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18.415/6.854 Advanced Algorithms 

Problem Set Solution 3 

1. Consider the following optimization problem: 

Given c E Rn, c 2 0, n even, find 

n
min{cTx : xi,,xi 2 1 VS c (1,.  . . ,n), IS1 = 2, 

In class, it was shown that this can be solved by the ellipsoid method 
because there is an efficient separation algorithm. However, this 
problem has a more straightforward solution. 

Develop an algorithm which finds the optimum in O ( nlog n) time. 
Prove its correctness. 

Let 

We would like to describe the structure of P,which is an unbounded polyhedron. 
We prove that x E P exactly when x can be written as 

where XA denotes the characteristic vector of A, X A  2 0, and additionally 

First, suppose x satisfies this and consider S of size n/2. Any set A of size 
IAl > n/2 intersects S in at  least IAl - n/2 elements, therefore 

Conversely, let x E P .  Let 7-r be a permutation such that 

G(1)  I G ( 2 )  I . I X,(n). 
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Set 

and 

for k = 1. ..n. Then obviously X I ,  > 0 and 

Finally, we verify condition (*): 

Now we can optimize over P much more easily. First, observe that for any 
optimal solution 

we can assume X A  = 0 for IAI 5 n/2 and 

otherwise we decrease the coefficients until the equality holds. This won't in-
crease the objective function C cixi, since c > 0. Therefore an optimal solution 
always exists in the convex hull of { p A  : IAl > n/2} where 

We could evaluate the objective function a t  all these points but there are still 
too many of them. However, we can notice that for a given k = IAl, the 
only candidate for an optimum pa is the set A which contains the k smallest 
components of c. Therefore the algorithm is the following: 

Sort the components of c and let Ak denote the indices of the k smallest 
components of c, for each k > n/2. This takes O(n logn) time. 



For each k > n/2 ,  calculate sk = CiEAkck. This can be done in O ( n )time, 
because the sets Ak form a chain and we can use sk to calculate sk+l in 
constant time. 

Find the smallest value of 

for k > n/2.  Return this as the optimum. 

The algorithm runs in 0( nlog n) time and its correctness follows from the anal-
ysis above. 

2. Fill a gap in the analysis of the interior point algorithm: 

Suppose that ( x ,y, s )  is a feasible vector, i.e. x > 0, s > 0, 

Ax = b, 

A T y + s = c  

and we perform one Newton step by solving for A x ,  Ay ,  As: 

V X j S j + A x j ~ j+xjAs j  =/l 

where p > 0. The proximity function is defined as 

Prove that if 

then ( x  + A x ,  y + Ay,  s + A s )  is a feasible vector for Ax = b, x > 0 and 
A T y + s = c , s > O .  

The equalities are satisfied directly by the assumptions: 

We have to verify the positivity conditions. First we prove that at least one of 
xj +A x j ,  sj +A s j  is positive. We have xj > 0,sj > 0 and 



therefore either xj +Axj or sj+Asjmust be positive. 

Second, we use the proximity condition: 

In particular, for each j 

which means that xj + Axj and sj+ Asjhave the same sign. We know they 
can't be negative so they must be positive. 

Given a directed graph G = (V,E) and two vertices s and t, we would 
like to find the maximum number of edge-disjoint paths between s and 
t (two paths are edge-disjoint if they don't share an edge). Denote 
the number of vertices by n and the number of edges by m. 

(a) 	Argue that this problem can be solved as a maximum flow prob- 
lem with unit capacities. Explain. 
Let F be a union of k edge-disjoint paths from s to  t. We define a flow of 
value k in a natural way - an edge gets a flow of value 1if it is contained 
in F and and 0 otherwise. Since each path enters and exits any vertex 
(except s and t)  the same number of times, flow conservation holds. The 
value of the flow is the number of edges in F leaving s (or entering t )  which 
is k. 
Conversely, let f be the maximum flow with unit capacities. As we shall 
prove, there is always a 0 -1maximum flow, therefore we can assume that 
f, is either 0 or 1for each edge. Let 

and k be the value of the flow. Then we can decompose F into k edge-
disjoint paths in the following way: We start from s and follow a path 
of edges in F until we hit t. (This is possible due to flow conservation.) 
When we have found such a path, we remove it from F and consider the 
remaining flow of value k - 1. By induction, we find exactly k such paths. 

(b) 	Consider now the maximum flow problem on directed graphs G = 
(V,E) with unit capacity edges (although some of the questions 
below would also apply to the more general case). 
Given a feasible flow f ,  we can construct the residual network 
Gf = (V,Ef) where 

Ef = {(i, j) : ((i,j) E E & fq < uij) or ((j,i) E E & fji> 0)). 



The residual capacity of an edge (i,j) E Ef is equal to uij - fij or 
to fji depending on the case above. Since we are dealing with 
the unit capacity case, all the uij's are 1and therefore for 0 - 1 
flows f (i.e. flows for which the value on any edge is 0 or I), all 
residual capacities will be 1. 

We define the distance of a vertex lf(v) as the length of the short- 
est path from s to v in Ef (cafor vertices which are not reachable 
from s in Ef).  Further, define the levelled residual network as 

Elf = {(i,j) E Ef : l f ( j )  = lf (i) +1) 

and a saturating flow g in Ei as a flow in E; (with capacities 
being the residual capacities) such that every directed s - t path 
in Elf has at least one saturated edge (i.e. an edge whose flow 
equals the residual capacity). 
For a unit capacity graph and a given 0 - 1flow f,show how we 
can find the levelled residual network and a saturating flow in 
O(m) time. 
First, we can find Ef in O(m) time simply by testing each edge and adding 
the edge or its reverse to Ef,depending on the current flow. Then we can 
label the vertices by If (v) by a breadth-first search from s. This takes time 
O(m), also. At the same time we find d(f)  as the length of the shortest 
path from s to t. 

