
1 Linear Programming

1.1 Introduction

Problem description:

• motivate by min-cost flow

• bit of history

• everything is LP

• NP and coNP. P breakthrough.

• general form:

– variables

– constraints: linear equalities and inequalities

– x feasible if satisfies all constraints

– LP feasible if some feasible x

– x optimal if optimizes objective over feasible x

– LP is unbounded if have feasible x of arbitrary good objective value

– lemma: every lp is infeasible, has opt, or is unbounded

– (by compactness of Rn and fact that polytopes are closed sets).

Problem formulation:

• canonical form: min cT x, Ax ≥ b

• matrix representation, componentwise ≤

• rows ai of A are constraints

• c is objective

• any LP has transformation to canonical:

– max/min objectives same

– move vars to left, consts to right

– negate to flip ≤ for ≥

– replace = by two ≤ and ≥ constraints

• standard form: min cT x, Ax = b, x ≥ 0

– slack variables
−– splitting positive and negative parts x → x+ − x

• Ax ≥ b often nicer for theory; Ax = b good for implementations.

1

point A. 20 minutes.

Some steps towards efficient solution:

• What does answer look like? Can it be represented effectively?

• Easy to verify it is correct?

• Is there a small proof of no answer?

• Can answer, nonanswer be found efficiently?

1.2 Linear Equalities

How solve? First review systems of linear equalities.

• Ax = b. when have solution?

• baby case: A is squre matrix with unique solution.

• solve using, eg, Gaussian elimination.

• discuss polynomiality, integer arithmetic later

• equivalent statements:

– A invertible

– AT invertible

– det(A) �= 0

– A has linearly independent rows

– A has linearly independent columns

– Ax = b has unique solution for every b

– Ax = b has unique solution for some b.

What if A isn’t square?

• Ax = b has a witness for true: give x.

• How about a proof that there is no solution?

• note that “Ax = b” means columns of A span b.

• if not, some linear comb of A spans b

n• in general, set of points {Ax | x ∈ � } is a subspace

• claim: no solution iff for some y, yA = 0 but yb �= 0.

• proof: if Ax = b, then yA = 0 means yb = yAx = 0.

• if no Ax = b, means columns of A don’t span b

2

•	 set of points {Ax} is subspace not containing b

•	 find part of b perpendicular to subspace, call it y

•	 then yb �= 0, but yA = 0,

•	 standard form LP asks for linear combo to, but requires that all coefficients
of combo be nonnegative!

Algorithmic?

•	 Use Gram-Schmidt to find set of independent columns

• Solve “square” Ax = b problem

To talk formally about polynomial size/time, need to talk about size of problems.

•	 number n has size log n

•	 rational p/q has size size(p)+size(q)

•	 size(product) is sum(sizes).

•	 dimension n vector has size n plus size of number

•	 m × n matrix similar: mn plus sizeof numbers

•	 size (matrix product) at most sum of matrix sizes

• our goal: polynomial time in size of input, measured this way

Claim: if A is n × n matrix, then det(A) is poly in size of A

•	 more precisely, twice the size

•	 proof by writing determinant as sum of permutation products.

•	 each product has size n times size of numbers

•	 n! products

• so size at most size of (n! times product) ≤ n log n + n·size(largest entry).

Corollary:

•	 inverse of matrix is poly size (write in terms of cofactors)

•	 solution to Ax = b is poly size (by inversion)

3

1.3 Geometry

Polyhedra

•	 canonical form: Ax ≥ b is an intersection of (finitely many) halfspaces, a
polyhedron

•	 standard form: Ax = b is an intersection of hyperplanes (thus a subspace),
then x ≥ 0 intersects in some halfspace. Also a polyhedron, but not full
dimensional.

•	 polyhedron is bounded if fits inside some box.

•	 either formulation defines a convex set:

–	 if x, y ∈ P , so is λx + (1 − λ)y for λ ∈ 0, 1.

–	 that is, line from x to y stays in P .

•	 halfspaces define convex sets. Converse also true!

•	 let C be any convex set, z /∈ C.

•	 then there is some a, b such that ax ≥ b for x ∈ C, but az < b.

•	 proof by picture. also true in higher dimensions (don’t bother proving)

•	 deduce: every convex set is the intersection of the halfspaces containing
it.

