
� 

6.854 Advanced Algorithms 

Lecture 19: 10/20/2004 Lecturer: David Karger 
Scribes: Sergiy Sidenko 

Approximation Algorithms (continued) 

19.1 Relative Approximation Algorithms 

Since absolute approximation algorithms are known to exist for so few optimization problems, a 
better class of approximation algorithms to consider are relative approximation algorithms. Because 
they are so commonplace, we will refer to them simply as approximation algorithms. 

Definition 1 An α­approximation algorithm finds a solution of value at most α OPT (I) for· 
a minimization problem and at least OPT (I)/α for a maximization problem (α ≥ 1). 

Note that although α can vary with the size of the input, we will only consider those cases in which 
it is a constant. To illustrate the design and analysis of α­approximation algorithm, let us consider 
the Parallel Machine Scheduling problem, a generic form of load balancing. 

Parallel Machine Scheduling: Given m machines mi and n jobs with processing times pj , assign 
the jobs to the machines to minimize the load 

max pj , 
i 

j∈i 

the time required for all machines to complete their assigned jobs. In scheduling notation, this 
problem is described as P � Cmax. 

A natural way to solve this problem is to use greedy algorithm called list scheduling. 

Definition 2 A list scheduling algorithm assigns jobs to machines by assigning each job to the 
least loaded machine. 

Note that the order in which the jobs are processed is not specified. 

Analysis 

To analyze the performance of list scheduling, we must somehow compare its solution for each 
instance I (call this solution A(I)) to the optimum OPT (I). But we do not know how to obtain an 

19­1 



� 

� 

Lecture 19: 10/20/2004 19­2 

analytical expression for OPT (I). Nonetheless, if we can find a meaningful lower bound LB(I) for 
OPT (I) and can prove that A(I) ≤ α LB(I) for some α, we then have · 

A(I) ≤ α LB(I)· 
≤ α · OPT (I). 

Using the idea of lower­bounding OPT (I), we can now determine the performance of list scheduling. 

Claim 1 List scheduling is a (2 − 1/m)­approximation algorithm for Parallel Machine Scheduling. 

Proof: 

Consider the following two lower bounds for the optimum load OPT (I): 

• the maximum processing time p = maxj pj , 

• the average load L = j pj/m. 

The maximum processing time p is clearly lower bound, as the machine to which the corresponding 
job is assigned requires at least time p to complete its tasks. To see that the average load is a lower 
bound, note that if all of the machines could complete their assigned tasks in less than time L, the 
maximum load would be less than the average, which is a contradiction. Now suppose machine mi 

has the maximum runtime L = cmax, and let job j be the last job that was assigned to mi. At 
the time job j was assigned, mi must have had the minimum load (call it Li), since list scheduling 
assigns each job to the least loaded machine. Thus, 

pi mLi + pj≥
machine i 

m(L− pj) + pj≥ 

Therefore, 

OPT (I) ≥ 1 (m(L − pj) + pj)m 
= L − (1 − 1/m)pj , 

then 
L OPT (I) + (1 − 1/m)pj≤ 

OPT (I) + (1 − 1/m)OPT (I)≤ 
(2 − 1/m)OPT (I).≤ 

The solution returned by list scheduling is cmax, and thus list scheduling is a (2−1/m)­approximation 
algorithm for Parallel Machine Scheduling. 

The example with m(m − 1) jobs of size 1 and one job of size m for m machines shows that we 
cannot do better than (2 − 1/m)OPT (I). 



Lecture 19: 10/20/2004	 19­3 

19.2	 Polynomial Approximation Schemes 

The obvious question to now ask is how good an α we can obtain. 

Definition 3 A polynomial approximation scheme (PAS) is a set of algorithms {Aε} for 
which each Aε is a polynomial­time (1 + ε)­approximation algorithm. 

Thus, given any ε > 0, a PAS provides an algorithm that achieves a (1+ ε)­approximation. In order 
to devise a PAS we can use the method called k­enumeration. 