Then, we create E$ by keeping only the edges between successive levels. 
Thus all paths between s and t in Ei have length d( f ) .  Now we produce 
flow g by finding as many edge-disjoint s-t paths as possible. We start with 
E' = Ei and we perform a depth-first search from s. If we get stuck, we 
backtrack and remove edges on the dead-end branches since these are not 
in any s-t path anyway. When we find an s-t path, we set gij = 1along 
that path, and remove it from E'. We continue searching for paths until 
E' is empty. We spend a constant time on each edge before it's removed, 
which is O(m) time total. When we are done, there is no s-t path in E$ 
without a saturated edge, otherwise it would still be in E'. 

(c) Prove that if the levelled residual network has no path from s to 
t (If ( t )= co), then the flow f is maximum. 

Suppose there is a flow f * of greater value. Then f *- f (where the dif- 
ference is produced by either decreasing flow along an edge and increasing 
flow in the opposite direction) is a feasible flow in the residual network 
which has a positive value. This is easy to see because if f; > fij then 
(i,j) appears in Ef and f; - f, 5 uij - fo which is the capacity of this 
edge in Ef. If f; < fq then fu > 0 and therefore the opposite edge (j,i) 
appears in E f .  Also, fi, - f; 5 fij which is the capacity of (j,i) in E f .  



When a non-zero flow exists in Ef, there exists a path from s to t using 
only edges in Ef .  The shortest of these paths would appear in Ef,as well, 
which is a contradiction. 

(d) For a flow f ,  define 
d(f = If (t) 

(the distance from s to t in the residual network). Prove that if 
g is a saturating flow for f then 

where f +g denotes the flow obtained from f by either increasing 
the flow f, by gij or decreasing the flow fji by gij for every edge 
(i,j) E Gf. 
Consider Ef and the labeling of vertices if (v). For every edge (i, j) of Ef 
we have that if (j)5 If (i)+ 1. Since g is a saturating flow in ~ f , ,the only 
edges (u, v) which are in Ef+, and not in Ef are such that (v, u) E E;, 
which implies that lf (v) = lf (u) - I. In summary, every edge (i, j )  of Ef+, 
satisfies if (j)5 If (i)+ 1 and, furthermore, the edges which are not in 
Ef actually satisfy the inequality strictly 1 (j)< lf(i) + 1. Consider now 
any path P in Ef+, Adding up l f ( j )  5 lf(i) + 1 over the edges of P, we 
get that d(f )  5 IPI. Moreover, we can have d(f)  = IPI only if all edges 
of P also belong to Ef, which is impossible since g is a saturating flow. 
Hence, d(f)  < lPl and this is true for any path P of Ef+, implying that 
d(f ) < d(f  +g). 

(e) Prove that if f is a feasible 0 - 1 flow with distance d = d(f)  and 
f * is an optimum flow, then 

and also 

Suppose f has distance d and f *  is an optimal flow. As noted before, 
g = f * - f is a feasible flow in the residual network E f .  

Consider s-t cuts Cl,C2, .. . Cddefined by 

ck = {( i , j )  E Ef : lf(i) 5 k , l f ( j )  > k). 

There are at most m edges in total and these cuts are disjoint, therefore 



Since the value of g cannot be greater than any s-t cut in Ef, 
m

value(f*) - value(f) = value(g) 5 -.
d 

Similarly, define d + 1sets of vertices Vo,V17V2,. . . ,Vd: 

= {i E V :  l f ( i )= k ) .  

By double counting, 

Suppose that IVk-l 1 = a,  IV,I 5 9 - a. Note that the edges of Ck belong 
to Vk-l x Vk. Therefore 

(f) Design a maximum flow algorithm (for unit capacities) which 
proceeds by finding a saturating flow repeatedly. Try to opti-
mize its running time. Using the observations above, you should 
achieve a running time bounded by 0(min(mn2l3,m3I2)). 
The algorithm starts with a zero flow f .  Then we repeat the following: 

Find the levelled residual network ~ l f . 
Find a saturating flow g. 

a Add g to f ,  reset the residual network and continue. 

Each iteration takes O(m) time. Since d(f)  increases every time and it 
cannot reach more than n (the maximum possible distance in G), the 
running time is clearly bounded by O(mn). However, we can improve this. 
Suppose we iterate only d times and our flow after d iterations is f .  We 
know d(f)  2 d, and i f f *  is an optimal flow, 

Because the flow increases by at least 1 in each iteration, the remaining 
number of iterations is bounded by min{y, $). We choose d in order to 
optimize our bound. It turns out that the best choice is dl = m1I2 for the 
bound based on m and d2 = n2I3for the bound based on n. Thus the total 
running time is 0(min{m3I2,mn2I3)). 

(g) Can we now justify that, for 0 - 1 capacities, there is always an 
optimum flow that takes values 0 or 1 on every edge? 
Our algorithm finds a 0 -1flow and we have a proof of optimality, therefore 
there is always a 0 - 1 optimal flow. This justifies our reasoning in part 

(a). 