1.4 Basic Feasible Solutions

Again, let’s start by thinking about structure of optimal solution.

•	 Can optimum be in “middle” of polyhedron?

• Not really: if can move in all directions, can move to improve opt.

Where can optimum be? At “corners”

•	 “vertex” is point that is not a convex combination of two others

• “extreme point” is point that is unique optimum in some direction

Basic solutions:

•	 A constraint ax ≤ b or ax = b is tight or active if ax = b

•	 for n-dim LP, point is basic if (i) all equality constraints are tight and (ii)
n linearly independent constraints are tight.

•	 in other words, x is at intersection of boundaries of n linearly independent
constraints

4

�	 �

•	 note x is therefore the unique intersection of these boundaries.

•	 a basic feasible solution is a solution that is basic and satisfies all con-
straints.

In fact, vertex, extreme point, bfs are equivalent.

• Proof left to reader.

Consider standard lp min cx, Ax = b, x ≥ 0.

•	 Suppose opt x is not at BFS

•	 Then less than n tight constraints

•	 So at least one degree of freedom

•	 i.e, there is a (linear) subspace on which all those constraints are tight.

•	 In particular, some line through x for which all these constraints are tight.

•	 Write as x + εd for some vector direction d

•	 Since x is feasible and other constraints not tight, x + εd is feasible for
small enough ε.

•	 Consider moving along line. Objective value is cx + εcd.

•	 So for either positive or negative ε, objective is nonincreasing, i.e. doesn’t
get worse.

•	 Since started at opt, must be no change at all—i.e., cd = 0.

•	 So can move in either direction.

•	 In at least one direction, some xi is decreasing.

•	 Keep going till new constraint becomes tight (some xi = 0).

•	 Argument can be repeated until n tight constraints, i.e. bfs

•	 Conclude: every standard form LP with an optimum has one at a bfs.

– Proof: start at opt, move to bfs

Yields first algorithm for LP: try all bfs.

•	 How many are there?

•	 just choose n tight constraints out of m, check feasibility and objective

m • Upper bound n

Also shows output is polynomial size:

5

•	 Let A′ and correspoinding b′ be n tight constraints (rows) at opt

•	 Then opt is (unique) solution to A′x = b′

•	 We saw last time that such an inverse is represented in polynomial size in
input

(So, at least weakly polynomial algorithms seem possible)
Corollary:

•	 Actually showed, if x feasible, exists vertex with no worse objective.

•	 Note that in canconical form, might not have opt at vertex (optimize x1

over (x1, x2) such that 0 ≤ x1 ≤ 1).

•	 But this only happens if LP is unbounded

•	 In particular, if opt is unique, it is a bfs.

OK, this is an exponential method for finding the optimum. Maybe we can do
better if we just try to verify the optimum. Let’s look for a way to prove that
a given solution x is optimal.

2 Duality

Quest for nonexponential algorithm: start at an easier place: how decide if a
solution is optimal?

•	 decision version of LP: is there a solution with opt> k?

•	 this is in NP, since can exhibit a solution (we showed poly size output)

•	 is it in coNP? Ie, can we prove there is no solution with opt> k? (this
would give an optimality test)

2.1 Duality

What about optimality?

•	 Intro duality, strongest result of LP

•	 give proof of optimality

•	 gives max-flow mincut, prices for mincost flow, game theory, lots other
stuff.

Motivation: find a lower bound on z = min{cx | Ax = b, x ≥ 0}.
•	 try multiplying aix = bi by some yi. Get yAx = yb

•	 if require yA ≤ c, then yb = yAx ≤ cx is lower bound since xj ≥ 0

6

•	 so to get best lower bound, want to solve w = max{yb |
•	 this is a new linear program, dual of original.

• just saw that dual is less than primal (weak duality)

Note: dual of dual is primal:

max{yb : yA ≤ c}	 = max{by | AT y ≤ c}

= − min{−by | AT y + Is = c, s ≥ 0}

yA ≤ c}.

+ −= − min{−by+ + by− | AT y + (−AT)y − + Is = c, y , y , s ≥ 0}

= − max{cz | zAT ≤ −b, z(−AT) ≤ −b, Iz ≤ 0}

= min{cx | Ax = b, x ≥ 0} (x = −z)

Weak duality: if P	 (min, opt z) and D (max, opt w) feasible, z ≥ w

•	 w = yb and z = cx for some primal/dual feasible y, x

•	 x primal feasible (Ax = b, x ≥ 0)

•	 y dual feasible (yA ≤ c)

• then yb = yAx ≤ cx

Note corollary:

•	 (restatement:) if P, D both feasible, then both bounded.

