
6.857 Homework Problem Set 1 # 1-2. One-Time Pad with Ciphertext Feedback
Anonymous
Anonymous
Anonymous April 6, 2014

Part (a)

To decode the ciphertexts, we XORed them together, which gives C1⊕C2 = (M1⊕P)⊕(M2⊕P) =
M1 ⊕M2. Thus the pad P is irrelevant. Then we found a set of 8-character words from an English
dictionary. For each M1 in this set, we constructed M2 by XORing M1 with C1 ⊕ C2, since
M1 ⊕ (C1 ⊕ C2) = M1 ⊕ (M1 ⊕M2) = M2. Lastly, we checked if M2 was also in the set. If both
M1 and M2 were in the set (as valid English words), then we outputted them.

C1 = [0xe9 , 0x3a , 0xe9 , 0xc5 , 0xfc , 0x73 , 0x55 , 0xd5]
C2 = [0xf4 , 0x3a , 0xfe , 0xc7 , 0xe1 , 0x68 , 0x4a , 0xdf]
M1_XOR_M2 = [c ˆ d for c, d in zip(C1, C2)]
with open('/usr/share/dict/words', 'r') as words_file:

words = words_file.read (). split ()
words = set([word for word in words if len(word) == len(M1_XOR_M2)])
for word1 in words:

M1 = [ord(c) for c in word1]
M2 = [c ˆ d for c, d in zip(M1 , M1_XOR_M2)]
word2 = ''.join([chr(c) for c in M2])
if word2 in words:

pad = [c ˆ d for c, d in zip(M1, C1)]
print 'word1 = %s, word2 = %s, pad = %s' % (word1 , word2 , pad)

Output of running the code:

word1 = networks, word2 = security, pad = [135, 95, 157, 178, 147, 1, 62, 166]
word1 = security, word2 = networks, pad = [154, 95, 138, 176, 142, 26, 33, 172]

Though their ordering is indiscernible, the two words are security and networks.

Part (b)

Messages and Pad

We stand today on the brink of a revolution in cryptography.
Probabilistic encryption is the use of randomness in an encr
Secure Sockets Layer (SSL), are cryptographic protocols that
This document will detail a vulnerability in the ssh cryptog
MIT developed Kerberos to protect network services provided
NIST announced a competition to develop a new cryptographic
Diffie-Hellman establishes a shared secret that can be used
Public-key cryptography refers to a cryptographic system req
The keys used to sign the certificates had been stolen from
We hope this inspires others to work in this fascinating fie

5

pad = [119, 75, 116, 51, 85, 113, 72, 105, 76, 78, 114, 79, 84, 49, 71, 101,
71, 88, 116, 78, 113, 102, 113, 87, 84, 65, 51, 55, 99, 56, 107, 69,
116, 105, 110, 109, 97, 113, 79, 106, 122, 68, 66, 98, 77, 72, 112,
72, 55, 53, 104, 54, 99, 71, 87, 97, 68, 98, 112, 49]

Process This part’s code was more interactive because, due to Ben’s addition of feedback, we
couldn’t simply XOR the 10 ciphertexts together and look up possible messages in the dictionary.
Our plan of attack was to first calculate all possible pad bytes (pi’s) that would result in valid and
likely English characters (letters and common punctuation) from all 10 ciphertexts.

valid_chars = set(range(65, 65 + 26) + range(97, 97 + 26) + # A-Z, a-z
[32, 44, 46, 63, 33, 45, 40, 41]) # space , ,.?! -()

Let’s consider a particular index i in the 60-character messages (0 ≤ i < 60). For our purposes, pi is
independent from the pad bytes surrounding it, because it only depends on mi, ci, and ci−1 (as the
calculate pad function below shows). We could have tried all 28 possible pi’s, but |valid chars| is
only 60. Therefore, we took each valid character, calculated which pi would result in that character
in the first ciphertext, and checked if it resulted in valid characters for the other 9 ciphertexts.

