memory in distributed networks
	Non-fault-tolerant simulation of shared memory in distributed networks
	Shared memory in networks
	Single-copy simulation
	More formally…
	More formally…
	More formally…
	Some issues
	Multi-copy simulation
	Multi-copy simulation: Bad examples
	Multi-copy simulation
	Majority-voting algorithms
	Majority-voting algorithms
	Majority-voting algorithms
	Some issues
	Fault-tolerant simulation of shared memory in distributed networks
	Fault-tolerant simulation of shared memory in distributed networks
	[ABD] Guarantees
	[ABD] algorithm
	[ABD] atomic object algorithm
	ABD algorithm
	Correctness of [ABD] atomic object algorithm
	Correctness of [ABD] atomic object algorithm
	Atomicity, cont’d
	[ABD] Simulation
	[ABD] Simulation Corollaries
	Some issues
	Impossibility of n/2-fault-tolerance
	Impossibility of n/2-fault-tolerance
	Proof, cont’d
	An implication
	Fault-Tolerant Agreement in Asynchronous Networks:�The Paxos Algorithm
	Agreement in asynchronous networks
	Best approach
	Eventually stable approach: Some history
	Paxos consensus protocol
	The nondeterministic “safe” algorithm: Ballots
	The safe algorithm: Quorums
	Safe algorithm, centralized version
	Safe algorithm, centralized version
	Safe algorithm, centralized version
	Safety properties
	Modifying the ** condition for assigning ballot values
	Safe algorithm, distributed version
	Safe algorithm, distributed version
	Ensuring (***)
	Ensuring (***)
	Safe algorithm, distributed version, cont’d
	Liveness
	Replicated state machines (RSMs)
	Next time