•	 if P feasible and unbounded, D not feasible

•	 if P feasible, D either infeasible or bounded

•	 in fact, only 4 possibilities. both feasible, both infeasible, or one infeasible
and one unbounded.

•	 notation: P unbounded means D infeasible; write solution −∞. D un-
bounded means P infeasilbe, write solution ∞.

3 Strong Duality

Strong duality: if P	 or D is feasible then z = w

• includes D infeasible via w = −∞)

Proof by picture:

•	 min{yb | yA ≥ c} (note: flipped sign)

•	 suppose b points straight up.

•	 imagine ball that falls down (minimize height)

7

�

�

•	 stops at opt y (no local minima)

•	 stops because in physical equilibrium

•	 equilibrium exterted by forces normal to “floors”

•	 that is, aligned with the Ai (columns)

•	 but those floors need to cancel “gravity” −b

•	 thus b = Aixi for some nonnegative force coeffs xi .

•	 in other words, x feasible for min{cx | Ax = b, x ≥ 0}

•	 also, only floors touching ball can exert any force on it

•	 thus, xi = 0 if yAi > ci

•	 that is, (ci − yAi)xi = 0

•	 thus, cx = (yAi)xi = yb

• so x is dual optimal.

Let’s formalize.

•	 Consider optimum y

•	 WLOG, ignore all loose constraints (won’t need them)

•	 And if any are redundant, drop them

•	 So at most n tight constraints remain

•	 and all linearly independent.

• and since those constraints are tight, yA = c

Claim: Exists x, Ax = b

•	 Suppose not? Then “duality” for linear equalities proves exists z, zA = 0
but zb <> 0.

•	 WLOG zb < 0 (else negate it)

•	 So consider y + z.

•	 A(y + z) = Ay + Az = Ay, so feasible

• b(y + z) = by + bz < by, so better than opt! Contra.

Claim: yb = cx

•	 Just said Ax = b in dual

8

′

′

′

′

• In primal, all (remaining) constraints are tight, so yA = c

• So yb = yAx = cx

Claim: x ≥ 0

• Suppose not.

• Then some xi < 0

• Let c = c + ei

• Consider solution to yA = c

• Exists solution (since A is full rank)

• And c′ ≥ c, so yA = c′ is feasible for original constraints yA ≥ c

• Value of objective is yb = yAx = c x

– We assumed xi < 0, and increased ci

– So c x < cx

– So got better value than opt. Contradiction!

Neat corollary: Feasibility or optimality: which harder?

• given optimizer, can check feasiblity by optimizing arbitrary func.

• Given feasibility algorithm, can optimize by combining primal and dual.

Interesting note: knowing dual solution may be useless for finding optimum
(more formally: if your alg runs in time T to find primal solution given dual,
can adapt to alg that runs in time O(T) to solve primal without dual).

3.1 Rules for duals

General dual formulation:

• primal is

z = min c1x1 + c2x2 + c3x3

A11x1 + A12x2 + A13x3 = b1

A21x1 + A22x2 + A23x3 ≥ b2

A31x1 + A32x2 + A33x3 ≤ b3

x1 ≥ 0

x2 ≤ 0

x3 UIS

(UIS emphasizes unrestricted in sign)

9

•	 means dual is

w = max y1b1 + y2b2 + y3b3

y1A11 + y2A21 + y3A31 ≤ c1

y1A12 + y2A22 + y3A32 ≥ c2

y1A13 + y2A23 + y3A33 = c3

y1 UIS

y2 ≥ 0

y3 ≤ 0

•	 In general, variable corresponds to constraint (and vice versa):

PRIMAL minimize maximize DUAL

≥ bi ≥ 0
constraints ≤ bi ≤ 0 variables

= bi free

variables
≥ 0
≥ 0
free

≤ cj

≤ cj

= cj

constraints

Derivation:

•	 remember lower bounding plan: use yb = yAx ≤ cx relation.

•	 If constraint is in “natural” direction, dual variable is positive.