Definition 4 An approximation algorithm using k­enumeration finds an optimal solution for the 
k most important elements in the problem and then uses an approximate polynomial­time method to 
solve the reminder of the problem. 

19.2.1	 A Polynomial Approximation Scheme for Parallel Machine 
Scheduling 

We can do the following: 

• Enumerate all possible assignments of the k largest jobs. 

• For each of these partial assignments, list schedule the remaining jobs. 

• Return as the solution the assignment with the minimum load. 

Note that in enumerating all possible assignments of the k largest jobs, the algorithm will always 
find the optimal assignment for these jobs. The following claim demonstrates that this algorithm 
provides us with a PAS. 

Claim 2 For any fixed m, k­enumeration yields a polynomial approximation scheme for Parallel 
Machine Scheduling. 

Proof: 

Let us consider the machine mi with maximum runtime cmax and the last job that mi was assigned. 

If this job is among the k largest, then it is scheduled optimally, and cmax equals OPT (I). 

If this job is not among the k largest, without loss of generality we may assume that it is the (k+1)th 
largest job with processing time pk+1. Therefore, 

A(I) ≤ OPT (I) + pk+1. 

However, OPT (I) can be bound from below in the following way: 

OPT (I) ≥ 
kpk 

, 
m 



� 

Lecture 19: 10/20/2004	 19­4 

because kpk is the minimum average load when the largest k jobs have been scheduled. m 

Now we have: 
A(I) ≤ OPT (I) + pk+1 

≤ OPT (I) + OPT�(I)m �	 k 
m= OPT (I) 1 + k . 

Given ε > 0, if we let k equal m/ε, we will get 

cmax ≤ (1 + ε)OPT (I). 

Finally, to determine the running time of the algorithm, note that because each of the k largest jobs 
can be assigned to any of the m machines, there are mk = mm/ε possible assignments of these jobs. 
Since the list scheduling performed for each of these assignments takes O(n) time, the total running 
time is O(nmm/�), which is polynomial because m is fixed. Thus, given an ε > 0, the algorithm is 
a (1 + ε)­approximation, and so we have a polynomial approximation scheme. 

19.3	 Fully Polynomial Approximation Schemes 

Consider the PAS in the previous section for P � Cmax. The running time for the algorithm is 
prohibitive even for moderate values of ε. The next level of improvement, therefore, would be 
approximation algorithms that run in time polynomial in 1/ε, leading to the definition below. 

Definition 5 Fully Polynomial Approximation Scheme (FPAS) is a set of approximation 
algorithms such that each algorithm A(ε) in this set runs in time that is polynomial in the size of 
the input, as well as in 1/ε. 

There are few NP ­complete problems that allow for FPAS. Below we discuss FPAS for the Knapsack 
problem. 

19.3.1	 A Fully Polynomial Approximation Scheme for the Knapsack 
Problem 

The Knapsack problem receives as input an instance I of n items with profits pi, sizes si and 
knapsack size (or capacity) B. The output of the Knapsack problem is the subset S of items of total 
size at most B, and that has profit: 

max pi. 
i∈S 



� 

Lecture 19: 10/20/2004 19­5 

Suppose now that the profits are integers; then we can write a DP algorithm based on the minimum 
size subset with profit p for items 1, 2, . . . , r as follows: 

M(r, p) = min {M(r − 1, p),M(r − 1, p− pr) + sr} . 

The corresponding table of values can be filled in O (n i pi) (note that this is not FPAS in itself). 

Now, we consider the general case where the profits are not assumed to be integers. Once again, 
we use a rounding technique but one that can be considered a generic approach for developing 
FPAS for other NP ­complete problems that allows for FPAS. Suppose we multiplied all profits pi 

by n/ε · OPT ; then the new optimal objective value is apparently n/ε. Now, we can round the 
profits down to the nearest integer, and hence the optimal objective value decreases at most by n; 
expressed differently, the decrease in objective value is at most ε · OPT . Using the DP algorithm 
above, we can therefore find the optimal solution to the rounded problem in O(n2/ε), thus providing 
us with FPAS in 1/ε. 