def calculate_pad(ctext , msg , prev_c =0):
assert len(ctext) == len(msg)
pad = []
for i in xrange(len(ctext)):

p = ((ctext[i] ˆ msg[i]) - prev_c) % 256

pad.append(p)

prev_c = ctext[i]

return pad

def prev_c_at(ciph , index):
return 0 if index == 0 else ciph[index - 1]

def ctext_at(ciph , index):
return ciph[index:index + 1]

msglen = 60

possible_pad_bytes = [[] for _ in range(msglen)]

for index in range(msglen):

for c in valid_chars:

possible_pad_byte = calculate_pad(ctext_at(tenciphs [0], index), [c],

prev_c=prev_c_at(tenciphs [0], index))

is_valid = True

for ciph in tenciphs:

msg = ben_decrypt(ctext_at(ciph , index), possible_pad_byte ,

prev_c=prev_c_at(ciph , index))

if not set(msg). issubset(valid_chars):

is_valid = False

break

if is_valid:

possible_pad_bytes[index]. append(possible_pad_byte [0])

This calculated all possible pi’s at each i, which is a good start since some choice of P = p1, . . . , p60

within these pi’s would result in Ben’s messages. However, here’s the issue:

>>> [len(p) for p in possible_pad_bytes]
[20, 6, 2, 1, 2, 1, 1, 1, 1, 5, 5, 4, 1, 1, 1, 8, 3, 2, 2, 2, 1, 1, 1, 3, 3,
1, 1, 1, 1, 5, 4, 1, 1, 2, 1, 2, 2, 9, 1, 4, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2,
2, 1, 2, 2, 1, 1, 1, 3, 2, 1]

6

_ _ _

There is a combinatorial explosion of 20 × 6 × · · · × 1, over 247, choices for P . However, there are
a tractable 480 choices for the first 9 bytes. We figured that we could restrict the problem to first
choosing those: listing all 480 p1, . . . , p9 pads, decrypting the first 9 bytes of the 10 ciphertexts
with each pad, and checking which pads gave intelligible English plaintext.

While we could scan the plaintext manually, we preferred to have the computer do it and score
its intelligibility. So, we loaded an English dictionary (the Ubuntu dictionary is excellent; it even
contains Hellman). For each set of 10 plaintext messages, we checked how many valid English words
from the dictionary appeared in it and gave it |word|2 points for each word that did. This scoring
function strongly favors longer words like cryptography. Lastly, we outputted the best-scoring
messages and pad.

def recursively_expand_pad(cur_pad , cur_index , words):
if cur_index == msglen: # To start , msglen is 9 instead of 60.

Reached the leaves of our search , so decrypt the 10 ciphertexts and score the
resulting text.
texts = [bytes_to_text(ben_decrypt(ciph[: msglen], cur_pad)) for ciph in tenciphs]
text_to_score = '\n '.join(texts).lower()
score = sum(len(word)**2 for word in words if word in text_to_score)

return (score , texts , cur_pad)

else :
best_score = 0; best_texts = None; best_pad = None
for p in possible_pad_bytes[cur_index]:

score , texts , pad = recursively_expand_pad(cur_index + 1, cur_pad + [p], words)
if best_score < score:

best_score = score; best_texts = texts; best_pad = pad
return (best score , best texts , best pad) _ _ _

with open ('/ usr / share / dict / words ', 'r ') as words_file :
words = set ([word . lower () for word in words_file . read (). split ()])

=, texts , pad recursively expand pad (0, [], words)
print 'messages = %s, pad = %s ' % (texts , pad)

Output of running the code:

messages = ['We stand ', 'Probabili', 'Secure So', 'This docu', 'MIT devel',
'NIST anno', 'Diffie-He', 'Public-ke', 'The keys ', 'We hope t'],

pad = [119, 75, 116, 51, 85, 113, 72, 105, 76]

We could have searched these plaintext prefixes on Google, but we decided to continue running our
code to choose p9, . . . , p18 (often the messages we want to decrypt won’t be available online). First
we wrote the pad above to possible pad bytes[0:9] (so there is only 1 choice for pi, 0 ≤ i < 9),
and then we increased msglen to 18. Output of rerunning the code:

messages = ['We stand today on ', 'Probabilistic encr', 'Secure Sockets Lay',
'This document will', 'MIT developed Kerb', 'NIST announced a c',
'Diffie-Hellman est', 'Public-key cryptog', 'The keys used to s',
'We hope this inspi'],

pad = [119, 75, 116, 51, 85, 113, 72, 105, 76, 78, 114, 79, 84, 49, 71,
101, 71, 88]

Repeating this process 4×, we eventually got the desired output (pasted at the beginning) for all
60 characters. At this point, we manually checked it with online articles to be confident in our
decryption. For instance, We stand today. . . appears in a well-cited 1976 paper by Whitfield Diffie
and Martin Hellman.

7

MIT OpenCourseWare
http://ocw.mit.edu

6.857 Network and Computer Security
Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