•	 We saw A11 and x1 case. x1 ≥ 0 ensured yAx1 ≤ c1x1 for any y

•	 If some x2 ≤ 0 constraint, we want yA12 ≥ c2 to maintain rule that
y1A12x2 ≤ c2x2

•	 If x3 unconstrained, we are only safe if yA13 = c3.

•	 if instead have A21x1 ≥ b2, any old y won’t do for lower bound via c1x1 ≥
y2A21x1 ≥ y2b2. Only works if y2 ≥ 0.

•	 and so on (good exercise).

•	 This gives weak duality derivation. Easiest way to derive strong duality
is to transform to standard form, take dual and map back to original
problem dual (also good exercise).

Note: tighter the primal, looser the dual

•	 (equality constraint leads to unrestricted var)

•	 adding primal constraints creates a new dual variable: more dual flexibility

10

�

�

3.2 Shortest Paths

A dual example:

•	 shortest path is a dual (max) problem:

w = max dt − ds

dj − di ≤ cij

•	 constraints matrix A has ij rows, i columns, ±1 entries (draw)

•	 what is primal? unconstrained vars, give equality constraints, dual upper
bounds mean vars must be positive.

z = min yij cij

yij ≥ 0

thus
yji − yij = 1(i = s), −1(i = t), 0 ow

j

It’s the minimum cost to send one unit of flow from s to t!

4 Complementary Slackness

Leads to another idea: complementary slackness:

• given feasible solutions x and y, cx − yb ≥ 0 is duality gap.

• optimal iff gap 0 (good way to measure “how far off”

•	 Go back to original primal and dual forms

•	 rewrite dual: yA + s = c for some s ≥ 0 (that is, sj = cj − yAj)

•	 The following are equivalent for feasible x, y:

–	 x and y are optimal

–	 sx = 0

–	 xj sj = 0 for all j

–	 sj > 0 implies xj = 0

•	 We saw this in duality analysis: only tight constraints “push” on opt,
giving nonzero dual variables.

•	 proof:

11

�

�

�

�

–	 cx = by iff (yA + s)x = y(Ax), so sx = 0

–	 if sx = 0, then since s, x ≥ 0 have sj xj = 0 (converse easy)

–	 so sj > 0 forces xj = 0 (converse easy)

•	 basic idea: opt cannot have a variable xj and corresponding dual con-
straint sj slack at same time: one must be tight.

•	 Another way to state: in arbitrary form LPs, feasible points optimal if:

yi(aix − bi) = 0∀i

(cj − yAj)xj = 0∀j

•	 proof: note in definition of primal/dual, feasiblity means yi(aix − bi) ≥ 0
(since ≥ constraint corresponds to nonnegative yi). Also (cj −yAj)xj ≥ 0.
Also,

yi(aix − bi) + (cj − yAj)xj	 = yAx − yb + cx − yAx

= cx − yb

= 0

at opt. But since all terms are nonnegative, all must be 0

Let’s take some duals.
Max-Flow min-cut theorem:

•	 modify to circulation to simplify

•	 primal problem: create infinite capacity (t, s) arc

P = max xts

w

xvw − xwv = 0
w

xvw ≤ uvw

xvw ≥ 0

•	 dual problem: vars zv dual to balance constraints, yvw dual to capacity
constraints.

D = min yvwuvw

vw

yvw ≥ 0

zv − zw + yvw ≥ 0

zt − zs + yts ≥ 1

12

�

�

•	 Think of yvw as “lengths”

•	 note yts = 0 since otherwise dual infinite. so zt − zs ≥ 1.

•	 rewrite as zw ≤ zv + yvw.

•	 deduce yvw are edge lengths, zv are distance upper bounds from source.

•	 might as well set z to distances from source (doesn’t affect constraints)

•	 So, are trying to maximiz source-sink distance

–	 Good justification for shortest aug path, blocking flows

•	 sanity check: mincut: assign length 1 to each mincut edge

•	 unfortunately, might have noninteger dual optimum.

•	 note zi are distances, rescale to zs = 0

•	 let S = v | zv < 1 (so s ∈ S, t /∈ S)

•	 use complementary slackness:

–	 if (v, w) leaves S, then yvw ≥ zw − zv > 0, so xvw = uvw, (tight) i.e.
(v, w) saturated.

–	 if (v, w) enters S, then zv > zw. Also know yvw ≥ 0; add equations
and get zv + yvw > zw i.e. slack.

–	 so xwv = 0

–	 in other words: all leaving edges saturated, all coming edges empty.

•	 now just observe that value of flow equal value crossing cut equals value
of cut.

Min cost circulation: change the objective function associated with max-flow.

•	 primal:

z = min cvwxvw

xvw − xwv = 0
w

xvw ≤ uvw

xvw ≥ 0

•	 as before, dual: variable yvw for capacity constraint on fvw, zv for balance.

•	 Change to primal min problem flips sign constraint on yvw

13

�

�

•	 What does change in primal objective mean for dual? Different constraint
bounds!

max yvwuvw

zv − zw + yvw ≤ cvw

yvw ≤ 0

zv UIS

•	 rewrite dual: pv = −zv

max yvwuvw

yvw ≤ 0

= c(p)yvw ≤ cvw + pv − pw vw

•	 Note: yvw ≤ 0 says the objective function is the sum of the negative
parts of the reduced costs (positive ones get truncated to 0)

•	 Note: optimum ≤ 0 since of course can set y = 0. Since since zero
circulation is primal feasible.

•	 complementary slackness.

–	 Suppose fvw < uvw.

–	 Then dual variable yvw = 0

–	 So c(p) ≥ 0ij

–	 Thus c(p)
< 0 implies fij = uijij

– that is, all negative reduced cost arcs saturated.

– on the other hand, suppose cij
(p)

> 0

–	 then constraint on zij is slack

–	 so fij = 0

–	 that is, all positive reduced arcs are empty.

5 Algorithms

5.1 Simplex

vertices in standard form/bases:

•	 Without loss of generality make A have full row rank (define):

–	 find basis in rows of A, say a1, . . . , ak

14

�

�

–	 any other a� is linear combo of those.

–	 so a�x = λiaix

–	 so better have bl = λiai if any solution.

–	 if so, anything feasible for a1, . . . , a� feasible for all.

•	 m constraints Ax = b all tight/active

•	 given this, need n − m of the xi ≥ 0 constraints

•	 also, need them to form a basis with the ai.

•	 write matrix of tight constraints, first m rows then identity matrix

•	 need linearly independent rows

•	 equiv, need linearly independent columns

•	 but columns are linearly independent iff m columns of A including all
corresp to nonzero x are linearly independent

•	 gives other way to define a vertex: x is vertex if

–	 Ax = b

–	 m linearly independent columns of A include all xj �= 0

This set of m columns is called a basis.

•	 xj of columns called basic set B, others nonbasic set N

•	 given bases, can compute x:

–	 AB is basis columns, m × m and full rank.

–	 solve AB xB = b, set other xN = 0.

– note can have many bases for same vertex (choice of 0 xj)

Summary: x is vertex of P if for some basis B,

•	 xN = 0

•	 AB nonsingular

•	 A−1b ≥ 0B

Simplex method:

•	 start with a basic feasible soluion

•	 try to improve it

•	 rewrite LP: min cB xB + cN xN , AB xB + AN xN = b, x ≥ 0

•	 B is basis for bfs

15

•	 since AB xB = b − AN xN , so xB = A−1(b − AN xN), know that B

cx	 = cB xB + cN xN

= cB A
−1(b − AN xN) + cN xNB

= cB A
−1b + (cN − cB A

−1AN)xNB B

•	 reduced cost c̃N = cN − cB A
−1ANB

•	 if no c̃j < 0, then increasing any xj increases cost (may violate feasiblity
for xB , but who cares?), so are at optimum!

•	 if some c̃j < 0, can increase xj to decrease cost

•	 but since xB is func of xN , will have to stop when xB

•	 this happens when some xi, i ∈ B hits 0.

•	 we bring j into basis, take i out of basis.

•	 we’ve moved to an adjacent basis.

•	 called a pivot

•	 show picture

Notes:

•	 Need initial vertex. How find?

hits a constraint.

•	 maybe some xi ∈ B already 0, so can’t increase xj , just pivot to same obj
function.

•	 could lead to cycle in pivoting, infinite loop.

•	 can prove exist noncycling pivots (eg, lexicographically first j and i)

•	 no known pivot better than exponential time

•	 note traverse path of edges over polytope. Unknown what shortest such
path is

•	 Hirsh conjecture: path of m − d pivots exists.

•	 even if true, simplex might be bad because path might not be monotone
in objective function.

•	 certain recent work has shown nlog n bound on path length

16

5.2 Simplex and Duality

•	 defined reduced costs of nonbasic vars N by

c̃N = cN − cB A
−1ANB

and argued that when all c̃N ≥ 0, had optimum.

•	 Define y = cB A
−1 (so of course cB = yAB)B

•	 nonegative reduced costs means cN ≥ yAN

•	 put together, see yA ≤ c so y is dual feasible

•	 but, yb = cB A
−1b = cB xB = cx (since xN = 0) B

•	 so y is dual optimum.

•	 more generally, y measures duality gap for current solution!

•	 another way to prove duality theorem: prove there is a terminating (non
cycling) simplex algorithm.

5.3 Polynomial Time Bounds

We know a lot about structure. And we’ve seen how to verify optimality in
polynomial time. Now turn to question: can we solve in polynomial time?
Yes, sort of (Khachiyan 1979):

•	 polynomial algorithms exist

• strongly polynomial unknown.

Claim: all vertices of LP have polynomial size.

•	 vertex is bfs

•	 bfs is intersection of n constraints AB x = b

• invert matrix.

Now can prove that feasible alg can optimize a different way:

•	 use binary search on value z of optimum

•	 add constraint cx ≤ z

•	 know opt vertex has poly number of bits

•	 so binary search takes poly (not logarithmic!) time

•	 not as elegant as other way, but one big advantage: feasiblity test over
basically same polytope as before. Might have fast feasible test for this
case.

17

�

6 Ellipsoid

Lion hunting in the desert.
Define an ellipsoid

• generalizes ellipse

• write some D = BBT “radius”

• center z

• point set {(x − z)T D−1(x − z) ≤ 1}

• note this is just a basis change of the unit sphere x2 ≤ 1.

• under transform x → Bx + z

Outline of algorithm:

• goal: find a feasible point for P = {Ax ≤ b}

• start with ellipse containing P , center z

• check if z ∈ P

• if not, use separating hyperplane to get 1/2 of ellipse containing P

• find a smaller ellipse containing this 1/2 of original ellipse

• until center of ellipse is in P .

Consider sphere case, separating hyperplane x1 = 0

• try center at (a, 0, 0, . . .)

• Draw picture to see constraints

• requirements:

d−1 2– d−1(x1 − a)2 +1 i>1 i xi ≤ 1

– constraint at (1, 0, 0): d−1(x − a)2 = 1 so d1 = (1 − a)2 1

– constraint at (0, 1, 0): a2/(1−a)2+d−1 = 1 so d−1 = 1−a2/(1−a)2 ≈2 2
21 − a

2)n/2
• What is volume? about (1 − a)/(1 − a

• set a about 1/n, get (1 − 1/n) volume ratio.

Shrinking Lemma:

• Let E = (z, D) define an n-dimensional ellipsoid

• consider separating hyperplane ax ≤ az

18

•	 Define E′ = (z′, D′) ellipsoid:

1 DaT

z ′ = z − √
n + 1 aDaT

D′ n2 2 DaT aD
)=

n2 − 1
(D −

n + 1 aDaT

•	 then

E ∩ {x | ax ≤ ez} ⊆ E′

vol(E′) ≤ e1/(2n+1)vol(E)

•	 for proof, first show works with D = I and z = 0. new ellipse:

1

z ′ = −

n + 1

D′ n2 2
I11)=

n2 − 1
(I −

n + 1

and volume ratio easy to compute directly.

•	 for general case, transform to coordinates where D = I (using new basis
B), get new ellipse, transform back to old coordinates, get (z′, D′) (note
transformation don’t affect volume ratios.

So ellipsoid shrinks. Now prove 2 things:

•	 needn’t start infinitely large

• can’t get infinitely small

Starting size:

•	 recall bounds on size of vertices (polynomial)

•	 so coords of vertices are exponential but no larger

•	 so can start with sphere with radius exceeding this exponential bound

•	 this only uses polynomial values in D matrix.

• if unbounded, no vertices of P , will get vertex of box.

Ending size:

•	 convenient to assume that polytope full dimensional

•	 if so, it has n + 1 affinely indpendent vertices

•	 all the vertices have poly size coordinates

19

•	 so they contain a box whose volume is a poly-size number (computable as
determinant of vertex coordinates)

Put together:

•	 starting volume 2n O(1)

•	 ending volume 2−n O(1)

•	 each iteration reduces volume by e1/(2n+1) factor

•	 so 2n + 1 iters reduce by e

n•	 so nO(1) reduce by e
O(1)

•	 at which point, ellipse doesn’t contain P , contra

• must have hit a point in P before.

Justifying full dimensional:

•	 take {Ax ≤ b}, replace with P ′ = {Ax ≤ b + ε} for tiny ε

•	 any point of P is an interior of P ′, so P ′ full dimensional (only have
interior for full dimensional objects)

•	 P empty iff P ′ is (because ε so small)

• can “round” a point of P ′ to P .

Infinite precision:

•	 built a new ellipsoid each time.

•	 maybe its bits got big?

•	 no.

6.1 Separation vs Optimization

Notice in ellipsoid, were only using one constraint at a time.

•	 didn’t matter how many there were.

•	 didn’t need to see all of them at once.

•	 just needed each to be represented in polynomial size.

•	 so ellipsoid works, even if huge number of constraints, so long as have
separation oracle: given point not in P , find separating hyperplane.

•	 of course, feasibility is same as optimize, so can optimize with sep oracle
too.

•	 this is on a polytope by polytope basis. If can separate a particular poly-
tope, can optimize over that polytope.

This is very useful in many applications. e.g. network design.

20

� �

�

�

7 Interior Point

Ellipsoid has problems in practice (O(n6) for one). So people developed a dif-

ferent approach that has been extremely successful.

What goes wrong with simplex?

•	 follows edges of polytope

•	 complex stucture there, run into walls, etc

•	 interior point algorithms stay away from the walls, where structure sim-
pler.

•	 Karmarkar did the first one (1984); we’ll descuss one by Ye

7.1 Potential Reduction

Potential function:

•	 Idea: use a (nonlinear) potential function that is minimized at opt but
also enforces feasibility

•	 use gradient descent to optimize the potential function.

•	 Recall standard primal {Ax = b, x ≥ 0} and dual yA + s = c, s ≥ 0.

•	 duality gap sx

•	 Use logarithmic barrier function

G(x, s) = q ln xs − ln xj − ln sj

and try to minimize it (pick q in a minute)

•	 first term forces duality gap to get small

•	 second and third enforce positivity

•	 note barrier prevents from ever hitting optimum, but as discussed above
ok to just get close.

Choose q so first term dominates, guarantees good G is good xs

•	 G(x, s) small should mean xs small

•	 xs large should mean G(x, s) large

•	 write G = ln(xs)q / xj sj

•	 xs > xj sj , so (xs)n > xj sj . So taking q > n makes top term dominate,
G > ln xs

How minimize potential function? Gradient descent.

21

′	 ′

•	 have current (x, s) point.

•	 take linear approx to potential function around (x, s)

•	 move to where linear approx smaller (−∇xG)

•	 deduce potential also went down.

•	 crucial: can only move as far as linear approximation accurate

√ √

Firs wants big q, second small q. Compromise at n + n, gives O(L n) itera
-
tions.

Must stay feasible:

•	 Have gradient g = ∇xG

•	 since potential not minimized, have reasonably large gradient, so a small
step will improve potential a lot. picture

•	 want to move in direction of G, but want to stay feasilbe

•	 project G onto nullspace(A) to get d

•	 then A(x + d) = Ax = b

•	 also, for sufficiently small step, x ≥ 0

•	 potential reduction proportional to length of d

•	 problem if d too small

•	 In that case, move s (actually y) by g − d which will be big.

•	 so can either take big primal or big dual step

•	 why works? Well, d (perpendicular to A) has Ad = 0, so good primal
move.

•	 converseley, part spanned by A has g − d = wA,

•	 so can choose y = y+w and get s = c−Ay′ = c−Ay −(g−d) = s−(g −d).

•	 note dG/dxj = sj /(xs) − 1/xj

•	 and dG/dsj = xj /(xs) − 1/sj = (xj /sj)dG/dxj ≈ dG/dxj

22

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [300 300]
 /PageSize [612.000 792.000]
>> setpagedevice

